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Abstract. We prove that En-homology of non-unital commutative algebras can be described as functor
homology when one considers functors from a certain category of planar trees with n levels. For different n
these homology theories are connected by natural maps, ranging from Hochschild homology and its higher
order versions to Gamma homology.

1. Introduction

By neglect of structure, any commutative and associative algebra can be considered as an associative
algebra. More generally, we can view such an algebra as an En-algebra, i.e., an algebra over an operad
in chain complexes that is weakly equivalent to the chain complex of the little-n-cubes operad of [4] for
1 6 n 6 ∞. Hochschild homology is a classical homology theory for associative algebras and hence it can
be applied to commutative algebras as well. Less classically, Gamma homology [15] is a homology theory
for E∞-algebras and Gamma homology of commutative algebras plays an important role in the obstruction
theory for E∞ structures on ring spectra [14, 7, 1] and its structural properties are rather well understood
[13].

It is desirable to have a good understanding of the appropriate homology theories in the intermediate
range, i.e., for 1 < n < ∞. A definition of En-homology for augmented commutative algebras is due
to Benoit Fresse [6] and the main topic of this paper is to prove that these homology theories possess an
interpretation in terms of functor homology. We extend the range of En-homology to functors from a suitable
category Epin to modules in such a way that it coincides with Fresse’s theory when we consider a functor
that belongs to an augmented commutative algebra and show in Theorem 4.1 that En-homology can be
described as functor homology, so that the homology groups are certain Tor-groups.

As a warm-up we show in section 2 that bar homology of a non-unital algebra can be expressed in terms
of functor homology for functors from the category of order-preserving surjections to k-modules. In section
3 we introduce our categories of epimorphisms, Epin, and their relationship to planar trees with n-levels.
We introduce a definition of En-homology for functors from Epin to k-modules that coincides with Benoit
Fresse’s definition of En-homology of a non-unital commutative algebra, Ā, when we apply our version of
En-homology to a suitable functor, L(Ā). We describe a spectral sequence that has tensor products of bar
homology groups as input and converges to E2-homology. Section 4 is the technical heart of the paper. Here
we prove that En-homology has a Tor interpretation. The proof of the acyclicity of a family of suitable
projective generators is an inductive argument that uses poset homology.

For varying n, the derived functors that describe En-homology are related to each other via a sequence
of homology theories

HE1
∗ → HE2

∗ → HE3
∗ → . . .

In a different context it is well known that the stabilization map from Hochschild homology to Gamma
homology can be factored over so called higher order Hochschild homology [9]: for a commutative algebra
A there is a sequence of maps connecting Hochschild homology of A, HH∗(A), to Hochschild homology of
order n of A and finally to Gamma homology of A, HΓ∗−1(A). We explain how higher order Hochschild
homology is related to En-homology for n ranging from 1 to ∞ in 3.1.
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In the following we fix a commutative ring with unit, k. For a set S we denote by k[S] the free k-module
generated by S.

2. Tor interpretation of bar homology

We interpret the bar homology of a functor from the category of finite sets and order-preserving surjections
to the category of k-modules as a Tor-functor.

For unital k-algebras, the complex for the Hochschild homology of the algebra can be viewed as the chain
complex associated to a simplicial object. In the absense of units, this is no longer possible.

Let Ā be a non-unital k-algebra. The bar-homology of Ā, Hbar
∗ (Ā), is defined as the homology of the

complex

Cbar
∗ (Ā) : . . .→ Ā⊗n+1 b′−→ Ā⊗n

b′−→ . . .
b′−→ Ā⊗ Ā

b′−→ Ā

with Cbar
n (Ā) = Ā⊗n+1 and b′ =

∑n−1
i=0 (−1)idi where di applied to a0 ⊗ . . . ⊗ an ∈ Ā⊗n+1 is a0 ⊗ . . . ⊗

aiai+1 ⊗ . . .⊗ an.

The category of non-unital associative k-algebras is equivalent to the category of augmented k-algebras.
If one replaces Ā by A = Ā ⊕ k, then Cbar

n (Ā) corresponds to the reduced Hochschild complex of A with
coefficients in the trivial module k, shifted by one: Hbar

∗ (Ā) = HH∗+1(A, k), for ∗ > 0.

Definition 2.1. Let ∆epi be the category whose objects are the sets [n] = {0, . . . , n} for n > 0 with the
ordering 0 < 1 < . . . < n and whose morphisms are order-preserving surjective functions. We will call
covariant functors F : ∆epi → k-mod ∆epi-modules.

We have the basic order-preserving surjections di : [n] → [n− 1], 0 6 i 6 n− 1 that are given by

di(j) =
{

j j 6 i,
j − 1 j > i.

Any order-preserving surjection is a composition of these basic ones.

Definition 2.2. We define the bar-homology of a ∆epi-module F as the homology of the complex Cbar
∗ (F )

with Cbar
n (F ) = F [n] and differential b′ =

∑n−1
i=0 (−1)iF (di).

For a non-unital algebra Ā the functor L(Ā) that assigns Ā⊗(n+1) to [n] and L(di)(a0 ⊗ . . . ⊗ an) =
a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an (0 6 i 6 n− 1) is a ∆epi-module. In that case, Cbar

∗ (L(Ā)) = Cbar
∗ (Ā).

In the following we use the machinery of functor homology as in [11]. Note that the category of ∆epi-
modules has enough projectives: the representable functors (∆epi)n : ∆epi → k-mod with (∆epi)n[m] =
k[∆epi([n], [m])] are easily seen to be projective objects and each ∆epi-module receives a surjection from a
sum of representables. The analogous statement is true for contravariant functors from ∆epi to the category
of k-modules where we can use the functors ∆epi

n with ∆epi
n [m] = k[∆epi([m], [n])] as projective objects.

We call the cokernel of the map between contravariant representables

(d0)∗ : ∆epi
1 → ∆epi

0

bepi. Note that ∆epi
0 [n] is free of rank one for all n > 0 because there is just one map in ∆epi from [n] to [0]

for all n. Furthermore, ∆epi
1 [0] is the zero module, because [0] cannot surject onto [1]. Therefore

bepi[n] ∼=
{

0 for n > 0,
k for n = 0.

Proposition 2.3. For any ∆epi-module F

(2.1) Hbar
p (F ) ∼= Tor∆

epi

p (bepi, F ) for all p > 0.

For the proof recall that a sequence of ∆epi-modules and natural transformations

(2.2) 0 → F ′
φ−→ F

ψ−→ F ′′ → 0

is short exact if it gives rise to a short exact sequence of k-modules

0 → F ′[n]
φ[n]−→ F [n]

ψ[n]−→ F ′′[n] → 0

for every n > 0.
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Proof. We have to show that Hbar
∗ (−) maps short exact sequences of ∆epi-modules to long exact sequences,

that Hbar
∗ (−) vanishes on projectives in positive degrees and that Hbar

0 (F ) and bepi ⊗∆epi F agree for all
∆epi-modules F .

A short exact sequence as in (2.2) is sent to a short exact sequence of chain complexes

0 //Cbar
∗ (F ′)

Cbar
∗ (φ)

//Cbar
∗ (F )

Cbar
∗ (ψ)

//Cbar
∗ (F ′′) //0

and therefore the first claim is true.
In order to show that Hbar

∗ (P ) is trivial in positive degrees for any projective ∆epi-module P it suffices to
show that the representables (∆epi)n are acyclic. In order to prove this claim we construct an explicit chain
homotopy.

Let f ∈ (∆epi)n[m] be a generator, i.e., a surjective order-preserving map from [n] to [m]. Note that
f(0) = 0. We can codify such a map by its fibres, i.e., by an (m + 1)-tuple of pairwise disjoint subsets
(A0, . . . , Am) with Ai ⊂ [n], 0 ∈ A0 and

⋃m−1
i=0 Ai = [n] such that x < y for x ∈ Ai and y ∈ Aj with i < j.

With this notation di(A0, . . . , An) = (A0, . . . , Ai−1, Ai ∪Ai+1, . . . , An).
We define the chain homotopy h : ∆epi([n], [m]) → ∆epi([n], [m+ 1]) as

(2.3) h(A0, . . . , Am) :=
{

0 if A0 = {0},
(0, A′0, A1, . . . , Am) if A0 = {0} ∪A′0, A′0 6= ∅.

If A0 = {0}, then

(b′ ◦ h+ h ◦ b′)({0}, . . . , Am) = 0 + h ◦ b′({0}, . . . , Am) = h({0} ∪A1, . . . , Am) = ({0}, . . . , Am).

In the other case a direct calculation shows that (b′ ◦ h+ h ◦ b′)(A0, . . . , Am) = id(A0, . . . , Am).
It remains to show that both homology theories coincide in degree zero. By definition Hbar

0 (F ) is the
cokernel of the map

F (d0) : F [1] −→ F [0].

A Yoneda-argument [16, 17.7.2(a)] shows that the tensor product ∆epi
n ⊗∆epi F is naturally isomorphic to

F [n] and hence the above cokernel is the cokernel of the map

((d0)∗ ⊗∆epi id) : ∆epi
1 ⊗∆epi F −→ ∆epi

0 ⊗∆epi F.

As tensor products are right-exact [16, 17.7.2 (d)], the cokernel of the above map is isomorphic to

coker((d0)∗ : ∆epi
1 → ∆epi

0 )⊗∆epi F = bepi ⊗∆epi F = Tor∆
epi

0 (bepi, F ).

�

Remark 2.4. The generating morphisms di in ∆epi correspond to the face maps in the standard simplicial
model of the 1-sphere with the exception of the last face map.

3. Epimorphisms and trees

Planar level trees are used in [2], [6] and [3, 3.15] as a means to codify En-structures. An n-level tree is
a planar level tree with n levels. We will use categories of planar level trees in order to gain a description of
En-homology as functor homology. If C is a small category we denote by NC the nerve of C.

Definition 3.1. Let n > 1 be a natural number. The category Epin has as objects the elements of
Nn−1(∆epi), i.e., sequences

(3.1) [rn]
fn // [rn−1]

fn−1
// . . .

f2 // [r1]

with [ri] ∈ ∆epi and surjective order-preserving maps fi. A morphism in Epin from the above object to an

object [r′n]
f ′n // [r′n−1]

f ′n−1
// . . .

f ′2 // [r′1] consists of surjective maps σi : [ri] → [r′i] for 1 6 i 6 n such that
3



σ1 ∈ ∆epi and for all 2 6 i 6 n the map σi is order-preserving on the fibres f−1
i (j) for all j ∈ [ri−1] and such

that the diagram

[rn]

σn

��

fn // [rn−1]

σn−1

��

fn−1
// . . . f2 // [r1]

σ1

��

[r′n]
f ′n // [r′n−1]

f ′n−1
// . . .

f ′2 // [r′1]

commutes.

As an example, consider the object [2] id // [2] in Epi2 which can be viewed as the 2-level tree

@@ ��

210

• • •

Possible maps from this object to [2]
d0 // [1] are

[2] id //

id

��

[2]

d0

��

[2]
d0 // [1]

and

[2] id //

(0,1)

��

[2]

d0

��

[2]
d0 // [1]

where (0, 1)

denotes the transposition that permutes 0 and 1. For σ1 = d1 there is no possible σ2 to fill in the diagram.
If n = 1, then Epi1 coincides with the category ∆epi. Note that there is a functor ιn : ∆epi = Epi1 → Epin

for all n > 1 with

ιn([m]) := [m] // [0] // . . . // [0].

We call trees of the form ιn([m]) palm trees with m+ 1 leaves. More generally we have functors connecting
the various categories of planar level trees.

Lemma 3.2. For all n > k > 1 there are functors ιkn : Epik → Epin, with

ιkn([rk]
fk // . . .

f2 // [r1]) = [rk]
fk // . . .

f2 // [r1] // [0] // . . . // [0]

on objects, with the canonical extension to morphisms. �

Remark 3.3. The maps ιkn correspond to iterated suspension morphisms in [2, 4.1]. There is a different

way of mapping a planar tree with n levels to one with n + 1 levels, by sending [rn]
fn // . . .

f2 // [r1] to

[rn]
id[rn]

// [rn]
fn // . . .

f2 // [r1] . We call such trees fork trees and they will need special attention later when
we prove that representable functors are acyclic.

For any Σ∗-cofibrant operad P there exists a homology theory for P-algebras which is denoted by HP
∗

and is called P-homology. Fresse studies the particular case of P = En a differential graded operad quasi-
isomorphic to the chain operad of the little n-disks operad. He proves that for any commutative algebra
the En-homology coincides with the homology of its n-fold bar construction. In fact, his result is more
general since he defines an analogous n-fold bar construction for En-algebras and proves the result for any
En-algebra in [6, theorem 7.26].

We consider the n-fold bar construction of a non-unital commutative k-algebra Ā, Bn(Ā), as an n-complex
indexed over the objects in Epin, such that

Bn(Ā)(rn,...,r1) =
⊕

[rn]
fn→...

f2→[r1]∈Epin

Ā⊗(rn+1).

The differential in Bn(Ā) is the total differential associated to n-differentials ∂1, . . . , ∂n such that ∂n is built
out of the multiplication in Ā, ∂n−1 corresponds to the shuffle multiplication on B(Ā) and so on. We describe
the precise setting in a slightly more general context.

4



In order to extend the Tor-interpretation of bar homology of ∆epi-modules to functors from Epin to
modules (alias Epin-modules) we describe the n kinds of face maps for Epin in detail by considering diagrams
of the form

(3.2) [rn]
fn //

τ i,jn
��

[rn−1]
fn−1

//

τ i,jn−1

��

. . .
fj+2

// [rj+1]

τ i,jj+1

��

fj+1
// [rj ]

fj
//

di

��

[rj−1]

id

��

fj−1
// . . . f2 // [r1]

id

��

[rn]
gn // [rn−1]

gn−1
// . . .

gj+2
// [rj+1]

gj+1
// [rj − 1]

gj
// [rj−1]

fj−1
// . . . f2 // [r1].

Given the object in the first row, it is not always possible to extend (di : [rj ] → [rj − 1], id[rj−1], . . . , id[r1])
to a morphism in Epin: we have to find order-preserving surjective maps gk for j 6 k 6 n and bijections
τ i,jk : [rk] → [rk] that are order-preserving on the fibres of fk for j + 1 6 k 6 n such that the diagram
commutes.

By convention we denote the constant map [r1] → [0] by f1.

Lemma 3.4.
(a) There is a unique order-preserving surjection gj : [rj − 1] → [rj−1] with gj ◦ di = fj if and only if

fj(i) = fj(i+ 1). When it exists, gj is denoted by fj |i=i+1.
(b) If fj(i) = fj(i+ 1) then we can extend the diagram to one of the form (3.2) so that τ i,jj+1 is a shuffle

of the fibres f−1
j+1(i) and f−1

j+1(i+ 1). Each choice of a τ i,jj+1 uniquely determines the maps τ i,jk for all
j + 1 < k 6 n.

(c) If fj(i) = fj(i + 1) then each choice of a τ i,jj+1 uniquely determines the maps gk for k > j. The
diagram (3.2) takes the following form

(3.3) [rn]
fn //

τ i,jn
��

[rn−1]
fn−1

//

τ i,jn−1

��

. . .
fj+2

// [rj+1]

τ i,jj+1

��

fj+1
// [rj ]

fj
//

di

��

[rj−1]

id

��

fj−1
// . . . f2 // [r1]

id

��

[rn]
gτn // [rn−1]

gτn−1
// . . .

gτj+2
// [rj+1]

difj+1
// [rj − 1]

fj |i=i+1
// [rj−1]

fj−1
// . . . f2 // [r1].

Proof. If there is such a map gj , then fj(i+1) = gj ◦ di(i+1) = gj ◦ di(i) = fj(i). As fj is order-preserving,
it is determined by the cardinalities of its fibres. The decomposition of morphisms in the simplicial category
then ensures that we can factor fj in the desired way.

For the third claim, assume that gj exists with the properties mentioned in (a). As gj+1 and di ◦ fj+1 are
both order-preserving maps from [rj+1] to [rj − 1], they are determined by the cardinalities of the fibres and
thus they have to agree. Then τ i,jj+1 = id[rj+1] extends the diagram up to layer j + 1. For the higher layers
we then have to choose gk = fk and τ i,jk = id[rk].

In general, τ i,jj+1 has to satisfy the conditions that it is order-preserving on the fibres of fj+1. If Ai = f−1
j+1(i)

then this implies that τ i,jj+1 is an (A0, . . . , Arj )-shuffle. Furthermore we have that

(di ◦ fj+1)−1(k) =

 Ak if k < i,
Ai ∪Ai+1 if k = i,
Ak+1 if k > i.

Therefore τ i,jj+1 has to map A0, . . . , Ai−1, Ai+2, . . . , Arj identically and is hence an (Ai, Ai+1)-shuffle.
If we fix a shuffle τ i,jj+1, then the next permutation τ i,jj+2 has to be order-preserving on the fibres of fj+2,

thus it is at most a shuffle of the fibres. In addition, it has to satisfy

(3.4) gj+2 ◦ τ i,jj+2 = τ i,jj+1 ◦ fj+2.

Again, as gj+2 is order-preserving we have no choice but to take the order-preserving map satisfying
|g−1
j+2(k)| = |f−1

j+2(τ
i,j
j+1(k))|, for all x ∈ [rj+1]. By (3.4) we know that τ i,jj+2 has to send f−1

j+2(k) to f−1
j+2(τ

i,j
j+1(k))

and this determines τ i,jj+2. A proof by induction shows the general claim in (b). �
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In the following we will extend the notion of En-homology for commutative non-unital k-algebras to Epin-
modules. Again thanks to Fresse’s theorem [6, theorem 7.26], the En-homology and the homology of the
n-fold bar construction of a commutative algebra coincide.

Definition and Notation 3.5. Let t : [rn]
fn→ . . .

fj+1→ [rj ]
fj→ . . .

f2→ [r1] be an n-level tree.
The degree of t, denoted by d(t), is the number of its edges, that is

∑n
i=1(ri + 1).

For fixed j and i ∈ [rj ] let tj,i be the (n− j)-level tree defined by the j-fibre of t over i ∈ [rj ]:

(fj+1fj+2 . . . fn)−1(i)
fn→ . . .

fk+1→ (fj+1 . . . fk)−1(i)
fk→ . . .

fj+2→ f−1
j+1(i).

Conversely a tree t can be recovered by its 1-fibres, that is t = [t1,0, . . . , t1,r1 ] and d(t) =
∑r1
i=0(d(t1,i)+1) =

r1 + 1 +
∑r1
i=0 d(t1,i).

Let F be an Epin-module. For a fixed j and an n-tree t as in (3.1) with the condition that fj(i) = fj(i+1)
or j = 1 we define

dji : F ([rn]
fn→ . . .

fj+1→ [rj ]
fj→ . . .

f2→ [r1]) −→
⊕

t′=[rn]
gn→...

gj+2→ ...
difj+1→ [rj−1]

fj |i=i+1→ ...
f2→[r1]∈Epin

F (t′)

as

(3.5) dji =
∑

τ i,jj+1∈Sh(f−1
j+1(i),f

−1
j+1(i+1))

ε(τ i,jj+1; tj,i, tj,i+1)F (τ i,jn , . . . , τ i,jj+1, di, id, . . . , id).

where the sign ε(τ i,jj+1; tj,i; tj,i+1) is defined as follows: one writes the (n − j)-level trees tj,i and tj,i+1 as a
sequence of (n− j − 1)-level trees tj,i = [t1, . . . , tp] and tj,i+1 = [tp+1, . . . tp+q]; the shuffle σ = τ i,jj+1 is indeed
a (p, q)-shuffle and acts on t by replacing the fibres tj,i and tj,i+1 by the fiber uj,i = [tσ(1), . . . , tσ(p+q)].
The sign ε(σ; [t1, . . . , tp], [tp+1, . . . , tp+q]) picks up a factor of (−1)(d(ta)+1)(d(tb)+1) whenever σ(a) > σ(b) but
a < b.

Definition 3.6.
• If F is an Epin-module, then the En-chain complex of F is the n-fold chain complex whose (rn, . . . , r1)

spot is

(3.6) CEn(rn,...,r1)
(F ) =

⊕
[rn]

fn→...
f2→[r1]∈Epin

F ([rn]
fn→ . . .

f2→ [r1]).

The differential in the j-th coordinate is

∂j : CEn(rn,...,rj ,...,r1)
(F ) → CEn(rn,...,rj−1,...,r1)

(F )

with
∂j :=

∑
i|fj(i)=fj(i+1)

(−1)sj,idji ,

where sj,i is obtained as follows: drawing the tree t on a plane with its root at the bottom, one can
label its edges – from 1 to d(t) – from bottom to top and left to right; the integer sj,i is the label of
the right most top edge of the tree tj,i. For j = n we use the convention that sn,i is the label of the
i-th leaf of t for 0 6 i 6 rn.

• The En-homology of F , HEn
∗ (F ) is defined to be the homology of the total complex associated to

(3.6).

Lemma 3.7. The k-modules CEn(rn,...,r1)
(F ) constitute an n-fold chain complex.

The proof of the lemma is postponed after exemple 3.10.
In order to prove the main theorem, we need categories of n-trees depending on a fixed finite ordered set

X of graded elements denoted EpiXn . For any x ∈ X, d(x) ∈ N0 will denote its degree. For any subset A of
X the degree d(A) is the sum of the degrees of the elements of A. For instance d(X) =

∑
x∈X d(x). For any

disjoint subsets A,B one defines ε(A;B) =
∏
a∈A;b∈B;a>b(−1)d(a)d(b). One has

(3.7) ε(A;B)ε(B;A) = (−1)d(A)d(B)
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An object in the category EpiXn is an n-level tree t together with a surjection φ : X → [rn]. Any such
element is written (t, φ) and is called an (X,n)-level tree. A morphism from (t, φ) to (t′, φ′) is a morphism
σ : t→ t′ in the category Epin satisfying φ′ = σnφ. The following should be considered as a graded version
of 3.5 and 3.6.

Definition 3.8. Let (t, φ) : X
φ→ [rn]

fn→ . . .
fj+1→ [rj ]

fj→ . . .
f2→ [r1] be an (X,n)-level tree in EpiXn .

The degree of (t, φ), denoted by d(t), is the sum of the number of its edges and the degrees of elements of
X,

d(t) =
n∑
i=1

(ri + 1) + d(X).

For a fixed j and i ∈ [rj ] let tj,i be the (Xj,i, n− j)-level tree defined by the j-fibre of t over i ∈ [rj ]:

Xj,i = (fj+1fj+2 . . . fnφ)−1(i)
φ→ (fj+1fj+2 . . . fn)−1(i)

fn→ . . .
fk+1→ (fj+1 . . . fk)−1(i)

fk→ . . .
fj+2→ f−1

j+1(i).

Conversely an (X,n)-level tree (t, φ) can be recovered by its 1-fibres, that is t = [t1,0, . . . , t1,r1 ] and d(t) =∑r1
i=0(d(t1,i) + 1) = r1 + 1 +

∑r1
i=0 d(t1,i).

Let F be an EpiXn -module. For a fixed j and an (X,n)-level tree (t, φ) with t as in (3.1) with the condition
that fj(i) = fj(i+ 1) or j = 1 we define the map dji

F (t, φ)
dji−→

⊕
(t′,φ′)=(X

φ′→[rn]
gn→...

gj+2→ [rj+1]
difj+1→ [rj−1]

fj |i=i+1→ ...
f2→[r1])∈EpiXn

F (t′, φ′)

as

(3.8) dji =
∑

τ i,jj+1∈Sh(f−1
j+1(i),f

−1
j+1(i+1))

ε(τ i,jj+1; tj,i, tj,i+1)F (τ i,jn , . . . , τ i,jj+1, di, id, . . . , id).

Note that for j = n the (Xn,i, 0)-tree tn,i is the subset Xn,i = φ−1(i) of X and the equation reads

dni = ε(tn,i; tn,i+1)F (di, id, . . . , id).

• If F is an EpiXn -module, then the (En, X)-chain complex of F is the n-fold chain complex whose
(rn, . . . , r1) spot is

(3.9) CEn,X(rn,...,r1)
(F ) =

⊕
X
φ→[rn]

fn→...
f2→[r1]∈EpiXn

F (X
φ→ [rn]

fn→ . . .
f2→ [r1]).

The differential in the j-th coordinate is

∂j : C
En,X
(rn,...,rj ,...,r1)

(F ) → CEn,X(rn,...,rj−1,...,r1)
(F )

with

∂j :=
∑

i|fj(i)=fj(i+1)

(−1)sj,idji ,

where the sj,i are obtained as follows: drawing the tree t on a plane with its root at the bottom, one
can label its edges from bottom to top and left to right; the integer sj,i is the sum of the label of the
right most top edge of the tree tj,i and the degrees of the elements in X which are in the fiber of the
leaves that are to the left of the top edge so defined.

• The (En, X)-homology of the EpiXn -module F , HEn,X
∗ (F ) is defined to be the homology of the total

complex associated to (3.9).

Lemma 3.9. The k-modules CEn,X(rn,...,r1)
(F ) constitute an n-fold chain complex.
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Example 3.10. Let t be the following tree of degree 14 with its edges labelled, X = {a1, . . . , a13} and φ
can be read off the picture.

�
�

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
H

H
HH

�
�

�
��

@
@@

�
��

H
H

H
HH

�
�

�
��

@
@@

�
��

{a1, a2} a3 a4 {a5, a6} a7 a8 {a9, a10} a11 {a12, a13}

1

2 •

3 4 5
•

6

7 8
•

9

• 10
•

11
12 13 14

This tree represents the object X
φ→ [8]

f3−→ [2]
f2−→ [1] ∈ EpiX3 , where the map f3 maps 0, 1, 2 to 0, it

sends 3, 4 to 1 and 5, 6, 7, 8 to 2 and f2 is d0.
With our notation the tree t1,0 is the 2-level tree whose root is the vertex above the edge labelled by 1,

the tree t1,1 is the subtree above the edge with label 9, the tree t2,0 is the 1-level tree above the label 2, t2,1
the one above the label 6 and t2,2 the one above the label 10.

We have to determine the differentials ∂1, ∂2 and ∂3.

In our example the differential ∂1 glues the edges labelled by 1 and 9 and shuffles the subtrees t1,0 =
[t2,0, t2,1] and t1,1 = [t2,2]. One has ∂1 = (−1)8+d({a1,...,a7})d1

0 where 8 is the label of the right most edge of t1,0.
In addition we have the shuffle signs. One has d(t2,0) = 3+d({a1, . . . , a4}), d(t2,1) = 2+d(a5)+d(a6)+d(a7),
d(t1,0) = 7 + d({a1, . . . , a7}) and d(t2,2) = 4 + d({a8, . . . , a13}). In the expansion of d1

0 there are 3 shuffles
involved: id, (132), and (312). The first coming with sign +1, the second one with sign (−1)(d(t2,1)+1)(d(t2,2)+1)

and the third one with sign (−1)(d(t2,0)+1+d(t2,1)+1)(d(t2,2)+1). For instance the image of the latter shuffle is
in F ((t′, φ′)) where (t′, φ′) is the following tree:

PPPPPPPPP

�
�
�

���������Q
Q

Q
QQ

A
A

A

�
�
�

�
�

�
��

A
A

A

�
�
�

�
�

�
��

�
�

�

•

•

• • •

a8 {a9, a10} a11 {a12, a13} {a1, a2} a3 a4 {a5, a6} a7

The differential ∂2 is (−1)5+d({a1,...,a4})d2
0 where 5 is the label of the right most top edge of t2,0. The

shuffles involved in the computation of d2
0 are the (3, 2)-shuffles. For such a (3, 2)-shuffle τ the associated

sign is given by ε(τ ; t2,0, t2,1) where t2,0 = [t3,0, t3,1, t3,2] and t2,1 = [t3,3, t3,4].
The differential ∂3 is given by ∂3 = (−1)3+d(a1)+d(a2)d3

0+(−1)4+d(a1)+d(a2)+d(a3)d3
1+(−1)7+d({a1,...,a6})d3

3+
(−1)11+d({a1,...,a8})d3

5 + (−1)12+d({a1,...,a10})d3
6 + (−1)13+d({a1,...,a11})d3

7.

Proof of 3.7 and 3.9. The proof that d =
∑
j ∂j satisfies d2 = 0 is done by induction on n. Since the

expression of d in 3.6 coincides with the one in 3.8 when d(X) = 0 it is enough to prove 3.8.
The case n = 1 has been treated in the previous section, in the non-graded case and the same kind of

proof holds in the graded case.
We base our proof on the construction of the iterated bar construction given by Eilenberg and Mac Lane

in [5, sections 7–9]: if (A, ∂) is a differential graded commutative algebra then BA is a differential graded
commutative algebra with a differential that is the sum of a residual boundary

∂r([a1, . . . , ak]) =
k∑
i=1

(−1)i+d(a1)+...+d(ai−1)[a1, . . . , ∂ai, . . . , ak]
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and a simplicial boundary

∂s([a1, . . . , ak]) =
k−1∑
i=1

(−1)i+d(a1)+...+d(ai)[a1, . . . , ai · ai+1, . . . , ak].

The graded commutative product of a = [a1, . . . , ak] and b = [ak+1, . . . , ak+l] is given by the shuffle product

[a1, . . . , ak] ∗ [ak+1, . . . , ak+l] =
∑

σ∈Sh(k,l)

ε(σ; a, b)[aσ(1), . . . , aσ(k+l)]

where ε(σ; a, b) picks up a factor (−1)(d(ai)+1)(d(aj)+1) whenever σ(i) > σ(j) but i < j. An n-level tree
t = [t1,0, . . . , t1,r1 ] can be considered formally as an element of BTn−1 where Tn−1 is the set of (n− 1)-level
trees. For n > 1, the differential ∂1 corresponds to the simplicial boundary, where we view the shuffles τ i,12 as
the summands in the multiplication t1,i ∗t1,i+1 of two (n−1)-level trees. The differential dn−1 = ∂2 + . . .+∂n
corresponds to the residual boundary. Following the proof of [5] one gets that (dn−1 + ∂1)2 = 0.

For n = 1 the differential ∂1 corresponds to the simplicial boundary, where 0-level trees are subsets of X.
To an ordered finite set X one can associate an algebra A = ⊕I⊂XeI with the multiplication

eIeJ =

{
ε(I;J)eItJ if I ∩ J = ∅
0 if not.

The algebra A is graded commutative thanks to relation (3.7). Hence ∂1 is the simplicial boundary in
BA. �

As an example, we will determine the zeroth En-homology of an Epin-functor F . In total degree zero

there is just one summand, namely F ([0]
id[0]−→ . . .

id[0]−→ [0]). The modules CEn(0,1,0,...,0)(F ), . . ., CEn(0,...,0,1)(F ) are
all trivial, so the only boundary term that can occur is caused by the unique map

CEn(1,0,...,0)(F ) −→ CEn(0,...,0)(F ).

Therefore

(3.10) HEn
0 (F ) ∼= F ([0]

id[0]−→ . . .
id[0]−→ [0])/image(F ([1] d0−→ [0]

id[0]−→ . . .
id[0]−→ [0])).

We can view an Epin-module F as an Epik-module for all k 6 n via the functors ιkn.

Proposition 3.11. For every Epin-module F there is a map of chain complexes Tot(CEk∗ (F ◦ ιkn)) −→
Tot(CEn∗ (F )) and therefore a map of graded k-modules

HEk
∗ (F ◦ ιkn) −→ HEn

∗ (F ).

Proof. There is a natural identification of the module CEk(rk,...,r1)
(F ◦ ιkn) with the module CEn(rk,...,r1,0,...,0)

(F )
and this includes Tot(CEk∗ (F ◦ ιkn)) as a subcomplex into Tot(CEn∗ (F )). �

3.1. Relationship to higher order Hochschild homology. For a non-unital commutative k-algebra Ā
we define Ln(Ā) : Epin → k-mod as

Ln(Ā)([rn]
fn→ . . .

f2→ [r1]) = Ā⊗(rn+1).

A morphism

[rn]

σn

��

fn // [rn−1]

σn−1

��

fn−1
// . . . f2 // [r1]

σ1

��

[r′n]
f ′n // [r′n−1]

f ′n−1
// . . .

f ′2 // [r′1]

induces a map Ā⊗(rn+1) → Ā⊗(r′n+1) via

a0 ⊗ . . .⊗ arn 7→ (σn)∗(a0 ⊗ . . .⊗ arn) = b0 ⊗ . . .⊗ br′n
9



with bi =
∏
σn(j)=i aj . The En-homology of the functor Ln(Ā) coincides with the homology of the n-fold bar

construction of the non-unital algebra Ā, hence with the En-homology of Ā. The total complex has been
described in [6, Appendix] and it coincides with ours.

There is a correspondence between augmented commutative k-algebras and non-unital k-algebras that
sends an augmented k-algebra A to its augmentation ideal Ā. Under this correspondence, the (m + n)-th
homology group of the n-fold bar construction Bn(A) is isomorphic to the m-th homology group of the n-fold
iterated bar construction of Ā, Bn(Ā). As the chain complex B(A) is the chain complex for the Hochschild
homology of A with coefficients in k (compare [5, (7.5)]), we can express B(A) as A⊗̃S1. Here, S1 is the
simplicial model of the 1-sphere, which has n+ 1 elements in simplicial degree n and (A⊗̃S1)n = k ⊗ A⊗n.
Therefore

Bn(A) ∼= (. . . (A⊗̃S1) . . .)⊗̃S1 ∼= A⊗̃((S1)∧n) ∼= A⊗̃Sn

which gives rise to higher order Hochschild homology of order n of A with coefficients in k, HH [n]
∗ (A; k), in

the sense of Pirashvili [9]. Thus, HH [n]
∗+n(A; k) ∼= HEn

∗ (Ā).

For the case F = Ln(Ā), Ln(Ā)([1]
id[0]−→ . . .

id[0]−→ [0]) = Ā⊗2 and hence for all n > 1 the zeroth En-homology
group is

HEn
0 (Ā) ∼= Ā/Ā · Ā.

By proposition 3.11 there is a sequence of maps

(3.11) HH∗+1(A; k) ∼= Hbar
∗ (Ā) = HE1

∗ (Ā) → HE2
∗ (Ā) → HE3

∗ (Ā) → . . .

and the map from HE1
∗ (Ā) to the higher En-homology groups is given on chain level by the inclusion of

Cbar
m (Ā) into CEn(m,0,...,0)(Ā).
Suspension induces maps

HH`(A; k) = π`L(A; k)(S1)

++WWWWWWWWWWWWWWWWWWWWW
// HH

[2]
`+1(A; k) = π`+1L(A; k)(S2)

��

// . . .

HΓ`−1(A; k) ∼= πs` (L(A; k)).

For the last isomorphism see [10]. Fresse proves a comparison [6, 8.6] between Gamma homology of A and
E∞-homology of Ā. Using the isomorphisms above this sequence gives rise to a sequence of maps involving
graded vector spaces that are isomorphic to the ones in (3.11).

The explicit form of the suspension maps is described in [5, (7.9)]: an element a ∈ Ā is sent to [a]
in the bar construction. The iterations of this map correspond precisely to the maps ιn−1

n : Bn−1(Ā) →
Bn(Ā). Therefore we actually have an isomorphism of sequences, i.e., the suspension maps HH [n]

`+n(A; k) →
HH

[n+1]
`+n+1(A; k) are related to the natural maps HEn

` (Ā) → H
En+1
` (Ā) via the isomorphisms HH [n]

∗+n(A; k) ∼=
HEn
∗ (Ā).
Our description of E2-homology leads to the following result.

Proposition 3.12. If Ā and Hbar
∗ (Ā) are k-flat, then there is a spectral sequence

E1
p,q =

⊕
`0+...+`q=p−q

Hbar
`0 (Ā)⊗ . . .⊗Hbar

`q (Ā) ⇒ HE2
p+q(Ā)

where the d1-differential is induced by the shuffle differential.
10



Proof. The double complex for E2-homology looks as follows:

...

��

Ā⊗3

��

. . .oo

Ā⊗2

��

Ā⊗3oo

��

. . .oo

Ā Ā⊗2oo Ā⊗3oo . . .oo

The horizontal maps are induced by the b′-differential whereas the vertical maps are induced by the shuffle
maps. The horizontal homology of the bottom row is precisely Hbar

∗ (Ā). We can interpret the second row
as the total complex associated to the following double complex:

...

id⊗b′

��

...

id⊗b′

��

...

id⊗b′

��

Ā⊗ Ā⊗3

id⊗b′

��

Ā⊗2 ⊗ Ā⊗3

id⊗b′

��

b′⊗id
oo Ā⊗3 ⊗ Ā⊗3

id⊗b′

��

b′⊗id
oo . . .b′⊗id

oo

Ā⊗ Ā⊗2

id⊗b′

��

Ā⊗2 ⊗ Ā⊗2

id⊗b′

��

b′⊗id
oo Ā⊗3 ⊗ Ā⊗2

b′⊗id
oo

id⊗b′

��

. . .b′⊗id
oo

Ā⊗ Ā Ā⊗2 ⊗ Ā
b′⊗id

oo Ā⊗3 ⊗ Ā
b′⊗id

oo . . .b′⊗id
oo

Therefore the horizontal homology groups of the second row are the homology of the tensor product of the
Cbar(Ā)-complex with itself. Our flatness assumptions guarantee that we obtain Hbar

∗ (Ā)⊗2 as homology.
An induction then finishes the proof. �

4. Tor interpretation of En-homology

Let X be a fixed finite ordered set. The following notation will be helpful for the sequel: for an object
t in Epin (resp. (t, φ) in EpiXn ) let Epitn (resp. EpiXn

t,φ
) denote the representable functor k[Epin(t,−)]

(resp. k[EpiXn ((t, φ),−)]) and similarly, let Epin,t (resp. Epin
X
,(t,φ)) denote the contravariant representable

functor k[Epin(−, t)] (resp. k[EpiXn (−, (t, φ))]). The En-homology of an Epin-module F (resp. the (En, X)-
homology of an EpiXn -module F ) can be computed in different ways, since it is the homology of the total
complex associated to an n-complex. The notation H∗(F, ∂i) stands for the homology of the complex CEn∗ (F )
(resp. CEn,X∗ (F )) with respect to the differential ∂i. The complex (CEn∗ (F ), ∂i) splits into subcomplexes

(4.1) CEn(sn,sn−1,...,si+1,∗,si−1,...,s1)
(F ) =

⊕
t=[sn]

gn−→...
gi+2−→ [si+1]

gi+1−→ [∗]
gi−→[si−1]

gi−1−→ ...
g2−→[s1]

F (t),

whose homology is denoted by H(sn,sn−1,...,si+1,∗,si−1,...,s1)(F, ∂i). There is an analogous splitting for the
complex (CEn,X∗ (F ), ∂i).

Theorem 4.1. For any Epin-module F

HEn
p (F ) ∼= TorEpin

p (bepi
n , F ), for all p > 0

11



where

bepi
n (t) ∼=

 k for t = [0]
id[0]−→ . . .

id[0]−→ [0],

0 for t 6= [0]
id[0]−→ . . .

id[0]−→ [0].

Proof. Similar to the proof of proposition 2.3, we have to show that HEn
∗ (−) maps short exact sequences

of Epin-modules to long exact sequences, that HEn
∗ (−) vanishes on projectives in positive degrees and that

HEn
0 (F ) and bepi

n ⊗Epin F agree for all Epin-modules F . The homology HEn
∗ (−) is the homology of a total

complex CEn∗ (−) sending short exact sequences as in (2.2) to short exact sequences of chain complexes and
therefore the first claim is true. Note that the left Epin-module bepi

n is the cokernel of the map between
contravariant representables

(d0)∗ : Epin,[1]−→[0]−→...−→[0] → Epin,[0]−→[0]...−→[0].

This remark together with the computation of HEn
0 (F ) in relation (3.10) implies the last claim, similar to

the proof of proposition 2.3.
In order to show that HEn

∗ (P ) is trivial in positive degrees for any projective Epin-module P it suffices

to show that the representables Epitn are acyclic for any planar tree t = [rn]
fn→ . . .

f2→ [r1].

Let t be such an n-level tree, letX be a finite ordered set and let φ : X → [rn] be a fixed surjection. Assume
that every element in X has degree 0. Then we claim that the complexes CEn∗ (Epitn) and CEn,X∗ (EpiXn

t,φ
)

are isomorphic. One has
k[Epin(t, t

′)] ∼=
⊕

φ′ : X→[r′n]

k[EpiXn ((t, φ), (t′, φ′))],

because any morphism of n-trees σ : t→ t′ determines a component φ′ = σn◦φ. This defines an injective map
k[Epin(t, t′)] →

⊕
φ′ : X→[r′n] k[EpiXn ((t, φ), (t′, φ′))]. As every morphism from (t, φ) to (t′, φ′) is a morphism

of n-trees σ : t→ t′ with σn ◦ φ = φ′, the map is surjective. By relations (3.6) and (3.9) one has

(4.2) CEn∗ (Epitn) = ⊕t′∈EpinEpin(t, t
′) = ⊕(t′,φ′)∈EpiXn

EpiXn ((t, φ), (t′, φ′)) = CEn,X∗ (EpiXn
t,φ

)

and as every element of X has degree zero, the differentials ∂j coincide for all j.

In the sequel, we will prove that for any (X,n)-level tree (t, φ) the representable EpiXn
t,φ

is acyclic. In
particular, if every element in X has degree zero, then this implies that Epitn is acyclic for any n-level tree t.

The case n = 1 has been proved in proposition 2.3 in the non-graded case and the proof goes the same in
the graded case. For n = 2 we study the bicomplex CE2,X

(∗,∗) (EpiX2
t,φ

). In proposition 4.2 we give the k-module
structure of the homology with respect to the differential ∂2 and give its generators in propositions 4.4 and
4.5. Corollaries 4.3 and 4.6 state the result for n = 2. For the general case, one uses induction on n and
proposition 4.7. As a consequence HEn

∗ (Epitn) = 0 for all ∗ > 0 if t 6= [0] −→ [0] . . . −→ [0] and in that case

HEn
∗ (Epi[0]−→[0]...−→[0]

n ) =

{
0 for ∗ > 0
k for ∗ = 0.

�

Proposition 4.2. Let (t, φ) = X
φ→ [r2]

f−→ [r1] be an (X, 2)-level tree in EpiX2 .

H(∗,s)(EpiX2
t,φ
, ∂2) = 0, if r2 6= r1

H(∗,s)(EpiX2
t,φ
, ∂2) ∼=

{
0 for ∗ 6= r2

k⊕|∆
epi([r2],[s])| for s 6 ∗ = r2.

, if r2 = r1

Proof. Let F denote the covariant functor EpiX2
t,φ

.
Assume s = 0. We first prove that the chain complex ∂2 : CE2,X

(∗,0) (F ) → CE2,X
(∗−1,0)(F ) is the chain complex

associated to a labelled poset, in a sense we will describe now. In fact, we first explain how we prove the
12



proposition in case every element in X has degree 0 and then we show how we can adapt the proof to the
general case.

Recall from Wachs [18] and Vallette [17] that a chain complex Π∗(P ) can be associated to a graded poset
P with minimal element β0 and maximal element βM . The k-module Πu(P ) is the free k-module generated
by chains of the form β0 < β1 < . . . < βu < βM , with the differential given by d =

∑u
i=1(−1)idi where di

omits βi. We define Π0(P ) to be the k-module of rank one generated by the chain β0 < βM . Indeed, Πu(P )
is the order complex associated to the proper part P = P \{β0, βM} of the poset P , denoted by ∆(P ). More
precisely, Πu(P ) = ∆u−1(P ) where we consider the augmented order complex.

The chain complex (CE2,X
(∗,0) (F ), ∂2) has the following form, for 0 < u 6 r2

⊕
ψ k[EpiX2 ((t, φ);X

ψ→ [u] → [0])]
Pu−1
i=0 (−1)s2,id2i //

⊕
ψ k[EpiX2 ((t, φ);X

ψ→ [u− 1] → [0])],

If the elements of X all have degree 0 then s2,i = i + 2. Let (A0, . . . , Ar1) be the sequence of preimages
of f , and ai the number of elements in Ai.

The set EpiX2 ((t, φ);X
ψ→ [u]→[0]) is either empty or has only one element uniquely determined by a

surjective map σ : [r2] → [u] which is order-preserving on Ai. In that case we recall that ψ = σφ. The map
σ can be described by the sequence of its preimages (S0, . . . , Su) with the condition (CS): if a < b ∈ Ai
then ia 6 ib where iα is the unique index for which α ∈ Siα . Let us consider the poset Pf whose objects are
elements (β0, . . . , βr2) of {0, 1}r2+1 satisfying the condition

β0 > β1 > . . . > βa0−1,

βa0 > βa0+1 > . . . > βa0+a1−1,

. . .

βa0+...+ar1−1 > . . . > βr2 .

(4.3)

The order is the lexicographic one, thus the minimal element is B0 = (0, . . . , 0) and the maximal element
is BM = (1, . . . , 1). An element in Πu(Pf ) is a family of (r2 + 1)-tuples Bi = (βi0, . . . , β

i
r2) of Pf with

B0 < B1 < . . . < Bu < Bu+1 = BM . A chain in Πu(Pf ) is encoded by a sequence of sets (S0, . . . , Su) where
Si = {j|βi+1

j > βij}. This sequence is an ordered partition of [r2] by non-empty subsets, and condition (4.3)
amounts to condition (CS). As a consequence the two complexes (CE2,X

∗,0 (F ), ∂2) and Π∗(Pf ) coincide. The
poset Pf is the product of the posets Lai , 0 6 i 6 r1 where Lai is the linear poset

(0, . . . , 0)︸ ︷︷ ︸
ai times

< (1, 0, . . . , 0) < (1, 1, . . . , 0) < . . . < (1, 1, . . . , 1).

The complex Π∗(Lai) is acyclic but for ai = 1 where it is free of rank one, concentrated in degree 0. It
remains to compute the homology of Π∗(P ×Q) = ∆∗−1(P ×Q) for any graded poset P and Q. Since the
order complex ∆(P ) of a poset P is a simplicial complex, its homology coincides with the homology of its
geometric realization denoted by |P |.

The first step relies on Quillen’s and Walker’s results. In his PhD thesis [19], Walker proved, following
methods of Quillen in [12], that the geometric realization of ∆(P ×Q) is homeomorphic to |P | ∗ |Q| ∗ |A2|
where A2 is the discrete poset with 2 points and ∗ denotes the join of topological spaces. Recall that the
poset P ∗Q is P tQ where all elements in P are smaller than the elements in Q. Since joins commute with
realization (see e.g. [12, Prop 1.9]), one gets

|P ×Q| ' |P | ∗ |Q| ∗ |A2| ' |P ∗Q ∗A2|.
The second step computes the homology of the order complex of the join of two posets in terms of the
homology of the order complex of the posets. This is referred to as the Künneth formula in [18, 5.1.2], but
we prove it here because we need to adapt its proof for a general set of graded elements X.

An m-chain in ∆(P ∗Q) is of the form β0 < . . . < βm where there exists a p with −1 6 p 6 m such that
for all j 6 p, βj ∈ P and for all j > p, βj ∈ Q. Recall that ∆−1(P ) is the free k-module generated by the
empty chain. As a consequence one gets an isomorphism of complexes
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∆m(P ∗Q) → ⊕p+q=m−1∆p(P )⊗∆q(Q)

with the usual differential on the right hand side: for x ∈ ∆p(P ) and y ∈ ∆q(Q), d(x ⊗ y) = d(x) ⊗ y +
(−1)px⊗ d(y). As every complex under consideration is free as a k-module, the classical Künneth theorem
yields an isomorphism on homology.

As a consequence, and since the homology of ∆(A2) is of rank 1 concentrated in degree 0, one gets

Hm(∆(P ×Q)) =
⊕

p+q=m−2

Hp(∆(P ))⊗Hq(∆(Q)).

Iterating the formula and using the equality Π∗(Pf ) = ∆∗−1(Pf ) one gets

Hm(Π∗(Pf )) =
⊕

p0+...+pr1=m−r1

Hp0(Π∗(La0))⊗ . . .⊗Hpr1
(Π∗(Lar1 )).

As a consequence, the complex Π∗(Pf ) is acyclic but for f = id[r2] where its homology is concentrated in
top degree r2 and is free of rank 1. This implies the result for s = 0.

Now assume that the elements of X are graded, then s2,i is no longer i + 2: any map σ is determined
by its sequence of preimages (S0, . . . , Su) and it comes equipped with degrees, d(Si) =

∑
φ(x)∈Si d(x). Then

s2,i = i+ 2 +
∑i
k=0 d(Sk). As a consequence the complex does not coincide with the complex associated to

the poset Pf but with a graded version of this complex. To a relation α = (α0, . . . , αr2) < β = (β0, . . . , βr2)
in Pf we assign the set S = {j ∈ [r2]|αj < βj} and a degree d(α < β) = d(S) =

∑
x∈X|φ(x)∈S d(x). We

define the simplicial complex Π∗(Pf ) as before, except that di(β0 < β1 < . . . < βi < . . . < βu < βM ) =
(−1)

Pi−1
k=0 d(βk<βk+1)β0 < β1 < . . . < βi−1 < βi+1 < . . . < βu < βM . In terms of the homology of the

geometric realization this corresponds to assigning a system of local coefficients to the simplicial complex
∆(Pf ). The homeomorphism on the level of geometric realizations still holds and there is a Künneth formula
in this context as well.

The computation of the generator of H(r2,0)(EpiX
φ−→[r2]

id−→[r2]
2 , ∂2) ∼= k is the subject of proposition 4.4.

Assume s > 0.
The complex (CE2,X

(∗,s) (F ), ∂2) splits into subcomplexes

CE2,X
(∗,s) (F ) =

⊕
σ∈∆epi([r1],[s])

C(∗,s)(Fσ) =
⊕

σ∈∆epi([r1],[s])

⊕
g∈∆epi([∗],[s]),ψ

Fσ(X
ψ−→ [∗] g−→ [s])

where Fσ(X
ψ−→ [u]

g−→ [s]) ⊂ Epit,φ2 (X
ψ−→ [u]

g−→ [s]) is the free k-module generated by morphisms of the
form

(4.4) X
φ

//

id

��

[r2]

τ

��

f
// [r1]

σ

��

X
ψ

// [u]
g

// [s].

Let (A0, . . . , As) denote the sequence of preimages of σf and (B0, . . . , Bs) the one of g. The latter has to
satisfy the condition |Bi| 6 |Ai|, 0 6 i 6 s. Note that g ∈ ∆epi([u], [s]) is also uniquely determined by the
sequence (b0, . . . , bs) of the cardinalities of its preimages. The differential ∂2 : C(u,s)(Fσ) −→ C(u−1,s)(Fσ)
has the following form:
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∂2


X

φ
//

id

��

[r2]

τ

��

f
// [r1]

σ

��

X
τφ

// [u]
g

// [s]

 =
∑

i|g(i)=g(i+1)

(−1)s2,i
X

φ
//

id

��

[r2]

diτ

��

f
// [r1]

σ

��

X
diτφ// [u− 1]

g|i=i+1
// [s]

=
s∑
j=0


∑

i∈Bj |g(i)=g(i+1)

(−1)s2,i
X

φ
//

id

��

[r2]

diτ

��

f
// [r1]

σ

��

X
diτφ// [u− 1]

g|i=i+1
// [s]


Define Dj by restricting the sum over indices i such that g(i) = g(i + 1) to the sum over indices i ∈ Bj

such that g(i) = g(i+ 1). One has

Dj : C(u,s)(Fσ) =
⊕

b0+...+bs=u+1

C((b0,...,bj ,...,bs),s)(Fσ) −→
⊕

b0+...+bs=u+1

C((b0,...,bj−1,...,bs),s)(Fσ)

and ∂2 = D0 + . . .+Ds. We claim that the Dj are anti-commuting differentials:
Let i be in Bj and ` be in Bk. For j < k it follows that i < ` therefore we have the relation did` = d`−1di.

In order to calculate the effect of d`−1di we have to determine s2,`−1 after the application of di. Let S̃j
denote the preimage (di ◦ τ ◦ φ)−1(j) and Sj the preimage (τ ◦ φ)−1(j) for j ∈ [u]. Then

d(S̃j) =


d(Sj) j < i

d(Si) + d(Si+1) j = i

d(Sj+1) j > i.

Thus s2,`−1 is `− 1 + k + 2 +
∑`−1
j=0 d(S̃j) = `+ k + 1 +

∑`
j=0 d(Sj) whereas s2,` = `+ k + 2 +

∑`
j=0 d(Sj).

A similar argument shows that the Dj are differentials.
For instance, the complex (C(u,s)(Fσ), Ds) splits into subcomplexes (C((b0,...,bs−1),∗)(Fσ), Ds) for fixed

bi 6 ai = |Ai|, i < s. With the notation of definition 3.8, the tree (t, φ) can be written as t = [t1,0, . . . , t1,r1 ],
with t1,i being an (X1,i, 1)-level tree. Let p be the first integer such that σ(p) = s. Let Xs−1 = ∪06i6p−1X1,i

and X̃ = ∪p6i6r1X1,i. Denote by ts−1 the (Xs−1, 2)-level tree ts−1 = [t1,0, . . . , t1,p−1] and by t̃ the (X̃, 2)-
level tree t̃ = [t1,p, . . . , t1,r1 ]. Let σs−1 (resp. φs−1) be the map obtained from σ (resp. φ) by restriction
σs−1 : σ−1([s− 1]) σ−→ [s− 1]. Let us−1 = (

∑
i<s bi)− 1. The subcomplex (C((b0,...,bs−1),∗)(Fσ), Ds) can be

expressed as ⊕
ψ;γ∈(Epi

Xs−1
2

ts−1,φs−1
)σs−1 (Xs−1

ψ−→[us−1]
g|[us]−→ [s−1])

(CE2,X̃
(∗,0) (EpiX̃2

t̃,φ̃
), (−1)b0+...+bs−1+s+d(Xs−1)∂2).

Example. Let (t, φ) = X
φ−→ [6]

f−→ [2] be the following tree

HHH
HHHHHH

��
�����

��

�
��

�
��

{a1, a2} a3 a4 a5 a6 a7 {a8, a9}

•

• • •

where (t, φ) = [t1,0, t1,1, t1,2]
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t1,0 =
�

��
@

@@

{a1, a2} a3 a4

•
, t1,1 =

�
��

•

a5 a6

, t1,2 =
�

�
�

��

•

a7 {a8, a9}

and X1,0 = {a1, a2, a3, a4}, X1,1 = {a5, a6} and X1,2 = {a7, a8, a9}. Let σ : [2] → [1] be the map assigning
0 to 0 and 1 to 1 and 2. One has s = 1, p = 1, so that Xs−1 = {a1, . . . , a4} and X̃ = {a5, . . . , a9}. Moreover

ts−1 = [t1,0] =
H

H
H

H
H

H
H

HH

�
��

{a1, a2} a3 a4

•

•
, t̃ = [t1,1, t1,2] =

�
�

�
�

�
�

�
��

�
��

a5 a6 a7 {a8, a9}

•

• •

If f 6= id, then there exists j ∈ [s] such that the restriction of f on (σ ◦ f)−1(j) → σ−1(j) is different from
the identity. Without loss of generality we can assume that j = s, hence t̃ is a non-fork tree and the homology

of the complex is 0. If f = id, then we deduce from the case s = 0 that the complex (CE2,X̃
(∗,0) (EpiX̃2

t̃,φ̃
), ∂2)

has only top homology of rank one; consequently when t : [r2] −→ [r2] is the fork tree

(H∗(C(∗,s)((EpiX2
t,φ

)σ), Ds), D1 + . . .+Ds−1) ∼= (C(∗,s−1)((EpiXs−1
2

ts−1,φs−1
)σs−1), ∂2).

We then have an inductive process to compute the homology of the total complex (C(∗,s)(Fσ), ∂2). Conse-
quently, for a fixed σ : [r2] → [s]

H(∗,s)(Fσ, ∂2) = 0, if r2 6= r1

H(∗,s)(Fσ, ∂2) ∼=

{
0 for ∗ 6= r2

k for s 6 ∗ = r2
, if r2 = r1.

Since each σ ∈ ∆epi([r2], [s]) contributes to one summand in Hr2,s(F, ∂2), this proves the claim. The
computation of the generators for s > 0 is given in proposition 4.5. �

Corollary 4.3. For any non-fork tree (t, φ) = X
φ−→ [r2]

f−→ [r1], r2 6= r1, EpiX2
t,φ

is acyclic. For any

non-fork tree t = [r2]
f−→ [r1], r2 6= r1, Epit2 is acyclic.

Proof. The first assertion is a direct consequence of the first equation of proposition 4.2. The second one is
a direct consequence of relation (4.2). �

Proposition 4.4. Let (t, φ) : X
φ−→ [r] id−→ [r] be a fork tree and let Xi = φ−1(i). Then the top homology

H(r,0)(EpiX2
t,φ
, ∂2) is freely generated by cr,X :=

∑
σ∈Σr+1

sgn(σ;X)σ, where the sign sgn(σ;X) picks up a
factor (−1)(d(Xi)+1)(d(Xj)+1) whenever σ(i) > σ(j) but i < j.

In particular, for a fork tree t : [r] id−→ [r], the top homology H(r,0)(Epi2
t, ∂2) is freely generated by cr :=∑

σ∈Σr+1
sgn(σ)σ.

Proof. The second assertion is a consequence of the first one using relation (4.2). The computation of the
top homology amounts to determining the kernel of the map

∂2 : ⊕ψk[EpiX2 (X
φ−→ [r] id−→ [r];X

ψ−→ [r] −→ [0])] −→ ⊕ψk[EpiX2 (X
φ−→ [r] id−→ [r];X

ψ−→ [r−1] −→ [0])].
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The set EpiX2 (X
φ−→ [r] id−→ [r];X

ψ−→ [r] −→ [0]) is either empty or has only one element uniquely
determined by the following diagram

X
φ

//

id

��

[r]

τ

��

id // [r]

��

X
ψ=τφ

// [r] // [0].

Here, the surjection ψ is a permutation of the set {X0, . . . , Xr}. We denote such an element by X · τ :=
(Xτ(0), . . . , Xτ(r)). As a consequence the computation of the top homology amounts to determining the
kernel of the map

∂2 : k[Σr+1] −→ ⊕ψk[EpiX2 (X
φ−→ [r] id−→ [r];X

ψ−→ [r − 1] −→ [0])]

where

∂2(X · τ) =
r−1∑
i=0

(−1)i+d(Xτ(0))+...+d(Xτ(i))ε(Xτ(i);Xτ(i+1))(Xτ(0), . . . , {Xτ(i) ∪Xτ(i+1)}, . . . , Xτ(r)).

Therefore, if x =
∑
τ∈Σr+1

λτX · τ is in the kernel of ∂2, then for all transpositions (i, i + 1) and all τ one
has λτ(i,i+1) = (−1)1+d(Xτ(i))+d(Xτ(i+1))+d(Xτ(i))d(Xτ(i+1))λτ . Since the transpositions generate the symmetric
group one has λτ = sgn(τ ;X)λid and x = λidcr,X . �

For s > 0, the computation of the top homology of (CE2,X
∗,s (EpiX2

t,φ
), ∂2) amounts to calculating the kernel

of the map ∂2⊕
ψ,g∈∆epi([r],[s])

k[EpiX2 ((t, φ);X
ψ−→ [r]

g−→ [s])] −→
⊕

ψ,h∈∆epi([r−1],[s])

k[EpiX2 ((t, φ);X
ψ−→ [r − 1] h−→ [s])].

We know from proposition 4.2 that it is free of rank equal to the cardinality of ∆epi([r], [s]). As before, the

set EpiX2 ((t, φ);X
ψ−→ [r]

g−→ [s]) is either empty or has only one element determined by the commuting
diagram

X
φ

//

id

��

[r]

τ

��

id // [r]

g′

��

X
ψ=τφ

// [r]
g

// [s]

An element g of the latter set is uniquely determined by the sequence (x0, . . . , xs) of the cardinalities of
its preimages. Furthermore, any map in Epi2([r]

id−→ [r]; [r]
g−→ [s])] is given by g′ : [r] → [s] in ∆epi and

τ : [r] → [r] in Σr+1 such that g′ = gτ . This implies that g′ = g and τ ∈ Σx0 × . . . × Σxs . If there is such
a τ satisfying ψ = τφ then the set is non-empty and τ is unique. Let X(xi) = (gφ)−1(i). Then X(xi) is a
subset of X and there is a natural partition of it given by X(xi) = tj∈g−1({i})Xj . The map ψ acts on X(xi)

by permuting the components of the partition.
Let c(x0,...,xs);X be the element

c(x0,...,xs);X = (
∑

σ0∈Σx0

sgn(σ0;X(x0))σ
0, . . . ,

∑
σs∈Σxs

sgn(σs;X(xs))σ
s) ∈ Σx0 × . . .× Σxs .

If every element of X has degree zero, we denote (
∑
σ0∈Σx0

sgn(σ0)σ0, . . . ,
∑
σs∈Σxs

sgn(σs)σs) by c(x0,...,xs).

Proposition 4.5. Let (t, φ) : X
φ−→ [r] id−→ [r] be a fork tree. The top homology H(r,s)(EpiX2

t,φ
, ∂2) is freely

generated by the elements c(x0,...,xs);X = (
∑
σ0∈Σx0

sgn(σ0;X(x0))σ
0, . . . ,

∑
σs∈Σxs

sgn(σs;X(xs))σ
s), for

g = (x0, . . . , xs) ∈ ∆epi([r], [s]), X(xk) = (gφ)−1({k}).
Let t : [r] id−→ [r] be a fork tree. The top homology H(r,s)(Epit2, ∂2) is freely generated by the elements

c(x0,...,xs) = (
∑
σ0∈Σx0

sgn(σ0)σ0, . . . ,
∑
σs∈Σxs

sgn(σs)σs), for (x0, . . . , xs) ∈ ∆epi([r], [s]).

17



Proof. Similar to the proof of proposition 4.4 we compute the kernel of ∂2 which decomposes into the sum
of anti-commuting differentials ∂2 = D0 + . . . + Ds, as in the proof of proposition 4.2. As a consequence
ker(∂2) = ∩i ker(Di) which gives the result. �

Corollary 4.6. For any fork tree (t, φ) = X
φ−→ [r] id−→ [r], EpiX2

t,φ
is acyclic. In particular, Epit2 is acyclic

for any fork tree t = [r] id−→ [r].

Proof. It remains to compute the homology of the complex ((H(r,∗)(CE2,X(EpiX2
t,φ

), ∂2), ∂1) and prove that
it vanishes for all ∗ if r > 0. Propositions 4.4 and 4.5 give its k-module structure:

H(r,s)(CE2,X(EpiX2
t,φ

), ∂2) =
⊕

(x0,...,xs)∈∆epi([r],[s])

kc(x0,...,xs);X .

To compute ∂1(c(x0,...,xs);X) it is enough to compute ∂1(idΣ0×...×Σs) in CE2,X
(r,s) (EpiX2

t,φ
). We apply relations

(3.8) and (3.9):

∂1


X

φ
//

id

��

[r] id //

id

��

[r]

(x0,...,xs)

��

X
φ

// [r]
(x0,...,xs)

// [s]



=
s−1∑
i=0

(−1)i+x0+d(X(x0))+···+xi+d(X(xi))


X

φ
//

id

��

[r] id //

id

��

[r]

di(x0,...,xs)

��

X
φ

// [r]
di(x0,...,xs)

// [s− 1]

±
∑
ξ

X
φ

//

id

��

[r] id //

ξ

��

[r]

di(x0,...,xs)

��

X
ξφ

// [r]
di(x0,...,xs)

// [s− 1]

 ,

with ξ running over the (X(xi), X(xi+1))-shuffles. Thus,

∂1(c(x0,...,xs);X) =
s−1∑
i=0

(−1)i+x0+d(X(x0))+···+xi+d(X(xi))c(x0,...,xi+xi+1,...,xs);X

and the complex (H(r,∗)(CE2,X(EpiX2
t,φ

), ∂2), ∂1) agrees with a graded version of the complex Cbar
∗ ((∆epi)r)

of definition 2.2. Proposition 2.3 states that it is acyclic, which remains true in the graded case, and that

H0(Cbar
∗ ((∆epi)r) =

{
0 if r > 0
k if r = 0.

As a consequence the spectral sequence associated to the bicomplex (CE2,X
(∗,∗) , ∂1+∂2) collapses at the E2-stage

and one gets HE2,X
p (EpiX2

t,φ
) = 0 for all p > 0. �

Proposition 4.7. Let (t, φ) = X
φ−→ [rn]

fn−→ [rn−1]
fn−1−→ . . .

f2−→ [r1] be an (X,n)-level tree and let t̄ be

its (n − 1)-truncation X[1]
fnφ−→ [rn−1]

fn−1−→ . . .
f2−→ [r1], where X[1] is the ordered set obtained from X by

increasing the degree of its elements by 1, then

H(∗,sn−1,...,s1)(EpiXn
t,φ
, ∂n) = 0, if rn 6= rn−1,

H(∗,sn−1,...,s1)(EpiXn
t,φ
, ∂n) ∼=

{
0 for ∗ 6= rn

C
En−1,X[1]
(sn−1,...,s1)

(EpiX[1]
n−1

t̄,fnφ
) for sn−1 6 ∗ = rn

, if rn = rn−1.
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Furthermore the (n−1)-complex structure induced on H(rn,sn−1,...,s1)(EpiXn
t,φ
, ∂n) by the n-complex structure

of CEn,X(∗,...,∗)(EpiXn
t,φ

) coincides with the one on C
En−1,X[1]
(sn−1,...,s1)

(EpiX[1]
n−1

t̄,fnφ
).

Proof. Recall from definition 3.8 that

∂n


X

φ
//

id

��

[rn]
fn //

σn

��

[rn−1]
fn−1

//

σn−1

��

. . . f2 // [r1]

σ1

��

X
σnφ // [sn]

gn // [sn−1]
gn−1

// . . . g2 // [s1]



=
∑

i,gn(i)=gn(i+1)

(−1)sn,iε((σnφ)−1(i); (σnφ)−1(i+ 1))

X
φ

//

id

��

[rn]
fn //

diσn

��

[rn−1]
fn−1

//

σn−1

��

. . . f2 // [r1]

σ1

��

X
diσnφ // [sn − 1]

gn|i=i+1
// [sn−1]

gn−1
// . . . g2 // [s1].

The same proof as in proposition 4.2 provides the computation of the homology of the complex with respect
to the differential ∂n: if t is not a fork tree, then the homology of the complex vanishes, and if t is the
fork tree fn = id[rn−1], then its homology groups are concentrated in top degree rn. Let us describe all the
bijections τ of [rn−1] such that the following diagram commutes

X
φ

//

id

��

[rn−1]
id //

τ

��

[rn−1]
fn−1

//

σn−1

��

. . . f2 // [r1]

σ1

��

X
τφ

// [rn−1]
gn // [sn−1]

gn−1
// . . . g2 // [s1].

Let (x0, . . . , xsn−1) be the sequence of cardinalities of the preimages of σn−1, which also determines gn.
There exists a bijection of [rn−1] such that σn−1 = gnξ. If ξ, ξ′ are bijections of [rn−1] both satisfying the
previous equality then ξ(ξ′)−1 ∈ Σx0 × . . . × Σxsn−1

. Any element τ that makes the diagram commute is
of the form αξ for α ∈ Σx0 × . . . × Σxsn−1

. As in proposition 4.5, the element sgn(ξ)c(x0,...,xsn−1,X)ξ does

not depend on the choice of ξ and it is a generator of H(rn,sn−1,...,s1)(EpiXn
t,φ
, ∂n). This gives the desired

isomorphism of k-modules between this homology group and CEn−1,X[1]
(sn−1,...,s1)

(EpiX[1]
n−1

t̄,fnφ
). A direct inspection

of the signs in 3.8 gives that the induced differential ∂i coincides with the one on C
En−1,X[1]
(sn−1,...,s1)

(EpiX[1]
n−1

t̄,fnφ
)

for 1 6 i 6 n− 1. For i = n− 1 the computation has been done in corollary 4.6. �
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