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Introduction

Algebraic K-theory of bimonoidal categories arises as a structure of interest in “Two-
vector bundles and forms of elliptic cohomology” [3] by Nils Baas, Bjørn Ian Dundas
and John Rognes and its follow-up papers “Ring completion of rig categories” [1] and
“Stable bundles over rig categories”[2] by these three authors joint with Birgit Richter.
(These papers formerly were the one paper “Two-vector bundles define a form of el-
liptic cohomology”.) Specifically they investigate the category of two-vector-bundles.
By analogy to the case of principal bundles over a topological space they study two-
vector-bundles by examining a represented functor [X,K(V)], where K(V) is the al-
gebraic K-theory spectrum of the bimonoidal category of finite-dimensional complex
vector spaces V . This furthermore embeds into the context of interpolating between
the complexity of singular homology, which only captures few phenomena, and the
complexity of complex bordism, which detects all levels of periodic phenomena at
once. The cohomology theory defined by K(V) is in a precise manner one level more
complex than topological K-theory is.

The topic of involutions is introduced by the fact that it would be negligent to ignore
that the category of complex vector spaces is equipped with an involution naturally
induced by conjugation in complex numbers.

This diploma thesis studies theK-theory and Hochschild homology of rings with in-
volution. In detail the diploma thesis arose from the motivation to examine non-trivial
involutions on K-theory of bimonoidal categories by studying non-trivial involutions
on rings. To that end after introducing the basic concepts I define the algebraic K-
theory of strict bimonoidal categories following Birgit Richter’s “An involution on the
K-theory of bimonoidal categories with anti-involution”[21]. Furthermore if an object
has an associated anti-involution, this gives an associated involution on its K-theory,
which we define according to [21] as well.

As an example I explicitly present K-theory and involutions of group rings and
more specifically Laurent polynomials. These examples illustrate the limitations that
involutions can be studied onK-groups directly with the same difficulty thatK-groups
can be computed. There is a need for further tools.
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The last chapter is the heart of this diploma thesis. I investigate the Dennis trace
map

Dtr: Kn(R)→ HHn(R)

and the map associated to an anti-involution on Hochschild homology. The main result
5.4.3 of this diploma thesis is that the trace map Dtr does commute with the induced
involutions. Thus the trace map provides an additional tool to study involutions on
K-theory and can help to prove non-triviality. The result should be compared to the
statement by Bjørn Ian Dundas in the introduction of [8] that his functorial definition
of a trace map in particular implies that it respects involutions on K-theory and topo-
logical Hochschild homology. This diploma thesis serves as an algebraic analogue of
a fact known on the topological level, although it is not directly implied by that.

Finally I discuss the example of the integers with an adjoined prime root of unity
Z[ζp] and discuss the non-triviality in that case in contrast to Laurent polynomials,
which goes to show the usefulness of the Dennis trace map as well as its defects.

This text is organised as follows: The first two chapters are dedicated to study alge-
braicK-theory in the standard context of rings and specifically study rings with involu-
tion by providing an induced involution on theK-groups. The third chapter essentially
is a summary of Birgit Richter’s “An involution on the K-theory of bimonoidal cate-
gories with anti-involution”[21]. Furthermore the relations between a strict bimonoidal
category and its associated ring embed this paper into the non-triviality statements of
the following chapters. I provide examples of rings with families of involutions in
Chapter 4. All of these examples have non-trivial involutions on K1. Finally, chap-
ter 5 introduces the Dennis trace map as an example of a useful tool which can be
extended to the context of rings with involution and provide examples to evaluate its
usefulness in the ring context.

Acknowledgements

Let me take this opportunity to thank several hands full of people, who were directly
or indirectly involved in this diploma thesis:

Of course my primary thanks are addressed at Birgit Richter for suggesting a topic
that allowed to explore a lot of mathematics, lots of which did not make it into this
thesis, and giving me the freedom to do so, which has taken a considerably bigger
amount of time than it usually would :)

Furthermore in an order, where each place is equivalent to first place, I thank:

Stephanie Ziegenhagen, for loads of non-mathematical and mathematical discus-
sions alike, the inspiration of your strict, thorough, clear head and warm, just and

4



honestly outspoken heart is of ever-growing and indescribable importance to me. I
agree: May the force of universal properties save us from coordinates!

Hannah König for giving me the quickest introduction known to mankind to my
course of studies about five years ago, thus saving generations of kids from my school
teaching :)

Thomas Nikolaus for allowing me to pick your head every once in a while to provide
another view on mathematics, university or other things as a whole.

The founders of the internet for giving me access to invaluable things such as
Google, Google scholar, dict.leo.org, Ubuntu, YouTube, Allen Hatcher’s “Algebraic
Topology”, the arXiv and lots of other distracting or helpful things.

Donald Knuth and numerous other persons for LATEX.
Christoph Schweigert for several helpful discussions, actions, courses and in partic-

ular a motivating starting point in “Linear Algebra”. Quote: “Linear Algebra organises
the brain enormously.” Today I know your influence on that course strengthens that
effect tremendously.
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1 Introduction to K-Theory of Rings

In order to investigate K-theory of rings with involution I first want to give a solid
foundation of K-theory of general rings. My approach will diverge drastically from
the historical development in an effort to homogenise the appearance of K-theory
throughout this diploma thesis.

But in order to do the actual history justice, let me give some remarks on the his-
tory of (algebraic) K-theory. The K in the designation K-theory is reminiscent of
Grothendieck’s approach to the Riemann-Roch Theorem in which he studied coherent
sheaves over an algebraic variety and looked at classes - which is “Klassen” in German
- of those sheaves modulo exact sequences in 1957. This approach has been published
by Borel and Serre in “Le théorème de Riemann-Roch” [6] (1958). This first group is
what is nowadays called K0.

About seven years later, Bass provided a definition of the group he calledK1(A) for
A a ring and provided an exact sequence

K1(A, q)→ K1(A)→ K1(A/q)→ K0(A, q)→ K0(A)→ K0(q)

in the paper “K-Theory and Stable Algebras” [4] (1964). Since this exact sequence
was built upon to define higher K-theory, the name K1 for this group is still the com-
mon one.

The next group K2 was defined by Milnor in 1968 according to Bass’ “K2 and
symbols” [5] and again had an exact sequence connecting it toK1, along with a pairing

K1(A)⊗K1(A)→ K2(A)

which is bilinear and antisymmetric, thus looked like a segment of a graded ring. Since
the exact sequence, this pairing and further relations look far too natural to be a coin-
cidence, one was looking for a general sequence of K-groups Kn(R), which could be
associated to a ring and which would yield a more structural explanation of the known
results.

This was given by Milnor in “Algebraic K-Theory and Quadratic Forms” [19], but
Milnor himself described his definition as “purely ad hoc” (in [19] as well). Further-
more Milnor’s extension is restricted to be K-theory of fields, otherwise it would not
agree with the first three known K-groups.
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1.1. K-THEORY OF RINGS

The next attempt at definingK-theory for each natural number was given by Quillen
in 1973 in his paper “Higher Algebraic K-Theory: I” [20]. Quillen defines a topo-
logical space, proves that its homotopy groups agree with the known definitions and
derives some structural results, which translate algebraic relations into topological re-
lations between these newly defined spaces. These are the K-groups that are studied
in this diploma thesis.

1.1 K-Theory of Rings

I will generally assume rings to be unital but not necessarily commutative rings.
As said before, I will deviate from the historical viewpoint and just define the K-

theory space in order to give a more linear concise summary for K-theory of rings. In
preparation for that there are some necessary prerequisites in group homology.

1.1.1 Classifying Space of a Group

The first investigation focuses on a space |BG|, which arises in the context of classify-
ing principal G-bundles for a group G. It yields the result that isomorphism classes of
G-bundles over a spaceX are classified by homotopy classes of maps fromX to |BG|.
It is relevant in the context of this thesis however because of its homotopy groups (cf.
Lemma 1.1.2), so I will not elaborate on bundles any further. For simplicial meth-
ods consult Loday’s Appendix B in “Cyclic Homology”[15], the “basic definitions” in
Chapter I of Goerss-Jardine “Simplicial homotopy theory” [12] and May’s “Simplicial
Objects in Algebraic Topology”[17].

Definition 1.1.1. For G a group define a simplicial set as follows:

• The set of n-simplices is given as

BGn := Gn = G× . . .×G,

i.e. n-simplices are n-tuples of elements of G,

• The face maps di : BGn → BGn−1 are given by the equations

di(g1, . . . , gn) :=


(g2, . . . , gn) for i = 0

(g1, . . . , gigi+1, . . . , gn) for i = 1, . . . , n− 1

(g1, . . . , gn−1) for i = n.

• The degeneracies si : BGn → BGn+1 are given by the equations

si(g1, . . . , gn) := (g1, . . . , gi−1, 1, gi, . . . , gn) for i = 0, . . . , n
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CHAPTER 1. INTRODUCTION TO K-THEORY OF RINGS

which are putting a 1 next to each component including the left- and rightmost
position.

This constitutes a simplicial set (cf. May’s ”Concise Course in Algebraic Topology”
[18, Chapter 16, Section 5]).

Proposition 1.1.2. [18, Section 16.5] (1) Let G be a topological group, then each
homotopy group of the realisation of BG is identified as follows

πn(|BG|) ∼= πn−1(G) (n ≥ 1).

(2) If in particular G is discrete, this implies

πn(|BG|) =

G for n = 1

0 otherwise.

�

Remark 1.1.3. In particular this proposition answers the question whether each dis-
crete group can be realised as a fundamental group affirmatively.

1.1.2 Bar Construction on the Group Ring

There is a simplicial abelian group closely related to the simplicial set discussed be-
fore.

Definition 1.1.4. Let G be a discrete group and Z[G] its group ring with integer coef-
ficients. Define the following simplicial abelian group:

• Its group of n-simplices consists the free abelian group on n-tuples of G

Bn(G) := Z[G]⊗n ∼= Z[Gn]

• Its face and degeneracy maps are given by the linear extension of the respective
maps given before in definition 1.1.1.

The chain complex associated to this simplicial abelian group is called the bar complex
associated to the group G.

Remark 1.1.5. The common notations BG for both objects are quite unfavourable,
but on the other hand from the simplicial perspective legitimate. I will denote the
simplicial set with BG• and the simplicial abelian group with B∗(G). The context
in which they are used should provide sufficient grounds for just one interpretation to
make sense.

The bar complex defines group homology.
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1.1. K-THEORY OF RINGS

Definition 1.1.6. Let G be a group, then the group homology of G is defined to be the
homology of the bar complex G, i.e.

Hn(G) := Hn(B∗(G)).

The following result shows how well the two bar constructions interact:

Theorem 1.1.7. [24, Theorem 6.10.5] For G a group, BG• the associated simplicial
set and B∗(G) its associated bar complex, the singular homology with Z-coefficients
of |BG| and group homology of G, which is homology of B∗(G), are isomorphic, i.e.

Hn(|BG|,Z) ∼= Hn(G) = Hn(B∗(G)).

�

Remark 1.1.8. I will use this isomorphism in quite an inexplicit manner, since chains
in B∗(G) and the cellular chain complex of |BG| are isomorphic in a natural way. A
very elegant proof via singular chains can be found in Weibel’s “An Introduction to
Homological Algebra” [24] Theorem 6.10.5.

There is an interpretation of the first homology group as follows:

Proposition 1.1.9. [24, Theorem 6.1.11] For each group G, the first homology group
of G is naturally identified with the abelianised group

H1(G) = Gab.

�

1.1.3 Plus-Construction on Classifying Spaces

Since by lemma 1.1.2 the classifying space of a discrete group only provides one non-
trivial homotopy group, the space has to be modified in order to getKn(R) = πn(KR)

coinciding with the old definitions of K1 and K2. Furthermore it ought to represent
arithmetic information about the ring R. Therefore it would be quite counterintuitive
to expect the K-groups in all higher degrees to be trivial. Since the first three groups
measure the linear algebra over a ring, it seems natural to approach the definition of
K-theory by looking at the classifying space of general linear groups over a ring.

In order to organise the linear groups of a ring into one structure, define the index
category N with objects [n] := {1, . . . , n} and morphisms f : [n]→ [n+ k] given by
f(i) = i for each i ∈ [n].

Definition 1.1.10. For R a unital ring and F : N → Grp the functor given on objects
by

F ([n]) := GLn(R)
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CHAPTER 1. INTRODUCTION TO K-THEORY OF RINGS

and on morphisms by

(F (f : [n]→ [n+1])(A))i,j =


Af−1(i),f−1(j) i, j ∈ f([n])

0 (i /∈ f([n]) ∨ j /∈ f([n])) ∧ i 6= j

1 i = j ∧ i /∈ f([n]),

define the stabilised linear group of R as the colimit over F

GL(R) := colimNF.

In this case it is evidently even a filtered colimit GL(R) := lim−→GLn(R).

Remark 1.1.11. In less formal terms the stabilised linear group allows to identify each
invertible matrix as a top left finite submatrix of an infinite matrix, which otherwise
has unit entries on the diagonal and zeroes everywhere else.

Defining theK-theory space of a ring involves studying the subgroup of elementary
matrices in GL(R). This was initially motivated by Bass via K1 in [4]. Recall the
following definition:

Definition 1.1.12. Denote by ei,j(λ) the matrix with the following components

(ei,j(λ))k,l := δk,l + λδi,kδj,l i 6= j

That is ei,j(λ) is defined to be the identity matrix with exactly one off-diagonal com-
ponent λ ∈ R.

The group of n × n-elementary matrices En(R) is defined as the subgroup of
GLn(R) generated by ei,j(λ) for each i 6= j and each λ ∈ R.

Since this is compatible with the stabilisation given in definition 1.1.10, the sta-
bilised group of elementary matrices can be defined in the same fashion as in 1.1.10
by

E(R) := lim−→En(R).

It is a subgroup of GL(R) in a natural manner.

The next lemma is essential in constructing the K-theory space K(R).

Lemma 1.1.13. [23, Proposition 1.5] The stabilised elementary matrices generate a
normal subgroup of the stabilised general linear group for any ring

E(R) C GL(R),

which is perfect, i.e.

E(R) = [E(R), E(R)].
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1.1. K-THEORY OF RINGS

Furthermore the commutator subgroup [GL(R), GL(R)] of the stabilised general lin-
ear group is equal to the stabilised subgroup generated by elementary matrices, i.e.

E(R) = [GL(R), GL(R)].

�

The following result gives the classical construction of Quillen to define higher K-
theory:

Theorem 1.1.14. [23, Theorem 2.1] Let X be a CW-complex and N C π1(X) a
perfect normal subgroup of the fundamental group of X . Then there is a space X+

with a map i : X → X+, which are called the plus-construction on X with respect to
N . These satisfy the following properties:

1. The map i : X → X+ induces the canonical projection on fundamental groups

i∗ : π1(X)→ π1(X+) = π1(X)/N.

2. Each map f : X → Z, which is trivial on the given subgroup N , that is

π1(f) ◦ (j : N → π1(X)) = 0,

extends to a map on the plus-construction f̄ : X+ → Z. The extension is unique
up to homotopy in making the diagram

X

f ��@
@@

@@
@@

@
i // X+

f̄}}||
||

||
||

Z

commute up to homotopy.

3. For each system of local coefficients L : Π1(X+) → Ab on X+ the induced
map of the inclusion

i∗ : Hn(X, i∗L)→ Hn(X+,L)

induces an isomorphism on singular homology with local coefficients for each
n ≥ 0.

�

Remark 1.1.15. Let me emphasise some facts that the proof of this result yields. It is
essential that the actual construction can be given by attaching 2-cells which precisely
take care of the subgroup N and additional 3-cells to correct the defect on homology
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CHAPTER 1. INTRODUCTION TO K-THEORY OF RINGS

the 2-cells might have caused. In that manner it is legitimate to think of i : X → X+

as an inclusion.
I will not go into detail about local coefficients, but state that 1.1.14.(3) implies

Hn(X,G) ∼= Hn(X+, G) for each abelian coefficient group G understood as constant
coefficients as well, specifically for G = Z.

Property (2) in particular implies that any two plus-constructions to a fixed perfect
normal subgroup are homotopy-equivalent by the usual argument.

The results 1.1.13 and 1.1.14 combine to Quillen’s definition of higher K-theory.

Definition 1.1.16. ForR a ring define theK-theory space ofR to be the plus-construction
on the classifying space of GL(R) with respect to the elementary matrices E(R), i.e.

K(R) := |BGL(R)|+

and for n ≥ 1 define the K groups of R by

Kn(R) := πn(K(R)) (n ≥ 1).

Remark 1.1.17. Be aware that I completely avoid K0(R) here and in all the diploma
thesis, because it is exceptional in most cases.

As a defining property of the plus construction there are immediate reinterpretations
of K1:

Proposition 1.1.18. [23, Theorem 2.1 and Proposition 1.5] There are the following
natural identifications

K1(R) = GL(R)/E(R) = GL(R)/[GL(R), GL(R)] = GL(R)ab = H1(GL(R)).

Proof. The first equality is the definition of K(R), the second identification is a con-
sequence of lemma 1.1.13, the third is the usual identification giving a natural model
for the abelianised group of any group and the last identification is the classical one
already cited in proposition 1.1.9.

I will only refer to [23] again to note that there are interpretations for K2 and K3 as
well, which are not used in this diploma thesis.

The identifications given above in particular yield a useful tool for commutative
rings.

Proposition 1.1.19. [22, Theorem 2.2.1] For R a commutative ring, the determinant
maps for each finite degree detn : GLn(R)→ R× stabilise to give a map

det : GL(R)→ R×,
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1.1. K-THEORY OF RINGS

which is a group homomorphism with

det(ei,j(λ)) = 1R

for each i 6= j and λ ∈ R. In particular it satisfies E(R) ⊂ ker(det : GL(R) → R×)

and hence factors as follows

GL(R)

))RRRRRRRRRRRRRR
det // R×

GL(R)/E(R) = K1(R).

66mmmmmmmmmmmmmm

�

It is thus legitimate to write det : K1(R)→ R× as well and to call it the determinant
map as well. This is useful because there is an obvious inclusion j : R× = GL1(R)→
GL(R) → GL(R)/E(R), which yields det ◦j = idR× and hence gives a natural
splitting exact sequence

0→ SK1(R)→ K1(R)→ R× → 0,

which in particular implies

K1(R) ∼= SK1(R)⊕R×

for SK1(R) := SL(R)/E(R), where SL(R) is the usual special linear group sta-
bilised as GL(R) and E(R) before. For commutative rings R the problem of com-
puting K1(R) thus reduces to computing units — which may be a very hard problem
(cf. Chapter 4) — and computing the reduction of matrices of determinant one by
elementary matrices — which is hard in general as well, but can be feasible.

Remark 1.1.20. Let me emphasise that there is a natural map Ki(R)→ Hi(GL(R))

given as follows:
The K-theory of a ring is defined as Ki(R) := πi(|BGL(R)|+)(i ≥ 1) and the

plus-construction does not change homology

Hi(|BGL(R)|+,Z) ∼= Hi(|BGL(R)|,Z) = Hi(GL(R)).

Hence the Hurewicz-homomorphism gives a natural map

Ki(R) = πi(|BGL(R)|+)→ Hi(GL(R))

and specifically in degree 1 this can be understood as the identity on GL(R)/E(R),
since there are canonical identifications given in proposition 1.1.18

H1(GL(R)) = GL(R)ab = GL(R)/[GL(R), GL(R)] = GL(R)/E(R) = K1(R).
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2 K-Theory of Rings with
(Anti-)Involution

The central notion for this diploma thesis is the following definition.

Definition 2.0.21. Let R be a unital (not necessarily commutative) ring. A map
τ : R→ R, which is additive and satisfies the conditions:

• τ(ab) = τ(b)τ(a),

• τ(1) = 1,

• τ2 = idR

is called an (anti-)involution on R. Of course τ can as well be understood as a unital
ring homomorphism τ : R→ Rop.

Naturally the anti-involution on R should induce a map on the K-groups of R.
In what follows I am mainly following the lines of Burghelea and Fiederowicz [7],
although I can drastically simplify their approach for an algebraic, discrete ring instead
of a simplicial ring. To unify the vocabulary, I will mostly speak of involutions, which
for a ring will mean anti-involution without exception and for groups just a self-inverse
homomorphism.

2.1 The Induced Involution on the K-Theory Space

In order to induce an involution on the K-theory of R it is useful to induce a map on
the general linear group of R first. This involves the following maps:

Lemma 2.1.1. Transposition is a morphism of matrix rings

T : Mr(R)→Mr(R
op)op,

and hence also induces a morphism of the linear groups T : GLr(R)→ GLr(R
op)op.

Inverting group elements is a morphism

ι : G→ Gop.

17



2.1. THE INDUCED INVOLUTION ON THE K-THEORY SPACE

Each anti-involution of R induces a morphism

Mr(τ) : Mr(R)→Mr(R
op)

and in particular analogous to the transposition thus induces a homomorphism of linear
groups GLr(τ) : GLr(R)→ GLr(R

op).

Proof. In the case of the transposition, denote by ◦ the multiplication of Rop and
Mr(R

op)op and find

T (A ·B)i,j = (A ·B)j,i

=

r∑
k=1

Aj,kBk,i

=
r∑

k=1

TAk,jTBi,k

=
r∑

k=1

TBi,k ◦ TAk,j

= (TB · TA)i,j = (TA ◦ TB)i,j ,

which proves that transposition is a ring homomorphism

T : Mr(R)→Mr(R
op)op.

In case of the inverse map the relation (ab)−1 = b−1a−1 is a standard fact.
Per definition an anti-involution opposes the ring structure componentwise and as-

signing to each ring its r × r-matrices (for fixed r ∈ N) is an endofunctor of unital
rings Mr( ) : Rng1 → Rng1, thus the claim follows.

Lemma 2.1.2. Each of the three maps of lemma 2.1.1 commute, that is ι ◦ T = T ◦ ι,
T ◦GLr(τ) = GLr(τ) ◦ T and GLr(τ) ◦ ι = ι ◦GLr(τ).

Proof. The equality ι◦T = T ◦ ι is equivalent to the claim (TA)−1 = T (A−1), which
is equivalent to the statement T (A−1)TA = 1r, but this simplifies as follows, since
T (1r) = 1r

T (A−1)TA = T (AA−1) = T (1r) = 1r.

Hence follows T (A−1) = (TA)−1.
The fact that transposition and componentwise involution commute follows by the

calculation
(GLr(τ) ◦ T (A))i,j = τ(TAi,j)

= τ(Aj,i)

= (GLr(τ)(A))j,i

= T (GLr(τ)(A))i,j .
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CHAPTER 2. K-THEORY OF RINGS WITH (ANTI-)INVOLUTION

The inverse map and componentwise involution commute, since τ(1) = 1, which
implies 1r = GLr(τ)(AA−1) = GLr(τ)(A)GLr(τ)(A−1) and hence gives the equa-
tion GLr(τ)(A−1) = (GLr(τ)(A))−1.

Definition 2.1.3. For R a ring with anti-involution τ , the endomorphism of the linear
group induced by composition of inverting, transposition and componentwise involu-
tion

τ∗ : GLr(R)→ GLr(R)

τ∗ := T ◦ ι ◦GLr(τ)

is defined to be the homomorphism induced by the involution τ .

Remark 2.1.4. By the preceding lemma τ∗ is again its own inverse, since each of the
factors is self-inverse and they commute. Furthermore note that τ∗ is stable with re-
spect to the inclusions jr : GLr(R)→ GLr+1(R), since each of the factors evidently
is. This shows that there is an induced homomorphism on GL(R) as well.

It is essential to see that τ∗ also preserves elementary matrices:

Lemma 2.1.5. The induced involution on GL(R) is a map τ∗ : GL(R) → GL(R),

which preserves elementary matrices, i.e. τ∗(E(R)) ⊂ E(R).

Proof. The inverse of an elementary matrix is another elementary matrix by the equa-
tion eij(λ)eij(−λ) = 1n. Quite obviously the transposition gives eji(λ)t = eij(λ).
Each involution fixes the unit τ(1) = 1, which implies GLr(τ)(eij(λ)) = eij(τ(λ)).
So each factor preserves elementary matrices and hence the induced involution τ∗ pre-
serves elementary matrices as well.

Corollary 2.1.6. For R a (not necessarily commutative) ring with anti-involution τ ,
there is an induced involution on the K-theory of R.

Proof. As noted there is an induced map τ∗ : BGL(R) → BGL(R), hence there is
a map of geometric realisations as well |τ∗| : |BGL(R)| → |BGL(R)|. Composed
with the inclusion |BGL(R)| → |BGL(R)|+, this induces the canonical projection
on fundamental groups

GL(R)→ GL(R)/E(R).

The universal property of the plus construction (with respect to E(R)) describes a
map

f : |BGL(R)| → Z
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2.1. THE INDUCED INVOLUTION ON THE K-THEORY SPACE

to a space Z with ker(f∗ : π1(|BGL(R)|) → π1(Z)) ⊂ E(R) as a product of the
inclusion into the plus-construction |BGL(R)| → |BGL(R)|+ and a map f̄ as follows

|BGL(R)| f //

��

Z

|BGL(R)|+.
f̄

99ttttttttttt

Furthermore f̄ is determined uniquely up to homotopy (cf. Theorem 1.1.14). In partic-
ular, since the induced homomorphism τ∗ : GL(R) → GL(R) preserves elementary
matrices, there is a map on the plus-construction τ+

∗ : |BGL(R)|+ → |BGL(R)|+

such that the following diagram commutes up to homotopy

|BGL(R)| τ∗ //

��

|BGL(R)|

��
|BGL(R)|+ τ+∗ // |BGL(R)|+

and thus gives a map τ∗ : Ki(R)→ Ki(R) for i ≥ 1.

By the same argument there is an induced involution on group homology of GL(R)

as well, which will later be useful in the investigation of trace maps.

Corollary 2.1.7. For R a (not necessarily commutative) ring with anti-involution τ ,
there is an induced involution on group (co-)homology of GL(R).

Proof. The map τ∗ : BGL(R) → BGL(R) passes on to geometric realisation. In
singular homology (with arbitrary coefficients) this yields the induced involution (cf.
Theorem 1.1.7).

It is quite obvious that even in this basic stage there are a lot of identifications,
which ought to be compatible with each induced involution. So the next statement is
just asserting that everything is coherently defined.

Theorem 2.1.8 (Involution on H∗(GL(R))). The evident involution on the bar com-
plex (cf. Definition 1.1.4) given by applying the induced involution componentwise

τ∗(g1, . . . , gn) := (τ∗(g1), . . . , τ∗(gn))

yields the same involution onH∗(GL(R),Z) as singular homology with Z-coefficients
on |BGL(R)| does.

Proof. It is legitimate to think of the bar complexB∗(Z[GL(R)]) as the chain complex
of abelian groups associated to the simplicial set BGL(R). The induced homomor-
phism is applied componentwise as Bτ∗(g1, . . . , gn) := (τ∗(g1), . . . , τ∗(gn)), so on
the geometric realisation this is
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CHAPTER 2. K-THEORY OF RINGS WITH (ANTI-)INVOLUTION

|Bτ∗|([(g1, . . . , gn), (t0, . . . , tn)]) = [(τ∗(g1), . . . , τ∗(gn)), (t0, . . . , tn)].

In particular |Bτ∗| is not just cellular, it maps one cell precisely to one other cell in
an orientation-preserving manner. Thus on cellular chains, it maps one basis element
to another by the same formula as on BGL(R) before.

The plus construction preserves homology and thus provides an alternative to induce
an involution on the homology of |BGL(R)|+. By the following result this induces
the same involution.

Proposition 2.1.9. For τ∗ : |BGL(R)| → |BGL(R)| the induced map on the classify-
ing space of the general linear group and τ+

∗ the induced map on the plus-construction
τ+
∗ : |BGL(R)|+ → |BGL(R)|+ the isomorphism given by the inclusion into the

plus-construction i∗ : H∗(|BGL(R)|)→ H∗(|BGL(R)|+) transforms one involution
into the other.

Proof. The homology-isomorphism is a consequence of the fact that the 1-cells corre-
sponding to elements in E(R) are boundaries of additional 2-cells. By adding another
set of 3-cells, the effect of these 2-cells on homology is removed. This shows that
the effect of τ∗ on homology is the same on non-trivial cycles, since they came from
|BGL(R)| anyway.

For later reference the results summarise to the following statement:

Theorem 2.1.10 (Coherence of the Involutions). The induced involution on K-theory
2.1.6 and group homology 2.1.7 commutes with the Hurewicz homomorphism and the
homology isomorphism of the plus-construction.

Proof. For the Hurewicz homomorphism h : Ki(R) → Hi(GL(R)) the following
commutative diagram is commutative, since the Hurewicz homomorphism is natural
with respect to continuous maps

Ki(R) = πi(|BGL(R)|+)
πi(τ∗) //

h
��

Ki(R)

h
��

Hi(|BGL(R)|+,Z)
Hi(τ∗) // Hi(|BGL(R)|+,Z).

Furthermore the identification chain

Hi(|BGL(R)|+,Z) ∼= Hi(|BGL(R)|,Z) ∼= Hi(BGL(R),Z) = Hi(GL(R))

commutes with induced involution as well by theorem 2.1.8 .
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2.2. INVOLUTION AND DETERMINANT

2.2 Involution and Determinant

Since in the following I mainly concentrate on K1 for explicit calculations, I will need
the following results on how the determinant behaves with respect to the induced in-
volution on GL(R).

Lemma 2.2.1. For R a commutative ring with τ an involution, R× its group of units
and

det : GL(R)→ R×

the determinant map, there are the following equalities:

(1) det ◦GLr(τ) = τ ◦ det,

(2) det ◦T = det,

(3) det ◦ιGLr(R) = ιR× ◦ det .

Proof. (1) For A ∈ GLr(R) calculate

det(GLr(τ)(A)) =
∑
σ∈Σr

sgn(σ)(GLr(τ)(A))1,σ(1) · . . . · (GLr(τ)(A))r,σ(r)

=
∑
σ∈Σr

sgn(σ)τ(A1,σ(1)) · . . . · τ(Ar,σ(r))

= τ

(∑
σ∈Σr

sgn(σ)A1,σ(1) · . . . ·Ar,σ(r)

)
= τ(det(A)).

In particular note that this of course needed commutativity.
(2) The fact that transposition does not change the value of the determinant is a

well-known fact of linear algebra, which is still true for commutative rings.
(3) The determinant transfers inverting matrices into inverting ring units, since the

determinant is multiplicative det(AB) = det(A) det(B) for arbitrary commutative
unital rings. This implies

1 = det(1r) = det(A−1A) = det(A−1) det(A)

and hence det(A−1) = det(A)−1.
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CHAPTER 2. K-THEORY OF RINGS WITH (ANTI-)INVOLUTION

The induced involution on K1 is thus transformed in the following manner:

Corollary 2.2.2. The determinant map and the induced involution commute as follows

det ◦τ∗ = i ◦ τ ◦ det .

�

Therefore on the group of units, included as a subgroup in K1, induced involutions
look precisely as expected:

Proposition 2.2.3. For j : R× → K1(R) the inclusion of units with det ◦j = idR× ,
the involution restricts as

τ∗|j(R×) = ιR× ◦ τ.

�
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3 Involutions on Bimonoidal
Categories

So far the involution defined in Richter [21] does not directly apply to the preced-
ing chapters. This section summarises the results and definitions of [21] such that
later chapters of this diploma thesis provide non-trivial examples of involutions on
K-theory, which are induced by involutions of simplicial rings according to Burghe-
lea and Fiedorowicz [7] as well as involutions on bimonoidal categories as defined by
Richter [21].

LetR be a small category in this section. Following [21, Introduction of Chapter 2]
and [10, Definition 3.3] I define a (strict) bimonoidal category as follows:

Definition 3.0.4. A strict bimonoidal category R is a category with two functors
⊕,⊗ : R × R → R and two distinguished objects 0, 1 together with a natural trans-
formation cA,B⊕ : A⊕B → B⊕A and a natural isomorphism dl : A⊗B⊕A⊗B′ →
A⊗ (B ⊕B′), which are subject to the following conditions:

• addition and multiplication ⊕ and ⊗ are strictly associative

A⊕ (B ⊕ C) = (A⊕B)⊕ C A⊗ (B ⊗ C) = (A⊗B)⊗ C,

• the zero and the unit element are strictly neutral

A⊕ 0 = 0⊕A = A 1⊗A = A⊗ 1 = A,

• the zero element strictly multiplies to zero and there is one strict distributivity

A⊗ 0 = 0⊗A = 0 A⊗B ⊕A′ ⊗B = (A⊕A′)⊗B,

• and the additive twist is a self-inverse map

cB,A⊕ ◦ cA,B⊕ = idA⊕B.

Furthermore the natural transformations have to satisfy a (long) list of coherence
conditions, which are spelled out in Laplaza [14] on pages 31-35 .

The following example illustrates why this is a suitable category analogue for rings.
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Example 3.0.5. To each ring R associate a discrete category RR with the following
data:

• ObRR = R,

• r ⊕ s := r + s,

• r ⊗ s := rs.

This is a strict bimonoidal category, where each of the natural transformations is the
identity.

Of course there are also more interesting examples:

Example 3.0.6. [1, Example 2.3] For each natural number n denote by [n] the follow-
ing set [n] := {1, . . . , n}. Consider the following category E with

• ObE = {[n]|n ∈ N}

• E([n], [m]) = {f : {1, . . . , n} → {1, . . . ,m} | f ∈ Set([n], [m])},

which is a skeleton of the category of finite sets. Set [n] ⊕ [m] := [n + m], which
extends to morphisms in the following fashion (for f : [n]→ [n′] and g : [m]→ [m′])

(f ⊕ g)(i) :=

f(i) for 1 ≤ i ≤ n

n′ + g(n− i) for n+ 1 ≤ i ≤ n+m.

Define c⊕ : [n+m]→ [m+ n] by the formula

(c⊕)n,m : [n+m]→ [m+ n]

i 7→

m+ i for 1 ≤ i ≤ n

i− n for n+ 1 ≤ i ≤ n+m,

which is obviously natural in n and m. Furthermore observe that ⊕ is strictly associa-
tive and [0] := ∅ is a strict unit with respect to ⊕.

Consider the multiplication [n] ⊗ [m] := [nm]. This is extended to morphisms by
choosing a natural bijection [n] × [m] ∼= [nm] and applying morphisms component-
wise, which I will not display in detail. The multiplication has a twist c⊗ as well, is
strictly associative and has [1] as a strict unit.

Restricted to isomorphisms this gives

E([n], [m]) =

Σn for m = n

∅ otherwise
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CHAPTER 3. INVOLUTIONS ON BIMONOIDAL CATEGORIES

Example 3.0.7. Depending on the context the objects [n] can also be understood as
dimensions or ranks of modules to give another category. The particular example V of
Baas, Dundas and Rognes [3] is given by

V([n], [m]) :=

U(n) for n = m

∅ otherwise,

which is a skeleton of the category finite dimensional complex (unitary) vector spaces
with just isomorphisms, which preserve the scalar product.

There is a category of matrices for strict bimonoidal categories:

Definition 3.0.8. The category of n × n-matrices over R, denoted as Mn(R), is the
following

• Objects are matrices of objects inR

ObMn(R) := {(Ai,j)i,j=1,...,n|Ai,j ∈ ObR},

• Morphisms are matrices of morphisms between the respective components

Mor(A,B) := {(ϕi,j)i,j=1,...,n|ϕi,j ∈ R(Ai,j , Bi,j)}.

Checking the following lemma from [21] is tedious, but straightforward:

Lemma 3.0.9. [21, Lemma 2.2] For a bimonoidal category (R,⊕, 0, c⊕,⊗, 1R) the
category of n×n-matrices is a monoidal category with the usual matrix multiplication

(A ·B)i,j :=

n⊕
k=1

Ai,k ⊗Bk,j .

Its unit is the unit matrix 1n with 1R on the diagonal and zeroes everywhere else. Its
associator α can be given by the distributivity morphisms in R, whereas the left and
right unitor morphisms λ : 1n ·A→ A and ρ : A · 1n → A are identities. �

Remark 3.0.10. The fact that α can be expressed by distributivity morphisms on the
components, in particular implies that in the case, where both distributivity transfor-
mations are identities, the monoidal category of matricesMn(R) will be strict w.r.t. ⊗
as well.

Let R be a small bimonoidal category. Then its set of path components π0R =

π0(|BR|) is a ring except for additive inverses. (Also called ring without negatives,
rig.) Since the sum ⊕ induces the structure of an abelian monoid, the usual group
completion with respect to ⊕, i.e. Gr(π0(R)) = (−π0R)π0R, yields a ring. Set
R := (−π0R)π0R and call R the ring associated to the bimonoidal categoryR.
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Denoting by GLn(R) the matrices which have inverse matrices, would yield far too
few matrices to be interesting for a general bimonoidal category. For example, for
N regarded as a bimonoidal category this would only yield permutation matrices. In
order to get some more variety, weaken the invertibility as follows:

Definition 3.0.11. The monoid of weakly invertible n×n-matrices over the rig π0(R),
denoted byGLn(π0(R)) is defined to be matrices inMn(π0(R)), which are invertible
if included into matrices over the ring associated toR, i.e. inMn(R) = Mn(Gr(π0R)).

With this define the category of weakly invertible matrices:

Definition 3.0.12. The category of weakly invertible n×n-matrices overR is defined
as the full subcategory of Mn(R) with matrices A such that the projection to π0-
classes [A] is in the weakly invertible matrices over π0(R), i.e. GLn(π0(R)). Denote
this category by GLn(R).

Less formal, since π0(R) is usually just a rig and not a ring, this additional step just
collects all matrices which are invertible up to connecting chains of morphisms.

Lemma 3.0.13. [21, Remark between Definition 2.4 and Definition 2.5] Matrix mul-
tiplication respects weak invertibility, that is · : Mn(R)×Mn(R)→Mn(R) restricts
to GLn(R).

Proof. First note that, ifR is small, then each of the defined matrix categories is small
as well, hence intersections are defined. The preceding sequence of definitions then
gives the equivalences

A ∈ GLn(R)⇔ A ∈Mn(R) ∧ [A] ∈ GLn(π0(R))

⇔ A ∈Mn(R) ∧ [A] ∈Mn(π0(R)) ∧ [A] ∈ GLn((−π0(R)π0(R)))

⇔ A ∈Mn(R) ∧ [A] ∈ GLn((−π0(R)π0(R)))

and both of these conditions are compatible with matrix multiplication.

Remark 3.0.14. The stabilisation of GLn(R) for a ring R (cf. Definition 1.1.10)
generalises to this case by mimicking the stabilisation of linear groups as follows.
Define on objects

Jn : Ob(GLn(R))→ Ob(GLn+1(R))

Jn(A) :=

(
A 0n

0tn 1R

)

(where 0tn denotes the horizontal zero n-tuple) and extend this on morphisms in the
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CHAPTER 3. INVOLUTIONS ON BIMONOIDAL CATEGORIES

obvious fashion via

Jn(fi,j : A→ B)k,l :=


fk,l : Ak,l → Bk,l for 0 ≤ k, l ≤ n

id1R for k = l = n+ 1

id0R otherwise

This defines a functor and hence defines in the usual fashion GL(R) as the colimit in
small categories GL(R) := colimNGLn(R), which still is a monoidal category.

3.1 Bar Construction for Monoidal Categories

From [3] I take the following bar construction for monoidal categories (no strictness
assumed), so in this context for GL(R).

Definition 3.1.1. [21, Definition 2.5] Let (C, ·, 1C , α, λ, ρ) be a monoidal category
(for α the associativity transformation, λ, ρ the unit transformations). Let Bq(C) be
the following category:

• Its objects are given by triangular matrices of objects in C, such that for each
0 ≤ i < j ≤ q there is an object Ai,j ∈ C, i.e.

A0,1 A0,2 . . . A0,q

A1,2 . . . A1,q

. . .
...

Aq−1,q

 .

• Furthermore for each 0 ≤ i < j < k ≤ q there is a (chosen) isomorphism

ϕi,j,k : Ai,j ·Aj,k → Ai,k

subject to the coherence

(Ai,jAj,k)Ak,l
α //

ϕi,j,k·id
��

Ai,j(Aj,kAk,l)

id·ϕj,k,l

��
Ai,kAk,l

ϕi,k,l
// Ai,l Ai,jAj,l.

ϕi,j,l
oo

• A morphism f in Bq(C) is a set of morphisms f i,j : Ai,j → Bi,j for each pair
(i, j) satisfying 0 ≤ i < j ≤ q, such that for all 0 ≤ i < j < k ≤ q and ψi,j,k
the isomorphisms of B the maps f i,j satisfy the following coherence

f i,kϕi,j,k = ψi,j,k(f i,j · f j,k).
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3.1. BAR CONSTRUCTION FOR MONOIDAL CATEGORIES

Example 3.1.2. The isomorphisms ϕi,j,k are a necessary part of the data because of
the additional choices which are involved by a non-strict associativity. The 1-simplices
are the objects of C, so no additional data. In B2C there are typical simplices(

a ab

b

)
,

which are one specific instance of a chosen representative given the diagonal entries
a, b. But for objects in B3C and even fixed diagonal objects a, b, c and binary products
ab, bc, this triangle can only be built up as followsa ab ?

b bc

c

 ,

which is the first occasion, where in the top right there is a choice of a representative
for the triple product involved. The first coming to mind might be a(bc) and (ab)c and
both are isomorphic via α, but there might be even more and the ϕi,j,k fix the chosen
isomorphisms on the way.

I will not prove the next lemma, but I want to exhibit the statement very clearly.

Lemma 3.1.3. The categories Bq(C) form a simplicial category with the following
face and degeneracy functors

di : Bq(C)→ Bq−1(C) i = 0, . . . , q

(di(Ak,l))m,n = Aδi(m),δi(n)

si : Bq(C)→ Bq+1(C) i = 0, . . . , q

(si(Ak,l))m,n = Aσi(m),σi(n),

where δi : [q − 1]→ [q] is the monotonic map that skips i and σi : [q + 1]→ [q] is the
monotonic map that hits i (and only i) twice. Since degeneracies si might be “hitting
twice”, I use the convention Ai,i = 1C for each A and i.

The isomorphisms for di(A) are just the isomorphisms ϕδi(j),δi(k),δi(l), since di does
not change anything about strictness of 0 ≤ j < k < l ≤ q. By the convention to take
Ai,i = 1C either λ : 1 · c → c or ρ : c · 1 → c are natural choices for isomorphisms
ϕ, according to the position of the unit in the degenerate simplex. This is coherent by
the coherence of the left and right unit transformation given by C being a monoidal
category.

The extension of di and si to morphisms is just restricting a given (f i,j) or inserting
f i,i = id1C at equal indices. �

For strict monoidal categories however one can formally mimic the bar construction
given in definition 1.1.1 and get the following result:
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Theorem 3.1.4. [3, Prop 3.9] The bar construction BC is equivalent to the strict bar
construction [n] 7→ Cns for any strictly monoidal rigidification Cs of C. �

Remark 3.1.5. One could either directly use the bar construction given for monoidal
categories or strictify the monoidal category first, i.e. replace the associativity, left
and right unit transformation by identities in an organised fashion, and then apply the
usual bar construction (definition 1.1.1). This theorem implies that both approaches
yield equivalent results.

Remark 3.1.6. In order to avoid confusion let me point out explicitly that there is a
functor U : CAT→ Sets from the (1-)category of small categories to sets, which just
sends each category to its set of objects and just forgets morphisms. This then extends
to a forgetful functor U : sCAT→ sSets from simplicial categories to simplicial sets,
which defines the geometrical realisation of B•C by setting |BC| := |UBC|.

3.2 K-Theory of a Strict Bimonoidal Category

By the preceding section there already is a classifying space associated to the category
of weakly invertible matrices over a bimonoidal category, but so far there is no obvious
extension to the meaning of using a Plus-construction |BGL(R)|+. Fortunately the
additional simplices do not affect the first homotopy group. The following lemma from
Baas, Dundas and Rognes [3] simplifies the proof of lemma 3.2.2.

Lemma 3.2.1. [3, Proposition 5.3] Let B be a rig with additive Grothendieck group
completion A := Gr(B). Then the rig-homomorphism B → A induces a weak
equivalence of classifying spaces

|BGL(B)| → |BGL(A)|,

where GL(B) denotes weakly invertible matrices over a rig. �

The fundamental group of BGL(R) can hence be described explicitly by its asso-
ciated ring R:

Lemma 3.2.2. LetR be a bimonoidal category and R := (−π0(R))π0(R) its associ-
ated ring.

(1) The natural projection

GLn(R)→ GLn(R)

from weakly invertibleR-matrices to the general linear group overR induces a natural
simplicial map of the (underlying set of the) bar construction of the monoidal category
GLn(R) to the ordinary bar construction of the group GLn(R)

p : B•(GLn(R)) −→ B•(GLn(R))
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given by projecting to diagonal entries

p



A0,1 A0,2 . . . A0,q

A1,2 . . . A1,q

. . .
...

Aq−1,q

 , (ϕi,j,k)

 := ([A0,1], [A1,2], . . . , [Aq−1,q])

(2) Stabilisation of GLn(R) and GLn(R) with regard to n and geometrical realisa-
tion yield an isomorphism of fundamental groups

p∗ : π1(|BGL(R)|)→ π1(|BGL(R)|) = GL(R).

In particular there is a natural inclusion of the elementary matrices over R as a perfect
normal subgroup of π1|BGL(R)|, i.e. E(R) ↪→ π1(|BGL(R)|).

Proof. (1) Since it is not an ordinary induced map between bar constructions of the
same kind, I explicitly present the compatibility with face maps in the case l =

1, . . . , q − 1. Note that for matrices in Bq(GLn(R)) the associated isomorphisms
give the relation [Ai,j ][Aj,k] = [Ai,k] in π0(R) for indices i < j < k, which implies

p(((dl(A))i,j)0≤i<j≤q−1) = p(((A)dl(i),dl(j))0≤i<j≤q−1)

= ([A0,1], . . . , [Al−1,l+1], . . . , [Aq−1,q])

= ([A0,1], . . . , [Al−1,l][Al,l+1], . . . , [Aq−1,q])

= dl([A
0,1], . . . , [Aq−1,q])

= (dl ◦ p)(A).

The other cases are also readily derived from the existence of those morphisms.
(2) By the preceding lemma inspect

p : |B•(GL(R))| −→ |B•(GL(π0(R)))|

Without loss of generality assume that a given loop γ̄ : S1 → |BGL(π0(R))| is a
cellular map, such that γ̄ passes through finitely many 1-cells, since S1 is compact.
More precisely, denote the unique 0-cell of |BGL(π0(R))| by ∗, then the image of
the loop except for ∗, i.e. γ̄(S1) \ ∗, can be decomposed into a sequence of finitely
many 1-cells. In particular for θ ∈ S1 define [Aγ̄(θ)] as either the unique cell of
γ̄(θ) or as ∗. It is clear that between two occurrences of the base-point [Aγ̄(θ)] is
constant. Choose a sequence of representatives (Aγ(θ)) with Aγ(θ) = ∗ ∈ BGL(R),
if γ̄(θ) = ∗ ∈ |BGL(π0(R))| and p(Aγ(θ)) = [Aγ(θ)], which are chosen to be locally
constant as well. This gives a map

γ : S1 → |BGL(R)|
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by setting γ(θ) := [Aγ(θ), (γ̄)2(θ)], where (γ̄)2 denotes the simplex coordinate in the
image of ∆1 modulo identification. This is a well-defined and hence a continuous map
γ : S1 → |BGL(R)|, which satisfies p ◦ γ = γ̄ per construction. Thus the induced
map p∗ : π1(|BGL(R)|)→ π1(|BGL(π0(R))|) is surjective.

By lifting homotopies in the same fashion with the useful choice

p

(
A1 A1A2

A2

)
= ([A1], [A2]),

the induced map of the projection is injective on π1 as well. Therefore on fundamental
groups there is an isomorphism

p∗ : π1(|BGL(R)|)→ π1(|BGL(R)|) = GL(R).

Another strategy to prove the preceding lemma is to apply the result 3.1.4 and try to
sufficiently understand the strictified monoidal category GL(R)s. Since I only need
this result in degree 1, lemma 3.2.2 allows to associate a K-theory space to a bi-
monoidal category:

Definition 3.2.3. LetR be a bimonoidal category and R = (−π0(R))π0(R) its asso-
ciated ring. By the preceding lemmas there is a natural inclusionE(R)→ π1|BGL(R)|
and hence the plus-construction can be used with respect to the perfect normal sub-
group E(R) to define

K(R) = |BGL(R)|+

and thus the K-groups by

Kn(R) := πn(K(R)) (n ≥ 1).

Remark 3.2.4. Again recall that I do not define K0 here, since K(R) is evidently
connected.

3.3 Bimonoidal Categories with Involution

I will not go through all the details of the construction of an induced involution for a
category with involution, since it is very explicitly given in Birgit Richter’s paper [21,
Chapter 4]. But I will state the relevant definitions to give the comparison theorem
from [21, Proposition 4.12].
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Definition 3.3.1. An anti-involution in a strict bimonoidal category R consists of a
functor ζ : R → R with ζ ◦ ζ = id together with natural isomorphisms

µ : ζ(A⊗B)→ ζ(B)⊗ ζ(A)

for all A,B ∈ R. These have to satisfy the following conditions The functor ζ is
strictly symmetric monoidal with respect to (R,⊕, OR, c⊕), fixes the unit by ζ(1R) =

1R and µ1R,A = idA = µA,1R and satisfies coherences spelled out in [21, Definition
3.1]. Denote a bimonoidal category with involution by (R, ζ, µ).

Remark 3.3.2. Recall that the definition 3.0.4 of strict bimonoidal categories requires
one of the distributivity morphisms to be strict while the other distributivity is not.
This hinders a generalisation of the interpretation of anti-homomorphisms as mor-
phisms into opposite structures. Opposing the multiplication to a category Rop⊗ does
not give a strict bimonoidal category in the sense of definition 3.0.4. Relaxing each
distributivity to be just isomorphisms helps in this specific spot, but I will not elaborate
on this.

I define the induced involution with a certain ignorance to all the technicalities in-
volved in [21].

Definition 3.3.3. ForR a bimonoidal category with involution ζ : R → R let

ζ∗ : |BGL(R)| → |BGL(R)|

be given by

ζ∗



A0,1 . . . A0,q

. . .
...

Aq−1,q

, (t0, . . . , tq)


:=




(Aq−1,q)t . . . ζ(A0,q)t

. . .
...

ζ(A0,1)t

 , (tq, . . . , t0)


It is quite clear that the natural inclusion of elementary matrices over R is respected
by this involution, so there is an induced map on K-spaces

ζ∗ : K(R) = |BGL(R)|+ → |BGL(R)|+.

Call this the involution on K-theory induced by ζ : R → R.

Remark 3.3.4. This means the involution is induced by transposing each matrix (be-
ware that transposition is a functor now), applying the involution to each matrix com-
ponentwise and reversing the triangle (of matrices) along the secondary diagonal. Of
course the involved isomorphisms are to be changed accordingly as well.
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In order to compare the involution on the linear group of a ring with involution
with the one on a bimonoidal category with involution, one obviously needs to replace
the inverse map. This is provided by the following lemma from [7] (in the proof of
Proposition 4.5), which compares the canonical homeomorphism |BG| → |B(Gop)|
for a group G given by the inverse map to another one, which generalises to monoids
easily.

Lemma 3.3.5. [7, Proof of Proposition 4.5] There is a homotopy between the homeo-
morphism

κ : |BG| → |B(Gop)|

given by κ([(x1, . . . , xn), (t0, . . . , tn)]) := [(xn, . . . , x1), (tn, . . . , t0)] and the canon-
ical homeomorphism |Bι| : |BG| → |BGop| given by the induced map of the inverse
map.

Proof. (Sketch) The homotopy H : |BG| × I → |BGop| is given by

H([(g1, . . . , gn), (t0, . . . , tn)], s)

:= [(gn, . . . , g1, g1
−1, . . . , gn

−1), s(tn, . . . , t0, 0n) + (1− s)(0n, t0, . . . , tn)]

where 0n denotes a zero tuple with n positions. It is tedious to check but true that this
is well-defined and a homotopy between the given maps.

The following results compare the induced involutions on K-theory of strict bi-
monoidal categories and the K-theory of rings. Of course the comparison should be
induced by the natural projection p : GLn(R) → GLn(R). The induced involution
defined in 3.3.3 extends the earlier definition for rings given in 2.1.6, if the projection
induces a map on K-groups respecting the involution.

Theorem 3.3.6. [21, Corollary 4.11] For (R, ζ, µ) a bimonoidal category with invo-
lution let R = (−π0(R))π0(R) be its associated ring. Then R is a ring with anti-
involution and the induced map of projecting to components in π0

p : |BGL(R)| → |BGL(R)|

induces a map of K-groups
Ki(R)→ Ki(R)

respecting the two given induced involutions. More precisely, the diagram

|BGL(R)| p //

ζ∗
��

|BGL(R)|

ζ∗
��

|BGL(R)| p // |BGL(R)|

commutes.
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Proof. Study the following relations

(pζ∗)



A0,1 . . . A0,q

. . .
...

Aq−1,q

 , (t0, . . . , tq)



=p



ζ(Aq−1,q)t . . . ζ(A0,q)t

. . .
...

ζ(A0,1)t

 , (tq, . . . , t0)


=[([ζ(Aq−1,q)t], . . . , [ζ(A0,1)t]), (tq, . . . , t0)]

But R is an ordinary ring, so the fact κ ' |Bι| by 3.3.5 gives the following equality
on homotopy groups

p∗ ◦ ζ∗ = κ∗ ◦ |BT |∗ ◦ |Bζ|∗
= |Bι| ◦ |BT |∗ ◦ |Bζ|∗
= |B(ι ◦ T ◦ ζ)|∗,

which is the induced involution defined for a ring with involution.

In particular, the associated bimonoidal category to a ring with involution yields the
same K-theory.

Corollary 3.3.7. [21, Proposition 4.12] Let R be any ring with involution and RR its
associated bimonoidal category (cf. Example 3.0.5), then there is an isomorphism of
K-groups compatible with the induced involutions. The isomorphism is induced by
the projection p : Ob(RR)→ R and gives

K∗(RR) ∼= K∗(R).

Proof. Inspect the bar construction of matrices overRR first. For the bar construction
over the discrete category RR associated to the ring R the existence of a morphism
ϕi,j,k : Ai,jAj,k → Ai,k is equivalent to the statement Ai,jAj,k = Ai,k. So the isomor-
phisms are redundant information, thus each simplex has the following form

A0,1 A0,1A1,2 . . . A0,1A1,2 . . . Aq−1,q

A1,2 . . . A1,2 . . . Aq−1,q

. . .
...

Aq−1,q

 .

This implies that each q-simplex is uniquely determined by its diagonal. Furthermore
the equality R = π0(RR) = Gr(π0(RR)) implies that restricting the matrix compo-
nents via p is just a plain identity.

This extends to an isomorphism of simplicial setsOb(B•(GL(RR))) ∼= B•(GL(R))

and theorem 3.3.6 implies that restricting the matrix entries induces a morphism of K-
groups, which is compatible with the induced involutions, thus the claim follows.
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Theorem 3.3.6 of course also implies that one can detect non-trivial involutions on
bimonoidal categoriesR, which are not discrete. First reduce the categoryR to the rig
π0(R), then group complete to R = (−π0(R))π0(R). This is a ring and hence might
give a starting point for tools developed in algebraic K-theory of rings (as for example
the trace map (cf. 5.2.4)).

Remark 3.3.8. An explicit example of that may be found in the proof of Proposition
8.1 in [21], where Richter proves that the involution on algebraic K-theory of com-
plex topological K-theory ku is non-trivial. In “Two-Vector Bundles and Forms of
Elliptic Cohomology” [3] the authors construct a bimonoidal category V , which sat-
isfies K(ku) ' K(V) by the results of “Ring Completion of Rig Categories”[1] and
“Stable Bundles over Rig Categories”[2]. This interpretation allows to give a map
K(ku) → Kf (Z) (where Kf (Z) is just a minor modification of K(Z)) and this map
is induced by a map of bimonoidal categories V → RZ.

The K-theory of Z is, although or maybe because it is still not completely known,
intensively studied. In particular there is a result of Farrell and Hsiang (Lemma 2.4 in
[11]) that the involution on K∗(Z) is non-trivial, where the involution is induced by
the identity. This result now implies that the involution on K(ku) is non-trivial.

Indeed the actual Proposition 8.1 in [21] also states the non-triviality of the involu-
tion on K(ko) for ko the spectrum of real topological K-theory and the non-triviality
of the involution on Waldhausen’s A-Theory of the double classifying space of an
abelian group A(BBG). The proof proceeds by an analogous strategy to identify
K(ko) and A(BBG) as homotopy-equivalent to K-theory spaces of bipermutative
categories, which also have a non-trivial map toRZ.

Of course a detailed investigation of all those structures would require knowledge
of spectra, various identifications of K-theory and other techniques, which are beyond
the scope of this diploma thesis.
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4 Non-trivial Involutions

In this section I want to construct some examples of rings with non-trivial involutions
and study their induced involution onK1. This will provide some non-trivial examples
of induced involutions on K-theory. In particular it will provide examples for induced
involution on K-theory of simplicial rings as defined in the paper of Burghelea and
Fiedorowicz [7] and for involutions associated to a bipermutative category with invo-
lution as defined by Richter [21].

Obviously group rings (with commutative coefficients) provide a large class of ex-
amples, but in order to have a good understanding of how the units contribute to K1, I
will restrict to the commutative case.

4.1 Involution on Group Rings

For K1 of a commutative ring R it is quite natural to investigate the determinant (cf.
Proposition 1.1.19)

det : K1(R)→ R×

and this is split by the inclusion R× = GL1(R) → GL(R). This implies that for a
group ring R[G] with commutative coefficients R on an abelian group G, there is the
following natural inclusion of groups

R× ×G→ (R[G])×

where it is quite common to call R× × G the trivial units in a group ring. But be
warned that it is still an open problem to determine, under which restrictions all units
of a group ring are just the trivial ones. In fact the unit conjecture according to a survey
article by Lück and Reich [16] very modestly reads as follows:

“Let R be an integral domain and G be a torsion free group. Then every unit in
R[G] is trivial, i.e. of the form rg for some unit r ∈ R× and g ∈ G.”

Nonetheless group rings are a useful class of examples of rings with involutions by
the fact that they carry a natural and in a manner universal involution.

Proposition 4.1.1. For R a commutative ring and G any group there is the following
bijection

Hom(R[G], R[G])→ Hom(R[G], (R[G])op)

ϕ 7→ ι ◦ ϕ
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where ι denotes the inverse map on G.

Proof. There is mainly one point that establishes this bijection and that is the identifi-
cation

(R[G])op = R[Gop]

which in this simplicity only works with commutative coefficients, otherwise one
might need an involution on R itself. So the inverse map gives a map R[G] →
R[Gop] → (R[G])op, which can be understood as a canonical involution and hence
provides the bijection as claimed.

So in this manner for R[G] a commutative ring involutions on R[G] are given by
self-inverse homomorphisms on R[G]. Thus investigate involutions induced by com-
positions of self-inverse homomorphisms with the inverse map in the special case of
commutative group rings.

Proposition 4.1.2. Let R be a commutative ring and G an abelian group. For a self-
inverse homomorphism ϕ : G → G and the inverse map ι : G → Gop the induced
involution ϕ ◦ ι on R[G] yields a non-trivial involution on K1(R[G]).

Proof. Proposition 2.2.1 gives that the determinant transforms an involution by the
formula det ◦τ∗ = ι ◦ τ ◦ det and by 4.1 the units are a natural subgroup of K1. This
implies (for r ∈ R× and g ∈ G)

(det ◦τ∗)(rg) = (ιR× ◦ τ)(rg)

= (ιR× ◦ ϕ ◦ ιG)(rg) = ιR×(rϕ(g−1)) = r−1ϕ(g).

Therefore the induced involution is non-trivial on the subgroup of trivial units of K1.

In particular note that the units in the coefficient ring are always inverted, indepen-
dent of the chosen homomorphism.

4.2 Involutions on Laurent Polynomials

The formula before was quite explicit, but restricting gives an even more explicit class
of examples.

4.2.1 Units in Laurent Polynomials

Proposition 4.2.1. For R a commutative ring there is an inclusion

ϕ : R× ⊕ (Z,+)→ R[t, t−1]×
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given by ϕ(r, k) := rtk. �

But if R is commutative, then R[t, t−1] is commutative as well and so induction
gives the following result:

Corollary 4.2.2. For R a commutative ring there is a natural inclusion

ϕ : R× ⊕ (Zk,+) = R× ⊕ 〈e1, . . . , ek〉Z → (R[t1
±, . . . , tk

±])×

with ϕ(r,m1e1, . . . ,mkek) := rtm1
1 . . . tmk

k . �

So for the first K-group of such a ring the units include into the first summand of
the well-known splitting

K1(R[t±1 , . . . , t
±
k ]) ∼= (R[t±1 , . . . , t

±
k ])× ⊕ SK1(R[t±1 , . . . , t

±
k ]) ⊇ R× ⊕ (Zk,+),

where SK1 is the usual quotient

SL(R[t±1 , . . . , t
±
k ])/E(R[t±1 , . . . , t

±
k ]).

The preceding inclusions of trivial units even extend to equalities, if the coefficient
ring R is an integral domain. To that end study the following results.

Lemma 4.2.3. For R[t] the polynomial ring with coefficients in an integral domain R
the indeterminate t is a prime element.

Proof. Suppose t is a divisor of a product of polynomials pq. This is equivalent to the
assumption that pq has no constant term, which evidently means that at least one of
the factors has no constant term as well and is therefore divisible by t.

This result can be extended to study divisors of powers of t:

Lemma 4.2.4. Powers of the indeterminate in a polynomial ringR[t] with coefficients
in an integral domain R have no further divisors than powers of lower degree.

Proof. This is a proof by induction. For t0 = 1 it is evident that only polynomials
of degree zero, i.e. constant polynomials, can divide t0. But if they divide 1 they
are units and hence trivial divisors. Let tn = pq, then by the preceding proposition t
divides either p or q. Without loss of generality assume t|p, then there is a polynomial
p̄ satisfying the equality p̄t = p, which implies tn−1 = p̄q, which by the induction
hypothesis yields p̄ = rti and q = r−1tn−1−i. As a consequence the factors of tn are
p = p̄t = rti+1 and q = r−1tn−1−i, hence follows the claim.

These results extend furthermore to give all units in Laurent polynomials for coeffi-
cients in an integral domain:
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Theorem 4.2.5. The units in a Laurent polynomial ring with coefficients in an integral
domain are trivial, i.e. if p ∈ R[t±1] is a unit, then p is of the form p = rtn with
r ∈ R× and n ∈ Z.

Proof. Let p, q ∈ R[t±1] satisfy the equality pq = 1. Write both in the following form

p = t−kp̄ and q = t−lq̄ for k, l ∈ N.

Then this implies
1 = pq = t−(k+l)p̄q̄,

which is equivalent to the equality

tk+l = p̄q̄.

But since this holds in the ordinary polynomials, the preceding lemma gives

p̄ = rti and q = rtk+l−i

and therefore the initially given Laurent polynomials are of the form

p = t−kp̄ = rti−k and q = t−lq̄ = rtk−i,

which proves the claim.

With the induction R[t±1 , . . . , t
±
k ] = R[t±1 , . . . , t

±
k−1][t±k ] this gives the following

corollary:

Proposition 4.2.6. For R an integral domain the units in Laurent polynomials of
finitely many variables R[t±1 , . . . , t

±
k ] are just the trivial ones

(R[t±1 , . . . , t
±
k ])× ∼= R× ⊕ Zk.

�

4.2.2 Involutions on R[t±1 , . . . , t
±
k ]

For simplicity I will restrict to the case of involutions, which are degree-preserving in
the following manner:

Definition 4.2.7. For p =
∑
i∈Z

ait
i ∈ R[t±] define the degree deg p to be the following

deg p := max{|i| | ai 6= 0}.

This can be extended to Laurent polynomials in finitely many variables. For I =

(i1, . . . , ik) ∈ Zk set tI := ti11 · . . . · t
ik
k .
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Definition 4.2.8. For p =
∑
I∈Zk

aIt
I ∈ R[t±1 , . . . , t

±
k ] define the degree deg p to be

deg p := max


k∑
j=1

|ij |

∣∣∣∣∣∣ aI 6= 0

 .

It is quite natural to expect involutions to preserve this degree and to be the identity
on coefficients. In this case the involutions can be completely described as follows:

Proposition 4.2.9. For R an integral domain a degree-preserving involution

ϕ : R[t±1 , . . . , t
±
k ]→ R[t±1 , . . . , t

±
k ]

with ϕ|R = idR determines and is determined by the following data:

• a permutation f : {1, . . . , n} → {1, . . . , n},

• a choice of signs s : {1, . . . , n} → {−1,+1},

• a choice of ring units r• : {1, . . . , n} → R×,

which are subject to the following conditions:

• The permutation is its own inverse f2(i) = i ∀i ∈ {1, . . . , n}.

• Transposed elements carry the same sign s(i) = s(f(i)) ∀i ∈ {1, . . . , n}.

• Transposed elements carry inverse units rf(i) = r−1
i ∀i ∈ {1, . . . , n}.

Proof. Letϕ be an involution, which is the identity on coefficients and degree-preserving,
then on generators ϕ is of the form

ϕ(ti) = rit
s(i)
f(i).

The condition ϕ2 = 1 then reads as follows

ti = ϕ2(ti) = ϕ(rit
s(i)
f (i)) = rirf(i)t

s(f(i))f(i)
f2(i)

.

This gives the following restrictions

f2(i) = i,

s(i)s(f(i)) = 1⇔ s(i) = s(f(i)),

rirf(i) = 1⇔ ri = r−1
f(i).

Furthermore it is clear that maps f, s, r• satisfying these conditions yield degree-
preserving involutions by the formula ϕ(ti) = rit

s(i)
f(i).
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If the group of units of R is finite, then this gives the following corollary:

Corollary 4.2.10. For R an integral domain with finitely many units, i.e. |R×| < ∞,
there are only finitely many involutions onR[t±1 , . . . , t

±
k ], which are degree-preserving

and trivial on coefficients.

Proof. According to the preceding proposition each involution, which is trivial on
coefficients and degree-preserving, is uniquely determined by three maps in Σn,
Set({1, . . . , n}, {−1,+1}) and Set({1, . . . , n}, R×). The first two sets are finite and
the last is finite by the assumption that there are just finitely many units. Therefore
there are only finitely many involutions of the given type.

Example 4.2.11. One sees that the group of arbitrary involutions on Laurent polyno-
mials with at least two variables cannot be finite by the following observation. For R
a commutative ring consider the maps ϕ : R[t±1 , t

±
2 ] given by

ϕ(t1) = t1t
k
2 and ϕ(t2) = t−1

2 .

This map is an involution for each k ∈ Z, since ϕ2(t1) = ϕ(t1t
k
2) = t1t

k
2t
−k
2 = t1.

Therefore the group of involutions cannot be finite and since the group of involutions
is a Z/2Z-vector space it cannot even be finitely generated.

Of course the main interest is again, if these involutions yield non-trivial involutions
on K-theory. Indeed they all do:

Theorem 4.2.12. Let R be an integral domain (with at least one non-trivial unit) and
ϕ a degree-preserving involution ϕ : R[t±1 , . . . , t

±
k ]→ R[t±1 , . . . , t

±
k ] with ϕ|R = idR.

Then ϕ induces a non-trivial involution on the units of R[t±1 , . . . , t
±
k ] and therefore on

K1(R[t±1 , . . . , t
±
k ]).

Proof. Since by theorem 4.2.5 the units are completely the determined as R× ⊕ Zk

and by proposition 4.2.9 an involution can be described by a self-inverse permutation
f : {1, . . . , n} → {1, ..., n} a choice of signs s : {1, . . . , n} → {−1,+1} and a choice
of units r• : {1, . . . , n} → R×, calculate the induced involution on the units R×⊕Zk.

By proposition 2.2.3 an involution induces the following map on units:

• for u ∈ R× this is

ϕ∗(u) = (ι ◦ ϕ)(u) = ι(u) = u−1,

• for ti a generator of a Z-factor

ϕ∗(ti) = (ι ◦ ϕ)(ti) = ι(rit
s(i)
f(i)) = (ri)

−1t
s(i)
f(i) = rf(i)t

s(i)
f(i).
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In particular the induced involution is non-trivial for every involution ϕ, since it is
non-trivial on R×.

The induced involution of course remains non-trivial in the case of just commutative
coefficients, which are not an integral domain. But it is neither clear, whether there are
additional units in that case and hence, whether there are additional involutions in that
case, since ϕ(ti) ∈ (R[t±1 , . . . , t

±
k ])× is not that useful to restrict the image of ti.

Nonetheless the non-triviality statement remains true in the following form:

Proposition 4.2.13. For R a commutative ring (with at least one non-trivial unit) and
ϕ : R[t±1 , . . . , t

±
k ] → R[t±1 , . . . , t

±
k ] an involution given by maps f : {1, . . . , n} →

{1, . . . , n}, s : {1, . . . , n} → {−1,+1} and r• : {1, . . . , n} → R× as described in
theorem 4.2.9, the induced involution is non-trivial on trivial units and hence non-
trivial on K1. �

Thus each commutative ring yields a family of rings, which have non-trivial involu-
tions on their K-theory.

Of course it would be nicer, if I could present (non-discrete) categories, which pro-
jected to this class of examples, but there seems to be no obvious candidate for a
category associated to a group in the same manner as a group-ring.
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5 Hochschild Homology of Rings

One of the tools to detect non-trivial classes in K-theory is the Dennis trace map from
K-theory to Hochschild homology. In the following chapter I will check that this map
commutes with the induced involutions on the groups in question, so that the Dennis
trace map is a detection tool for rings with involution as well.

So at least by the formal similarity between Hochschild homology and Topological
Hochschild homology visible in Chapter IX, Definition 2.1 of “Rings, Modules and
Algebras in stable homotopy theory” [9] this algebraic analogue should not come as a
surprise.

5.1 Definition of Hochschild Homology

I will consider Hochschild homology restricted to the case of unital Z-algebras only,
more commonly known as rings. In this I am mainly following the chapters 1 and 8.4
of [15].

For R a unital ring, let Cn(R) := R⊗n+1 and let

dni : Cn(R)→ Cn−1(R) for i = 0, . . . , n

be defined as

dni (r0 ⊗ r1 ⊗ . . .⊗ rn) =

r0 ⊗ . . .⊗ riri+1 ⊗ . . .⊗ rn i = 0, . . . , n− 1

rnr0 ⊗ . . .⊗ rn−1 i = n

and furthermore

sni : Cn(R)→ Cn+1(R) for i = 0, . . . , n

is
sni (r0 ⊗ r1 ⊗ . . .⊗ rn) = r0 ⊗ . . .⊗ ri ⊗ 1⊗ ri+1 ⊗ . . .⊗ rn.

Note that no si places the unit on the left of r0.
This constitutes a simplicial module C∗(R) and hence allows to associate a chain-

complex with boundary map dn :=
n∑
i=0

(−1)idni and find a subcomplex of degenerate

elements via:

Dn(R) :=

n−1∑
i=0

imsn−1
i
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Then the following is a standard fact about simplicial modules:

Proposition 5.1.1 (Normalising modules [cf. Loday Prop. 1.6.5]). The canonical
projection

C∗ → C∗/D∗

is a quasi-isomorphism, i.e. it induces an isomorphism of homology groups.

Definition 5.1.2. For R a unital ring the Hochschild-homology of R is defined as the
homology of the chain complex associated to C∗(R) given above:

HHn(R) := Hn(C∗(R)) n ∈ N0.

Remark 5.1.3. The preceding proposition thus allows the calculation of Hochschild-
homology via C∗(R)/D∗(R) as well.

Since I focused a lot on group rings so far it is natural to investigate Hochschild
homology of group rings as well. For group rings with integer coefficients there is a
very satisfactory identification of Hochschild homology.

Theorem 5.1.4. ([15], Proposition 7.4.2) Let G be a group, then the Hochschild ho-
mology of the group ring Z[G] is naturally isomorphic to the group homology of G
(cf. Theorem 1.1.7)

HH∗(Z[G]) ∼= H∗(G).

�

Example 5.1.5. This result and proposition 1.1.9 in particular give a natural identifi-
cation of the first Hochschild homology group, which is of particular interest for the
following examples

HH1(Z[G]) ∼= H1(G) = Gab.

Group rings might seem like an artificial class of examples, but they determine the
first Hochschild homology of Z[ζp] for ζp a root of unity to a prime number p ≥ 3. For
convenience I first identify this ring as a quotient of Z[X].

Proposition 5.1.6. For p ∈ N a prime number, ζp ∈ C a p-th root of unity and

ϕp(X) =

p−1∑
i=0

Xi ∈ Z[X] ⊂ Q[X]

the cyclotomic polynomial of degree p, there is an isomorphism

Z[X]/(ϕp) ∼= Z[ζp]

induced by the evaluation homomorphism X 7→ ζp.
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Proof. This fact is essentially what one would expect from the case of field extensions,
because there is an isomorphism Q[X]/(ϕp) ∼= Q[ζp] given by identification of ϕp as
the minimal polynomial of ζp. Nonetheless there is a technical point to show that the
principal ideal generated in Q[X] by ϕp restricts to the principal ideal generated by ϕp
in Z[X]. Formally this is

(ϕp)Q[X] ∩ Z[X] ⊂ (ϕp)Z[X],

i.e. one cannot generate more polynomials with integer coefficients, if one allows
polynomials with rational coefficients. This is a consequence of the fact that the coef-
ficients of the cyclotomic polynomial for a prime degree are all 1, which is a unit in
Z.

Remark 5.1.7. There is the elementary identification

Z[Z/pZ] ∼= Z[X]/(Xp − 1)

and hence a projection

π : Z[Z/pZ] ∼= Z[X]/(Xp − 1) −→ Z[X]/(ϕp) ∼= Z[ζp],

because of the factorisation Xp − 1 = ϕp(X)(X − 1).

In the next proof I will use both descriptions of Z[ζp] as either a subring of C or as a
quotient of Z[X] without explicit mention of the isomorphism.

I use this projection to determine the Hochschild homology of Z[ζp] in degree 1.

Theorem 5.1.8. The first Hochschild homology group of the integers with an adjoint
p-th root of unity ζp for an odd prime number p is given by

HH1(Z[ζp]) ∼= Z/pZ

with the isomorphism given on generators by [ζip ⊗ ζ
j
p ] 7→ [j].

Proof. First check that HH1(Z[ζp]) is finite. To that end study the chain map induced
by π in degrees 0 and 1

. . . // Z[Z/pZ]⊗ Z[Z/pZ]
d1 //

π∗
��

Z[Z/pZ] //

π∗=π

��

0

. . . // Z[ζp]⊗ Z[ζp]
d1 // Z[ζp] // 0.

Evidently π∗ is still surjective in each degree, in particular in degree 1. But since both
of the involved rings are commutative, the first boundary map is trivial d1 = 0; so π∗
is surjective on cycles as well and thus also on homology. Hence the first Hochschild
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homology group HH1(Z[ζp]) is a quotient of Z/pZ and thus either trivial or Z/pZ
itself.

Consider the following map

Φ: Z[X]/(ϕp)⊗ Z[X]/(ϕp)→ Z/pZ

[Xi]⊗ [Xj ] 7→ [j]

It is well-defined with respect to the quotient by ϕp in either component by the follow-
ing calculations. In the first component this is

Φ

([
p−1∑
i=0

Xi

]
⊗
[
Xj
])

=

p−1∑
i=0

[j] = [p · j] = 0.

In the second component the relation introduced by ϕp gives

Φ

([
Xj
]
⊗

[
p−1∑
i=0

Xi

])
=

[
p−1∑
i=0

i

]
=

[
p(p− 1)

2

]
= 0,

because (p− 1) is even, which implies that p(p−1)
2 is divisible by p.

It is obvious that this map is surjective and furthermore on boundaries this yields

Φ(d2(Xi ⊗Xj ⊗Xk)) = Φ(Xi+j ⊗Xk −Xi ⊗Xj+k +Xi+k ⊗Xj)

= [k]− [j + k] + [j] = 0.

So this map is still well-defined and surjective as a map from HH1(Z[ζp]) to Z/pZ
and thus by the preceding calculation it is an isomorphism.

5.2 Construction of the Trace Map

A tool to detect non-trivial classes in K-groups is the so called Dennis trace map from
K-theory to the just defined Hochschild homology of R. It was defined by Keith
Dennis, but that paper was never published, hence the first reference is Kiyoshi Igusa
[13] in 1984.

Remark 5.2.1. Recall the usual trace map of matrices

tr : Mr(R)→ R

with tr(A) :=
r∑
i=1

Aii, which is obviously compatible with the stabilisation of square

r × r-matrices given by
i : Mr(R)→Mr+1(R)

A 7→

(
A 0r

0tr 0

)
,
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which just adds bordering zeroes.
There is generalisation of the trace map to tensor products of matrix rings (of equal

size) as follows:

Definition 5.2.2. The generalised trace map

tr : Mr(R)⊗n+1 → R⊗n+1

is given by

tr(A0 ⊗A1 ⊗ . . .⊗An) :=
∑
i∈J

A0
i0,i1 ⊗A

1
i1,i2 ⊗ . . .⊗A

n
in,i0 ,

where i = (i0, . . . , in) is from the set J = {1, . . . , r}n+1.

Definition 5.2.3. The fusion map

fus : Z[GLr(R)]→Mr(R)

is given by the extension of the identity on GLr(R) as follows

fus

(∑
i

kiAi

)
=
∑
i

kiAi.

Remark 5.2.4. This might look quite tautological, but the point is to replace the formal
sums in the group ring of GLr(R) by actual sums in Mr(R). Be aware that GLr(R)

has to stabilise by adding bordering zeroes and a 1 on the diagonal

GLr(R)→ GLr+1(R)

A 7→

(
A 0r

0tr 1

)
.

So the fusion map evidently does not stabilise (cf. Loday [15, 8.4.1], The Fusion Map),
but I will take care of that problem later.

Study the following sequence of maps (forB∗ the bar complex (cf. Definition 1.1.4)
and C∗ the Hochschild complex)

Bn(Z[GLr(R)])
inc // Cn(Z[GLr(R)])

Cn(fus)// Cn(Mr(R))
Cn(tr) // Cn(R)

pn

��
Cn(R)/Dn(R)

where in sequence there are the following maps
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• inc : Z[(GLr(R))n]→ Z[GLr(R)]⊗n+1 is the map given by

inc(g1, . . . , gn) = (g1 · . . . · gn)−1 ⊗ g1 ⊗ . . .⊗ gn,

• fus⊗n+1 : Z[GLr(R)]⊗n+1 →Mr(R)⊗n+1 is the (n+ 1)-fold tensor product
of the fusion map,

• tr : Mr(R)⊗n+1 → R⊗n+1 is the generalised trace map defined before,

• pn : Cn(R)→ Cn(R)/Dn(R) is the canonical projection seen before.

Lemma 5.2.5. Each of these is a simplicial map, hence a chain map on the induced
chain complexes.

Proof. The fusion map evidently is a simplicial morphism, since it is just an exten-
sion of the identity on generators, and the identity is a simplicial map. The canonical
projection is simplicial as well, since the quotient is taken by a simplicial subcomplex.

For the inclusion of the bar complex into the Hochschild complex I check the inter-
esting case i = n

(inc ◦ dn(g1 ⊗ . . .⊗ gn)) = inc(g1 ⊗ . . .⊗ gn−1)

= (g1 . . . gn−1)−1 ⊗ g1 ⊗ . . .⊗ gn−1

= gn(g1 . . . gn)−1 ⊗ g1 ⊗ . . .⊗ gn−1

= dn((g1 . . . gn)−1 ⊗ g1 ⊗ . . .⊗ gn)

= dn(inc(g1 ⊗ . . .⊗ gn)),

which shows quite well, how the factor (g1 . . . gn)−1 contributes to the inclusion, while
the other relations are straightforward calculations.

For the trace map from the Hochschild complex on r × r-matrices over R to the
Hochschild complex over R itself, check the exceptional case i = n again

(dn ◦ tr)(A0 ⊗ . . .⊗An) = dn

(∑
i∈J

A0
i0,i1 ⊗A

1
i1,i2 ⊗ . . .⊗A

n
in,i0

)
=
∑
i∈J

Anin,i0A
0
i0,i1 ⊗A

1
i1,i2 ⊗ . . .⊗A

n−1
in−1,in

=

r∑
i0=1

∑
i′∈{1,...,r}n

Ani′n,i0A
0
i0,i′1 ⊗A

1
i′1,i′2 ⊗ . . .⊗A

n−1
i′n−1,i′n

=
∑

i′∈{1,...,r}n
(AnA0)i′n,i′1 ⊗A1

i′1,i′2 ⊗ . . .⊗A
n−1
i′n−1,i′n

= tr(AnA0 ⊗A1 ⊗ . . .⊗An−1)

= (tr ◦ dn)(A0 ⊗A1 ⊗ . . .⊗An−1 ⊗An).

The same argument at each index gives the other relations as well. Thus follows the
claim that all the maps given above are maps of simplicial abelian groups.
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So far I have only defined all this on matrices of fixed degrees. Since the fusion map
on its own does not stabilise, it is quite remarkable that the trace map does.

Theorem 5.2.6 (Dennis Trace Map). [15, Proposition 8.4.3] The sequence of simpli-
cial modules and maps defines a natural map (in unital rings R)

Dtr : Hn(GLr(R))→ HHn(R)

for all n, r ∈ N, which is compatible with the inclusions ir : GLr(R) → GLr+1(R)

and as a consequence gives a natural map

Dtr : Hn(GL(R))→ HHn(R)

which composed with the Hurewicz homomorphism Kn(R)→ Hn(GL(R)) is called
the Dennis trace map Dtr := Dtr ◦ h.

Proof. This proof is directly taken from [15, Proposition 8.4.3].

It is evident that all the factors are natural maps in unital rings and via application
of the functor Hn : sAb → Ab, there is an induced map Dtr. So the only point is
to show that Dtr is stable. It is clear that inc : Z[GLr(R)]⊗n → Z[GLr(R)]⊗n+1 is
natural and stable, so focus on the remainder

Z[GLr(R)]⊗n+1 →Mr(R)⊗n+1 → R⊗n+1 = Cn(R)→ Cn(R)/Dn(R)

and calculate

(p ◦ tr ◦ fus)

((
A0

1

)
⊗

(
A1

1

)
⊗ . . .⊗

(
An

1

))

= (p ◦ tr)

((
A0

1

)
⊗

(
A1

1

)
⊗ . . .⊗

(
An

1

))

= p

∑
i∈J

(
A0

1

)
i0,i1

⊗

(
A1

1

)
i1,i2

⊗ . . .⊗

(
An

1

)
in,i0


If for any j the index equals ij = r + 1, then the only case, in which

(
Aj

1

)
ij ,ij+1

can be non-zero, is when ij+1 = r + 1 as well. Repeat this argument for each j, then
the only non-trivial additional index family i is i = (r + 1, r + 1, . . . , r + 1), each
other index family can only contribute non-trivial factors, if ij ≤ r ∀j ∈ {1, . . . , r}.
This recovers the trace map of the GLr(R) and gives the equality

= p
(
tr(A0 ⊗A1 ⊗ . . .⊗An) + 1⊗ 1⊗ . . .⊗ 1

)
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But ker p contains each element which has at least on unit entry in any position except
for the first. This yields

= (p ◦ tr)(A0 ⊗A1 ⊗ . . .⊗An) = (p ◦ tr ◦ fus)(A0 ⊗A1 ⊗ . . .⊗An).

Therefore Dtr is stable, if regarded as a map Bn(Z[GLr(R)]) → Cn(R)/Dn(R), so
applying homology yields the induced map

Dtr : Hn(GL(R))→ Hn(Cn(R)/Dn(R))
5.1.1∼= HHn(R).

As a recurring example I specifically study degree 1 of Hochschild homology for
Z[ζp] for ζp a p-th root of unity and p prime. So far I presented thatK1(R[G]) contains
the units of Z[ζp], which includes the powers of ζp. This gives the following result:

Theorem 5.2.7. The Dennis trace map

Dtr : K1(Z[ζp])→ HH1(Z[ζp])

is non-trivial.

Proof. Consider ζp as a unit, then this gives the equality

Dtr(ζp) = tr(fus(ζ−1
p ⊗ ζp)) = ζp−1

p ⊗ ζp,

which under the isomorphism of theorem 5.1.8 yields

Φ(Dtr(ζp)) = Φ(ζp−1
p ⊗ ζp) = [1] ∈ Z/pZ ∼= HH1(Z[ζp]),

so Dtr is even surjective, in particular it is not the zero map.

5.3 Involution on Hochschild Homology

So far it is not clear, whether there is an induced involution onHH∗(R), if there is one
on R. Again I am following Loday [15], specifically Section 5.2.

5.3.1 Opposing the Simplicial Structure on the Hochschild
Complex

The following complex gives a comparison on how opposing the ring changes the
simplicial structure of the Hochschild complex:

Definition 5.3.1. For C̃n(R) := R⊗n+1 set

d̃i := dn−i and s̃i := sn−i.

This still is a simplicial module, call it the opposite Hochschild complex.
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Lemma 5.3.2. (Adapted from [15, 5.2.1]) There is a natural isomorphism of simplicial
modules

C∗(R)→ C̃∗(R
op)

given by
wHH(r0 ⊗ r1 ⊗ . . .⊗ rn) = r0 ⊗ rn ⊗ . . .⊗ r1,

and wHH is a map of simplicial abelian groups.

Proof. This is a calculation whatwHH does to face and degeneracy maps, where again
I denote the opposed multiplication by ◦.

The map wHH commutes with face maps by the following calculation

wHHdi(r0 ⊗ r1 ⊗ . . .⊗ rn) =

wHH(r0 ⊗ . . .⊗ riri+1 ⊗ . . .⊗ rn) 0 ≤ i < n

wHH(rnr0 ⊗ . . .⊗ rn−1) i = n

=

r0 ⊗ rn ⊗ . . .⊗ riri+1 ⊗ . . .⊗ r1 i = 0, . . . , n− 1

rnr0 ⊗ rn−1 ⊗ . . .⊗ r1 i = n

=

r0 ⊗ rn ⊗ . . .⊗ ri+1 ◦ ri ⊗ . . .⊗ r1 i = 0, . . . , n− 1

r0 ◦ rn ⊗ rn−1 ⊗ . . .⊗ r1 i = n

=

dn−i(r0 ⊗ rn ⊗ . . .⊗ r1) i = 0, . . . , n− 1

d0(r0 ⊗ rn ⊗ . . .⊗ r1) i = n

=

dn−iwHH(r0 ⊗ . . .⊗ rn) i = 0, . . . , n− 1

d0wHH(r0 ⊗ . . .⊗ rn) i = n

 = d̃iwHH(r0 ⊗ . . .⊗ rn).

Furthermore wHH commutes with degeneracies by the following equalities

wHHsi(r0 ⊗ . . .⊗ rn) = wHH(r0 ⊗ . . .⊗ ri ⊗ 1⊗ ri+1 ⊗ . . .⊗ rn)

= r0 ⊗ rn ⊗ . . .⊗ ri+1 ⊗ 1⊗ ri ⊗ . . .⊗ r1

= sn−i(r0 ⊗ rn ⊗ . . .⊗ r1) = s̃iwHH(r0 ⊗ . . .⊗ rn).

The fact that wHH is a natural isomorphism is evident.

So far there is the following sequence of morphisms

C∗(R)
wHH // C̃∗(R

op)
C̃∗(τ) // C̃∗(R)

This does not give an endomorphism of the Hochschild complex associated to R (or
its opposite complex), but the associated chain complexes give a comparison.

Lemma 5.3.3. (cf. [15, 5.2.1]) For M∗ a simplicial module and M̃∗ the associated
opposite module (defined via d̃i := dn−i and s̃i := sn−i as before), there is an isomor-
phism of the associated chain complexes j : M∗ → M̃∗ given by jn := (−1)

n(n+1)
2 id .
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Proof. The following equalities hold

(−1)
n(n+1)

2 d̃ = (−1)
n(n+1)

2

n∑
i=0

(−1)id̃i

= (−1)
n(n+1)

2

n∑
i=0

(−1)idn−i

= (−1)
n(n+1)

2

n∑
i=0

(−1)n−idi

= (−1)
n(n+1)

2 (−1)n
n∑
i=0

(−1)idi

= (−1)
n(n+3)

2 d = (−1)
(n−1)n

2 d

which give the result that (−1)
n(n+1)

2 is indeed a chain map.

Remark 5.3.4. This lemma informally gives that opposing the simplicial structure
changes the associated chain complex only up to sign. This implies the following
result.

Theorem 5.3.5. (cf. [15, E.5.2.2]) The Hochschild homology groups of any ring R
and its opposed ring Rop are naturally isomorphic

HH∗(R) ∼= HH∗(R
op).

Proof. By lemma 5.3.2 and lemma 5.3.3 the isomorphism is given by composition of
the simplicial isomorphism wHH and the chain isomorphism j as follows

C∗(R)
wHH // C̃∗(R

op)
j // C∗(R

op) ,

which gives the result.

Much more importantly the identification 5.3.3 allows to induce an involution on
Hochschild homology for rings with involution.

Corollary 5.3.6. Let R be a ring with involution τ . Then there is an induced map on
its Hochschild homology, which is given by the following composition

C∗(R)
wHH // C̃∗(R

op)
C̃∗(τ) // C̃∗(R)

j // C∗(R).

Call this map the involution induced by τ on Hochschild homology.
Beware that this is not a simplicial statement, but one in chain complexes. Further-

more the choice of sign is not the only possible choice, but in this case dictated by the
application to the trace map.
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In 5.1.8 I focused on extensions of the integers by a prime root of unity and proved
that the Dennis trace map is non-trivial in degree 1. Investigate the two evident invo-
lutions on their Hochschild homology in degree 1.

Theorem 5.3.7. For Z[ζp] ∼= Z[X]/(ϕp) an extension of the integers by a p-th root
of unity for p ∈ N a prime number, there are the following involutions on Hochschild
homology:

1. For · the map induced by complex conjugation, i.e.

· : Z[X]/(ϕp)→ Z[X]/(ϕp)[
p−1∑
i=0

aiX
i

]
7→

[
p−1∑
i=0

aiX
p−i

]
,

the induced involution on HH1(Z[X]/(ϕp)) is trivial.

2. The identity map induces a non-trivial involution on the first Hochschild homol-
ogy group.

Proof. 1. On generators of the form [[Xi]⊗ [Xj ]] complex conjugation induces a map
as follows

( · )∗([[Xi]⊗ [Xj ]]) = (−1)
1(1+1)

2 ([[Xp−i]⊗ [Xp−j ]]),

which by the isomorphism of theorem 5.1.8 reduces as follows

π∗(( · )∗([[Xi]⊗ [Xj ]])) = −[p− j] = [j] = π∗([[X
i]⊗ [Xj ]]).

Since π∗ is an isomorphism by theorem 5.1.8 this implies that ( · )∗ is the identity.
2. For the identity map calculate the following

(id)∗([[X
i]⊗ [Xj ]]) = −[[Xi]⊗ [Xj ]],

and π∗(−[[Xi]⊗ [Xj ]]) = −[j] = [p− j] implies that the identity induces the inverse
map on Z/pZ.

5.4 The Dennis Trace Map Commutes with Involutions

I first present how the induced involution on Hochschild homology of a ring with in-
volution can be unravelled. In particular recall the identification (R[G])op = R[Gop]

for a commutative coefficient ring R and any group G (cf. Proposition 4.1.1). Further-
more recall the opposition of structures given by inverting, transposition and pointwise
involution (cf. Lemma 2.1.1) and the opposing of simplicial structure as in definition
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5.3.1. Note that S∗ does not denote singular chains but cellular chains, B∗ is the bar
complex introduced in chapter 1 and C∗ is the Hochschild complex defined in section
1 of this chapter. Finally ·̃ denotes the respective opposite simplicial structure for
each of these. Inspect the following diagram
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Lemma 5.4.1. The diagram above commutes.

Proof. Most squares are instances of naturalities. More precisely the naturality of the
isomorphism of theorem 1.1.7 in the left-most column, and naturality of the inclusion
map inc, the fusion map fus and the trace map tr . There are only three exceptions,
namely:

The complete reversal of coordinates in the bar complex is included into fixing the
first coordinate and reversing the remaining coordinates (top middle). Furthermore the
generalised trace map does not notice transposition of matrices (top right). Finally the
homeomorphism of the classifying space to its opposite is coherent with the isomor-
phism j of chain complexes (bottom left).

(1) Let ◦ denote the multiplication in the opposite group, this yields

(inc ◦ wBar)(g1 ⊗ . . .⊗ gn) = inc(gn ⊗ . . .⊗ g1)

= (gn . . . g1)−1 ⊗ gn ⊗ . . .⊗ g1

= (g1 ◦ . . . ◦ gn)−1 ⊗ gn ⊗ . . .⊗ g1

= wHH((g1 ◦ . . . ◦ gn)−1 ⊗ g1 ⊗ . . .⊗ gn)

= (wHH ◦ inc)(g1 ⊗ . . .⊗ gn).

(2) The familiar invariance of the trace map under transposition extends to this con-
text as follows

(tr ◦ C̃∗(T ) ◦ wHH)(A0 ⊗ . . .⊗An) = (tr ◦ C̃∗(T ))(A0 ⊗An ⊗ . . .⊗A1)

= tr(T (A0)⊗ T (An)⊗ . . .⊗ T (A1))

=
∑
i∈J

T (A0)i0,i1 ⊗ T (An)i1,i2 ⊗ . . .⊗ T (A1)in,i0

=
∑
i∈J

A0
i1,i0 ⊗Ani2,i1 ⊗ . . .⊗A1

i0,in

= wHH

(∑
i∈J

A0
i1,i0 ⊗A1

i0,in ⊗ . . .⊗Ani2,i1

)
= (wHH ◦ tr)(A0 ⊗ . . .⊗An),

so the transposition just permuted the summands, which does not have any effect on
the sum.

(3) In order to check, whether the square (3) commutes, inspect what the map

Γ: BGLr(R)→ B̃GLr(R)

[x, (t0, . . . , tn)] 7→ [x, (tn, . . . , t0)]

does to orientations of cells, since in this context there is a meaningful way of speaking
of equal bases in the cellular complexes of BGLr(R) and B̃GLr(R). The induced
map yields

S∗(Γ)(ex) = (−1)
n(n+1)

2 ex
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for each cell in BGLr(R), since this amounts to calculating the degree of the map

∆n/(∂∆n)→ ∆n/(∂∆n)

[t0, . . . , tn] 7→ [tn, . . . , t0]

and that is precisely (−1)
n(n+1)

2 as chosen before for j in the following columns.
Hence it follows that the whole diagram commutes.

This process stabilises as well, so the result extends to GL(R).

Remark 5.4.2. Recall from lemma 3.3.5 that reversal of coordinates κ and the inverse
map |Bι| are naturally homotopic as maps from |BG| to |B(Gop)|.

Notice furthermore that κ is equal to the composition of reversing the simplex
coordinates Γ and reversal of the coordinates in the bar complex wBar as follows
κ = Γ ◦ |wBar| = |wBar| ◦ Γ, which commute, since each map reverses just one type
of coordinate. Furthermore Γ commutes with each map which is induced by a group
homomorphism, in other words, Γ is a natural transformation Γ: |B( )| ⇒ |B̃( )|.

These results provide almost every coherence needed in order to show that the Den-
nis trace map commutes with the induced involutions defined before.

Theorem 5.4.3. The Dennis trace map is a natural transformation from the K-theory
of rings with anti-involution to the Hochschild homology of rings with anti-involution.
In particular Dtr transfers the involution given on K-theory to the one given on
Hochschild homology.

Proof. By the first of the preceding lemmas the diagram above (5.4) reduces to the
following square

S∗(|BGLr(R)|,Z)
Dtr //

J
��

C∗(R)

τ∗
��

S∗(|BGLr(R)|,Z)
Dtr // C∗(R)

with J := S∗(Γ)◦S∗(|B̃(GLr(τ))|)◦S∗(|B̃(T )|)◦S∗(|wBar|) the left most sequence
of maps and τ∗ : C∗(R) → C∗(R) being the induced involution on the Hochschild
complex (cf. Definition 5.3.6). Thus the claim reduces to showing that J indeed
induces the same map as the involution on GLr(R).

Since S∗ is a functor, find

J = S∗(Γ ◦ |B̃(GLr(τ))| ◦ |B̃(T )| ◦ |wBar|)

but | · | is a functor as well, so

J = S∗(Γ ◦ |B̃(GLr(τ)) ◦ B̃(T ) ◦ wBar|)
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B̃ is a functor, hence

J = S∗(Γ ◦ |B̃(GLr(τ) ◦ T ) ◦ wBar|).

But Γ is a natural transformation between the geometrical realisations of the bar con-
struction and its opposite, which implies

J = S∗(|B(GLr(τ) ◦ T )| ◦ |wBar| ◦ Γ)

and by the earlier remark this is

J = S∗(|B(GLr(τ) ◦ T )| ◦ κ).

Applying homology to the chain complexes in the diagram introduces the liberty to
take another representative for that map. Lemma 3.3.5 gives κ ' |Bι| and this yields
the equations H∗(J) = H∗(|B(GLr(τ) ◦ T )| ◦ κ) = H∗(|B(GLr(τ) ◦ T )| ◦ |Bι|) =

H∗(|B(GLr(τ) ◦ T ◦ ι)|). But the last term is the induced involution on BGLr(R).
Stabilised with respect to r this gives the following diagram

K∗(R)
h //

τ∗
��

H∗(GL(R))
Dtr //

τ∗
��

HH∗(R)

τ∗
��

K∗(R)
h // H∗(GL(R))

Dtr // HH∗(R).

This proves the claim, because the first square commutes by naturality of the Hurewicz
map and the second by the previous calculation. Therefore the Dennis trace map is a
natural transformation of functors from unital rings with anti-involution to the category
of abelian groups.

Remark 5.4.4. In other words I have now proved that the Dennis trace map can be
used to detect non-trivial involutions on K-theory in arbitrary degrees by calculating
induced involutions on Hochschild homology, which is easier in general. Nonetheless
one still has to show that the trace map is non-trivial and that the involution is non-
trivial on the image of the trace map. Both restrictions can hinder the detection of a
non-trivial involution.

5.5 Detecting Involutions with the Trace Map

I have already shown in 5.2.7 for Z[ζp] that the Dennis trace map is non-trivial. In
particular the involution on K-theory given by the identity on Z[ζp] cannot be trivial,
because the involution on the first Hochschild homology group is non-trivial and the
Dennis trace map commutes with the induced involutions. This is the case one would
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hope for, since the non-triviality of the involution in K-theory can be detected by
calculating the involution in Hochschild homology.

I want to emphasise that the trace map drastically simplified this detection. If
one instead wanted to calculate the induced involution on K1(Z[ζp]) ∼= (Z[ζp])

× ⊕
SK1(Z[ζp]), this involves calculating the units, which is a famous classical result, the
Dirichlet Unit Theorem (cf. Rosenberg [22] Theorem 2.3.8), and it needs SK1(Z[ζp]) =

0, which according to Rosenberg again “is not an easy theorem and there doesn’t seem
to be an elementary proof” ([22] Remarks after Theorem 2.3.8.

However the Dennis trace map does not always detect non-trivial involutions. In
order to investigate the involution on Hochschild homology of Laurent polynomials
study the first homology group.

Remark 5.5.1. This part is adapted from Prop 1.1.10 [15]. For a commutative ring
R there is the following interpretation of its first Hochschild homology. Everything
in degree 1 is a cycle, if R is commutative. The boundaries introduce the following
relation

R⊗R⊗R→ R⊗R,

p⊗ q ⊗ r 7→ pq ⊗ r − p⊗ qr + rp⊗ q.

This inspires the interpretation of HH1(R) as Kähler-Differentials Ω1(R) for a com-
mutative ring (cf. [15] 1.1.9/10), so write adb := [a⊗ b] and da = 1da, which implies
the relation

ad(bc) = abd(c) + acd(b)

such that the relation introduced by the boundaries is a Leibniz-rule as in differentials.

In particular this gives the usual result drn = nrn−1dr for each r ∈ R and n ∈ N,
and for units in R even for each n ∈ Z. Furthermore for r ∈ R× the equality 0 =

d1 = d(rr−1) = rdr−1 + r−1dr gives rdr−1 = −r−1dr.

By 4.2 the involution induced by t 7→ t−1 on K1(R[t±]) is non-trivial. The follow-
ing example investigates, whether the Dennis trace map detects that.

Example 5.5.2. By the relation drn = nrn−1dr it is clear that HH1(R[t±]) is gen-
erated by the elements (dt, (dr)r∈R). The first K-groups has the trivial units as a
subgroup K1(R[t, t−1]) ⊃ R× ⊕ Z.

For euclidean rings R it is actually even true that K1(R[t±]) ∼= R× ⊕ Z, because
there is a general splitting result for K-theory of Laurent rings, if the category of R-
modules is well-behaved (cf. [23] Theorem 5.2).

For a trivial unit rtk as an element of K1(R[t±]) the preceding example gives the
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following equations

Dtr(rtk) = tr(fus(inc(rtk)))

= tr(fus(r−1t−kdrtk))

= tr(fus(r−1t−k(rdtk + tkdr)))

= tr(fus(t−kdtk + r−1dr))

= tr(fus(kt−ktk−1dt+ r−1dr))

= tr(fus(kt−1dt+ r−1dr)) = kt−1dt+ r−1dr.

Furthermore on elements of this form the involution yields

τ∗(kt
−1dt+r−1dr) = −(ktdt−1 +r−1dr) = k(−tdt−1)−r−1dr = kt−1dt−r−1dr.

So the involution on Hochschild homology of R[t±] is non-trivial, if there is a unit
in R with r−1dr 6= 0. In particular this gives a specific example, which provides
an instance of a non-trivial involution on K-theory, which is not detected by the trace
map, namely forR = Z. In Z the only units are {±1}which give 1d(−1) = (−1)d1 =

0. The result mentioned above even shows K1(Z[t±]) ∼= Z[t±]×. Thus there are no
further elements in K1 and so I described the involution on the complete image of the
trace map im(Dtr). But here the involution is trivial, even though it is not trivial on
K1(Z[t±]).

I will close these examples with the strongest defect the trace map can have.

Example 5.5.3. By theorem 5.1.4 Hochschild homology of the group ring Z[G] is
isomorphic to group homology

HH∗(Z[G]) = H∗(G).

This implies that in principle an involution on K-theory of Z[G] can be detected by
computing group homology, which in most cases is a feasible task. But for Z/pZ,
there is the following well-known result (cf. Weibel [24] Example 6.2.3)

Hn(Z/pZ) ∼=


Z for n = 0

Z/pZ for n odd

0 for n 6= 0 even,

which in this case yields that the trace map is trivial for each even degree not equal to
zero. Thus in even degrees the trace map cannot detect, whether an induced involution
on K-theory of the group ring K2n(Z[G]) is non-trivial.

Remark 5.5.4. As a final remark I want to summarise the process of showing non-
triviality of induced involutions on K-groups from the point of view of this diploma
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thesis: One would follow the strategy to consider a strict bimonoidal category, which
might be a combinatorial model for K-theory of the object of interest (for example ko
or ku as in [21]), then project to its components and group complete additively. This is
a ring and hence allows to study the induced involution on the Hochschild homology
of this ring. If this involution is non-trivial, one can try to retrace such a class back to
the K-theory of the given bimonoidal category, which is an element not fixed by the
induced involution on the K-groups of the bimonoidal category.
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[6] A. Borel and J.-P. Serre. Le théorème de Riemann-Roch. Bull. Soc. Math. France,
86:97–136, 1958.

[7] D. Burghelea and Z. Fiedorowicz. Hermitian algebraic K-theory of simplicial
rings and topological spaces. J. Math. Pures Appl. (9), 64(2):175–235, 1985.

[8] B. I. Dundas. The cyclotomic trace for symmetric monoidal categories. In Ge-
ometry and topology: Aarhus (1998), volume 258 of Contemp. Math., pages
121–143, Providence, RI, 2000. Amer. Math. Soc.

[9] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and
algebras in stable homotopy theory, volume 47 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 1997. With an
appendix by M. Cole.

[10] A. D. Elmendorf and M. A. Mandell. Rings, modules, and algebras in infinite
loop space theory. Adv. Math., 205(1):163–228, 2006.

67



Bibliography

[11] F. T. Farrell and W. C. Hsiang. On the rational homotopy groups of the diffeo-
morphism groups of discs, spheres and aspherical manifolds. pages 325–337,
1978.

[12] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174 of
Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
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