Mathematical Modeling and Analysis of
Nonlinear Time-Invariant RLC Circuits

Timo Reis

Abstract We give a basic and self-contained introduction to the nrattial de-
scription of electrical circuits which contain resistagceapacitances, inductances,
voltage and current sources. Methods for the modeling aliits by differential-
algebraic equations are presented. The second part of éipisr ps devoted to
an analysis of these equations.

1 Introduction

It is in fact not difficult to convince scientists and nonestiists of the importance
of electrical circuits; they are nearly everywhere! To ni@mbnly a few, electrical

circuits are essential components of power supply netwarkemobiles, television
sets, cell phones, coffee machines and laptop computersaftier two items have
been heavily involved in the writing process of this arfjclehis gives a hint to their
large economical and social impact to the today’s society.

When electrical circuits are designed for specific purpoese are, in principle,
two ways to verify their serviceability, namely the 'consit,-trial-and-error ap-
proach’ and the 'simulation approach’. Whilst the first nwathis typically cost-

intensive and may be harmful to the environment, simulatan be done a pri-
ori on a computer and gives reliable impressions on the dimairtuit behavior

even before it is physically constructed. The fundamenirotiation is the math-
ematical model. That is, a set of equations containing thelwed physical quanti-
ties (these are typically voltages and currents along thgpoments) is formulated,
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which is later on solved numerically. The purpose of thischrtis a detailed and
self-contained introduction to mathematical modelinghaf tather simple but nev-
ertheless important class of time-invariant nonlinear Rir€uits. These are analog
circuits containing voltage and current sources as welksaistances, capacitances
and inductances. The physical properties of the latteethoenponents will be as-
sumed to be independent of time, but they will be allowed tadwelinear. Under
some additional, physically meaningful, assumptions @ndbmponents, we will
further depict and discuss several interesting matheald&atures of circuit mod-
els and give back-interpretation to physics.

Apart from the high practical relevance, the mathematiczdtment of electrical
circuits is interesting and challenging especially dudtofaict that various different
mathematical disciplines are involved and combined, ssaraph theory, ordinary
and partial differential equations, differential-algalorequations, vector analysis
and numerical analysis.

This article is organized as follows: In Section 3 we introglthe physical quan-
tities which are involved in circuit theory. Based on thetfdwat every electrical
phenomenon is ultimately caused by electromagnetic fiédtesf, we present their
mathematical model (hamelaxwell's equationgand define the physical variables
voltage, current and energy by means of electric and magfietil and their inter-
action. We particularly highlight model simplifications igh are typically made
for RLC circuits. Section 4 is then devoted to the faméushhoff laws which
can be mathematically inferred from the findings of the pdawgsection. It will be
shown that graph theory is a powerful tool to formulate trexpgations and analyze
their properties. Thereafter, in Section 5, we successifi@us on mathematical
description of sources, resistances, inductances anaitapees. The relation be-
tween voltage and current along these components as wakashergetic behav-
ior is discussed. Kirchhoff and component relations arefmoed in Section 6 to
formulate the overall circuit model. This leads to the madgtechniques ofmod-
ified nodal analysisndmodified loop analysiBoth methods lead tdifferential-
algebraic equations (DAEsyhose fundamentals are briefly presented as well. Spe-
cial emphasis is placed on mathematical properties of DAHeatsof RLC circuits.

2 Nomenclature

Throughout this article we use the following notation.
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The following abbreviations will be furthermore used:

DAE differential-algebraic equation (see Sec. 6)
KCL Kirchhoff’s current law (see Sec. 4 & Sec. 3)
KVL Kirchhoff’s voltage law (see Sec. 4 & Sec. 3)
MLA Modified loop analysis (see Sec. 6)

MNA Modified nodal analysis (see Sec. 6)

ODE ordinary differential equation (see Sec. 6)

3 Fundamentals of electrodynamics

We present some basics of classical electrodynamics. Aafuedtal role is played
by Maxwell's equationsThe concepts of voltage and current will be derived from
these fundamental concepts and laws. The derivations witldne by using tools
from vector calculus, such as the Gauss theorem and thesStud@rem. Note that,
in this section (as well as in Section 5, where the comporedations will be de-
rived), we will not present all derivations with full mathatical precision. For an
exact presentation of smoothness properties on the ind@ugaces, boundaries,
curves and functions to guarantee the applicability of tla&issd theorem and the
Stokes theorem as well as interchanging the order of intiegréand differentia-
tion), we refer to textbooks on vector calculus, such as [B{T01, AF02)].

3.1 The electromagnetic field

The following physical quantities are involved in electragnetic field.

D : electric displacement, B : magnetic flux intensity,
E : electric field intensity, H : magnetic field intensity,
j . electric current density, p : electric charge density.

Current density, flux and field intensities &#&valued functions depending on time
t € 1 C R and spatial coordina& € Q, whereas electric charge density| x Q —

R is scalar-valued. The intervakxpresses the time period af@dc R3 is the spatial
domain in which the electromagnetic field evolves. The ddpanies of the above
physical variables are expressedMgxwell’'s equation$PB91, Orf10], which read



Mathematical Modeling and Analysis of Nonlinear Time-Inaat RLC Circuits 5

divD(t,&) =p(t, &), charge induces electrical fields, (1a)
divB(t,&) =0, field lines of magnetic flux are closed, (1b)
curlE(t, &) = —ZB(t, &), law of induction, (1c)
curlH(t,&)=j(t,&)+ %D(t,.{), magnetic flux law. (ad)

Further algebraic relations between electromagneti@bibes are involved. These
are calledconstitutive relationsand are material-dependent. That is, they express
the properties of the medium in which electromagnetic wawedve. Typical con-
stitutive relations are

E(t,¢) = fe(D(t,£),8),  H(t,&) = fm(B(t,),4), (2a)
j(t,&) = 9(E(t,),) (2b)

for some functionde, fm,g : R® x Q — R3. In the following we collect some as-
sumptions offe, f,, andg which are made in this article. Their practical interpreta-
tion is subject of subsequent parts of this article.

Assumption 3.1(Constitutive relations)

(a) There exists some functior VR® x Q — R (electric energy density) with
Ve(D, &) >0, Ve(0,&) = 0 for all & € Q, D € R3 which is differentiable with
respect to D, and there holds

2V (D, &) = fe(D.&) forallD e R3,& € Q. (3)

(b) There exists some functiog, VR x Q — R (magnetic energy density) with
Vim(B,&) > 0, Vn(0,&) =0forall £ € Q,Be R3 which is differentiable with
respect to B, and there holds

ZV1(B,&) = fm(B,&) forall BER3,& € Q. (4)
(c) ForallE € R3, & € Q holds E'g(E, &) > 0.
If fo andfy are linear, assumptions (a) and (b) reduce to
Ve(D,&) =D"Me(&)'D,  Vin(B,&) =B Mm(¢) "B

for some symmetric and matrix-valued functiong Mp, : Q — R33 with Me(€) >0
andMp (&) > 0 for all £ € Q. The functional relations between field intensities,
displacement and flux intensity then read

D(t, &) = Me(S)E(t, &) andB(t,&) = Mm(S)H(L, &)

A remarkable special caseigotropy That is,Me andMp, are pointwise scalar mul-
tiples of the unit matrix, i.e.

Me = £(&)l3, Mm = u(&)l3
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for positive functions, 4 : Q — R. In this case, electromagnetic waves propagate
with velocity c(&) = (£(&) - u(&))~Y? through € Q. In vacuum, there holds

£ =g~88510 ?A.s.vi.m

U=Ho~12610°%m -kg-s2-A~2

Consequently, the quantity
o= (&- o) Y?~3.00m-s7*

is the speed of light [KK93, Jac99].
As we will see soon, the functiog has the physical interpretation of amergy
dissipation rate That is, it expresses energy transfer to thermodynamicagtarm
the linear case, this function reads

9(E, &) =G(¢)-E,

whereG : Q — R332 is a matrix-valued function with the property th@(&) +
GT(&) > 0 for all & € Q. In perfectly isolating media (such as the vacuum) the
electric current density vanishes; the dissipation ratesequently vanishes there.
Assuming thaffe, f,; andg fulfill Assumptions3.1, we define the electric energy at
timet € | as the spatial integral of the electric energy density é¥et timet. Con-
sequently, the magnetic energy is the spatial integralefihgnetic energy density
overQ at timet, and the electromagnetic energy at titrie the sum over these two
quantities, i.e.,

Wit) = ///Q (Ve(D(t, €), £) + Vin(B(t, £), £))AV(E).

We are now going to derive an energy balance for the elecgosti field: First,
we see, by using elementary vector calculus, that the temhgerivative of the total
energy density fulfills

2 (Ve(D(t, &), &) +Vim(B(t, &), &))
= 2Ve(D(t,€),E) - 2D(t,&) + ZVin(B(t,€),€) - ZB(t, &)
=E"(t,€) - ZD(t,&)+HT(t,§)  2B(t,&) (52)
=ET(t,&) curlH(t,§) —ET(t,€)-g(E(t,&)) —HT(t,&) - curlE(t, &)

The fundamental theorem of calculus and the Gauss theommirtiplies the energy
balance
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t2
_W(ty) = /t ///Q 2 (Ve(D(t, €),€) + Vin(B(t, £),€))dV(E)dlt

_ /: // div(E(t,£) x H(t,&))dV(E)dt
/:///ETtE E(t,&))dV(&)dt

(5b)
/# E(,€) x H(t.§))dS(E)
/:///E”f E(t,£))dV(&)dt
/# E(t,€) x H(t.£))dSE).

A consequence of the above finding is that energy transfeone ¢by dissipation
and via the outflow of th®oynting vector field B« H : | x Q — RS,

The electromagnetic field is not uniquely determined by Melkevequations. Be-
sides imposing suitable initial conditions on electricpticement and magnetic
flux, i.e.,

D(0,§) =Do(¢),  B(0,§)=Bo(¢), ¢{€Q, (6)

To fully describe the electromagnetic field, we further htwémpose physically
(and mathematically) reasonable boundary conditionsl[@rfThese are typically
zero conditions, i2 = R3 (that is, limg5e E(L, &) = lim g0 H(t, &) =0), or, in
case of bounded domaid with smooth boundary, tangential or normal conditions
on electrical or magnetic field, such as, for instance

(&) x (E(t,&) —Eo(t,&)) = (&) x (H(t, &) —Hp(t, &)) =0,
n'(&)(E(t.&) ~ Eb(tvf)): ; n'(&)(H(t,&) —Hy(t,&)) =0

3.2 Currents and voltages

Here we introduce the physical quantities which are crdoiatircuit analysis.

Definition 3.2 (Electrical current) Let Q  R® describe a medium in which an elec-
tromagnetic field evolves. Leds C Q be an oriented surface. Then tloarrent
throughA is defined by the surface integral of the current density, i.e
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// i(t,€)dS(). (8)

Remark 3.3 (Orientation of the surface)Reversing the orientation of the surface
means changing the sign of the current. The indication ofiitection of a current
is therefore a matter of the orientation of the surface.

Remark 3.4 (Electrical current in the case of absent charges/statjorese) Let

Q C R3 be a domain and4 C Q be a surface. If the medium does not contain
any electric charges (i.eg = 0), then we obtain from Maxwell’'s equations that the
current through A is fulfills

// i(t,£)dSE)
:// nT(€) - curlH (t, §) dS(€) // D(t, £)dS(¢é)
// )-curlH(t,&)dS(&) — // D(t,&)dS(&).

Elementary calculus implies thatirlH is divergence free, i.e.
diveurlH(t, &) =
The absence of electric charges moreover gives rise to
divD(t,£)=0

We consider two case scenarios:

a) Q € R2 be star-shaped. Poincals Lemma [AF02] and the divergence-freeness
of the electric displacement implies the existence oélantric vector potential
F:lxQ— R3with

D(t,&) =curlF(t,§).
The Stokes theorem then implies that the current throdgbads

d [ 15
// )-curlH(t,&)dS(&) — //An (&)-curlF(t,&)dS&)
—515 T(E)-H(t,&)ds(E) - 515 VT (€)-F(t.E)dS(E).
0A A

Consequently, the current through the surfatés solely depending on the be-
havior of the electromagnetic field in the boundaryl. In other words, if, for
A1, A2 C Q holdsd A; = d.A,, then the current throughl; equals to the cur-
rent throughA,.

Note that the condition tha® c R is star-shaped can be relaxed to thecond
de Rham cohomologyf Q being trivial, that is Hx(Q)={0} [AF02]. This is
again a purely topological condition of?, i.e., a continuous and continuously
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invertible deformation of2 does not influence the de Rham cohomology.

It can be furthermore seen that the above findings are trueadls fthe topolog-

ical condition onQ together with the absence of electric charges are replaced
with the physical assumption that the electric displaceniestationary, i.e.,
2D = 0. This follows by

// i(t,§)ds(€)
://An (&)-curlH(t, &) dS(€) // tf)ds(f) 9)

//ﬁ VTE)-HLE)dSE),

Now consider a wire as presented in Fig. 1 which is assumee tsubrounded
by a perfect isolator (that is, the™i&)j(&) = 0 at the boundary of the wire).
Let A be a cross-sectional area across the wire. If the wire dodscoatain

Fig. 1: Electrical current through surfage

any charges or the electric field inside the wire is stationan application of
the above argumentation implies that the current of a wireédl-defined in the
sense that it does not depend on the particular choice of ssesectional area.
This enables to speak about tharrent throuh a wire

b) Now assume that C Q is a domain with sufficiently smooth boundary and con-
sider the current thougBV: Applying the Gauss theorem, we obtain that, under
the assumptionp = 0, the integral of the outward component of the current
density vanishes for any closed surface, i.e.,

%Vﬂ(é)qa,s)das)
—# n'(&)-curlH(t,&)dS&) — d# n' (&) -D(t,&)dS&)

// diveurlH(t, &) dV(& ——// divD(t,&)dV(&) =0.

Further note that, again, under the alternative assumptiat the field of elec-
tric displacement is stationary, the surface integral of turrent density over
0Q vanishes as well (compa(8)).

In each of the above two cases, we have
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# AT () j(t,€)dS(E) =O.
2Q

Now we focus on a conductor node and assume that no chargpeeaent or that
the electric field inside the conductor node is stationayaiA assuming that all

Fig. 2: Conductor node

wires are surrounded by perfect isolators, we can chooseraidd? c R® such

that, fork = 1,...,N, the boundary Q intersects with thé-th wire to the cross-
sectional arealy. Define the numbes; € {1, —1} to be positive, if4¢ has the same
orientation ofdQ (that is,ik(t) is an outflowing current), angk = —1, otherwise
(that is,ik(t) is an inflowing current). Then, by making use of the assumpitiat

the current density is trivial outside the wires, we obtain

0://mnT( -curlH(t,&)dS(E) = sk//Ak )-eurlH(t, §)dS(E)

S«// j(t.§)dsE) = zsm

whereiy is the current of thé&-th wire. This is known a&irchhoff’s current law

Theorem 3.5(Kirchhoff’s current law (KCL)) Assume that a conductor node is
given which is surrounded by a perfectisolator. Furthenase that the electric field
is stationary or the node does not contain any charges. Therstim of inflowing
currents equals to the sum of inflowing currents.

Next we introduce the concept of electric voltage.

Definition 3.6 (Electrical voltage) Let Q c R3 describe a medium in which an elec-
tromagnetic field evolves. L&tC Q be a path. Then theoltage alongS is defined
by the path integral

u(t) = /S VT (E)E(L.E)dS(E). (10)

Remark 3.7 (Orientation of the path) The sign of the voltage is again a matter
of the orientation of the path. That is, a change of the oaé&oh of S results in
replacing t) be —u(t) (compare Rem. 3.3).
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Fig. 3: Voltage alongs

Remark 3.8 (Electrical current in the stationary caséf the field of magnetic flux
intensity is stationary%B = 0), then the Maxwell equations give risedorlE = 0.
Moreover, assuming that the spatial domain in which thetatry electromagnetic
field evolves is simply connected]l], then the electric field intensity is a gradient
field, i.e.,

E(t,€) = grado(t, )

for some differentiable scalar-valued functigh which we callelectric potential
For a path § C Q from &g to &; holds

/% VT(£) E(t,€)dS(E) = (t,&y) — D(t, &), (11)

In particular, the voltage alongs3s solely depending on the initial and end point of
Ss. This enables to speak about thatage between the poinég andé;.

EQ (D(tv EQ) =0

—_—

Fig. 4: Grounding ofgq

Note that the electric potential is unique up to addition ffraction independent on
the spatial coordinaté. It can therefore be made unique by imposing the additional
relation®(t, &y) = 0 for some prescribed positidg € Q. In electrical engineering,
this is calledgrounding of.

Now we take a closer look at a loop of conductors in which thiel fié magnetic
flux is assumed to be stationary:

Fork=1,...,N, assume thaS is a path in thek-th conductor connecting its
nodes. Assume that the field of magnetic flux intensity isstary and letuy(t)
be the voltage between the initial and terminal pointSpf Define the number
s € {1,—1} to be positive, ifSk is in the direction of the loop, argl = —1, other-
wise. Taking a surfacd C Q that is surrounded by the path
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uN(2/ oo /‘usm
Ul(U\\

Fig. 5: Conductor loop

u(t)

S1U...USN = 0A,

we can apply the Stokes theorem to see that

N N
késmuk(t) _k;SK./Sk VT(E) CE(t,&)ds(§)

- 515 T(£)-E(t,€)ds(E)

// )-curlE(t,&)dS&) =

Theorem 3.9(Kirchhoff’s voltage law (KVL)). In an electromagnetic field in which
the magnetic flux is stationary, each conductor loop fulfiiist the sum of voltages
in direction of the loop equals to the sum of voltages in theogjie direction to the
loop.

In the following we will make some further consideratlonmcernlng energy and
power transfer in stationary electromagnetic fielgﬁq_ atB 0) evolving in
simply connected domains. Assuming that we have some iglgctrevice in the
domainQ c R3 that is physically closed in the sense that no current letives
device (i.e.n"(&)j(t,&) = 0 for all £ € dQ), an application of the multiplication
rule

div(j(t,§) @(t,&)) =divj(t,&)- @(t, &)+ (t,§) - gradd(t,§)

and the Gauss theorem leads to

// T (t.8) - Elto, £)dV(E)

_ //Q iT(ts, €) - gradd(ty, £)dV(€)

- || dwitwo)- ot 81avie) + [I] dvtin. ) ot evee)

- /// div j(t,€) - D(tp, £)AV(E) + # 0T (€) j(ty,€) - D(tp, £)AV(E) = 0.
Q Y—~—— 5 0Q ——

(12)
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In other words, the spatidl,-inner product [Con85] betweerdt;,-) and the field
E(t1,-) vanishes for all timef, t; in which the stationary electrical field evolves.

Theorem 3.10(Tellegen’s law for stationary electromagnetic fieldsgt a station-
ary electromagnetic field inside the simply connected dofat R® be given, and
assume that no electrical current leav@s Then for all timestt, to in which the field
evolves, the current density field;j,-) and the electrical field density field(E-)
are orthogonal in the g-sense.

The concluding considerations in this section are conckwith energy inside con-
ductors in which stationary electromagnetic fields evolvensider an electrical
wire as displayed in Fig. 3. Assume th&ats a path connecting the incidence nodes
¢o, 1. Furthermore, for each € S, let A be a cross-sectional areas containing
¢ and the additional property that the spatial domain of thee\@ is the disjoint
union of the surfacesgl;, i.e.,

Q= 4.
EeS

The KCL implies that the current through; does not depend o& € S. Now
making the (physically reasonable) assumptions that thagmis spatially constant

in each cross-sectional aref, we obtain, by using the Gauss theorem and the
multiplication rule

(curlE)T(t,&)-H(t,&) —ET(t,&) -curlH(t,&) = div(E(t,&) x H(t,&)),

we see that the following holds true for the product betwéenvbltage along and
the current through the wire:

u(t)i(t)/ T(E)-Et,£)ds(é) //AE j(t,0)ds(Q)
/ Et,£)- // j(t,0)dS(0)d(E)

:///QET(t,a-j(t,é)dV(é)
:///QET(t,E)~curIH(t,E)dV(f)

:///(Cu”E)T(t’g).H(t,.{)—ET(t,E)-CurlH(t,E)dV(f)
// div(E(t, &) x H(t,&))dV(£)
_# nT(E)(E(t, &) x H(t, §))dV(E).

2Q

In other words, the product betwea(t) andi(t) therefore coincides with the out-
flow of the Poynting vector field of the wire, whence the insdgr
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W= /lu(t)-i(t)dt

is the energy consumed by the wire.

3.3 Notes and references

(i) The constitutive relations with properties as in Asstimps 3.1 directly con-
stitute an energy balance via (5). Further types of corstituelations can be
found in [Jac99].

(i) The existence of global (weak, classical) solutiondviztxwell’s equations in
the general nonlinear case seems to be not fully worked ofarsé func-
tional analytic approach to the linear case is, with boupdanditions sightly
different from (7), in [WS12].

4 Kirchhoff's laws and graph theory

In this part we will approach the systematic description atKhoff's laws inside
a conductor network. To achieve this aim, we will regard acteical circuit as
a graph. Each branch of the circuit connects two nodes. Tole@nch of the circuit

us(t)

1
| S

ia(t ity 10

Fig. 6: Circuit as a graph

we assign a direction, which is not a physical restrictiohrather a definition of
the positive directionof the corresponding voltage and current. This definition is
arbitrary, it has to be however done in advance (compare Be&vand Rem. 3.7).
We assume that the voltage and current of each branch aréyedjuected. This is
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known adoad reference-arrow systefi{K93]. This allows to speak about anitial
nodeand aterminal nodeof a branch.

Such a collection of branches can, in an abstract way, beuiated as a directed
graph.

4.1 Graphs and matrices

We present some mathematical fundamentals of directedhgrap

Definition 4.1 (Graph concepts)A directed graptor graphfor short) is a triple
G = (V,E, ¢) consisting of anode sel and abranch seE together with annci-
dence map

P:E—-VXV, e—d(e)=(di(e),p2(e)).

If ¢ (e) = (v1,v2), we call e to balirected fromvy to v». vy is called thenitial node
and v theterminal nodeof e. Two graph$ja = (Va, Ea, $a), b = (Wb, Ep, ¢p) are
calledisomorphig if there exist bijective mappingg : Eg — Ep, Iv : Va — VW, such
thatga1 = l\71 opiole andg, o = l\71 o¢po0lE.

LetV' CV and let E be a set of branches fulfilling

E'C Ely,:={ecE: ¢(e) eV’ xV'}.

Further let ¢|., be the restriction ofp to E'. Then the tripleK := (V',E’, ¢|z/) is
calledsubgraph ofj. In the case where’E= E|,,,, we callK theinduced subgraph
onV’'. If V/ =V, thenk is called aspanning subgrapt proper subgrapis one
with E # E'.

G is calledfinite, if both the node and the branch set are finite.

For each branch e, define an additional branek being directed from the terminal
to the initial node of e, thatig (—e) = (¢2(e), ¢1(e)) for e € E. Now define the set

E={e—e: ecE}. Atuplew= (wy,...,w;) € E", where fori=1,....,r —1,
Vi = d2(Wi) = ¢1(Wiy1)

is called path fromyy, to vi,; w is calledelementary pathif vy ,...,vy are dis-
tinct. Aloopis an elementary path withyy= v . A self-loopis a loop consisting
of only one branch. Two nodes/sare calledconnectedlif there exists a path from
v to V. The graph itself is called connected, if any two nodes armected. A sub-
graph K := (V',E’, ¢|g/) is called connected componenf it is connected and
K¢:=(V\V',E\E', ¢|g\g) is a subgraph.

Atreeis a is a minimally connected (spanning sub-)graph, i.es @édannected with-
out having any connected proper spanning subgraph.

For a spanning subgrapk = (V,E’, ¢|/), we define theomplementary spanning
subgraphby G — K := (V,E\ F/, ¢|e\e/)- The complementary spanning subgraph
of atree is callecto-tree A spanning subgrapk is called acutset if its branch set
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is non-emptyg — K is a disconnected graph and additionalfy;— X’ is connected
for any proper spanning subgrapfl of K.

We can set up special matrices associated to a finite gragisenill be useful to
describe Kirchoff’s laws.

Definition 4.2. Let a finite graphg = (V,E, ¢) with n branches E= {ey,...,en}
and m nodes \& {vy,...,vm} be given. Assume that the graph does not contain
any self-loops. Thall-node incidence matriaf G is defined by A= (ajx) € R™",
where
1, ifbranchk leaves node j,
ajx =4 —1, if branchk enters node,

0, otherwise.

3

)

Let L = {ly,...,I,} be the set of loops off. Then the all-loop matrix
Bo = (bjk) € R''" with

1, if branch k belongs to loop j and has the same orientation,
bjx = ¢ —1, if branch k belongs to loop j and has the contrary orientation
0, otherwise.

3

3

4.2 Kirchhoff's laws: A systematic description

Let Ag € R™" be the all-node incidence matrix of a gragh= (V,E,¢) with n
branche€ = {ey,...,en} andmnodesV = {v1,...,vn} and no self-loops. Thgth
row of Ag is, by definition, at thé-th position, equal to 1, if th&-th branch leaves
the j-th node. On the other hand, this entry equals to -1, iktttebranch enters the
j-th node. If thek-th node is involved in thg-th node, then this entry will vanish.
Hence, definingy(t) to be the current through theth branch in the direction to its
terminal node, and defining the vector

it) = ) (13)

the k-th row vectora, € R" gives rise to Kirchhoff’s current law of thieth node
via a(t) = 0. Consequently, the collection of all Kirchhoff laws reaitiscompact
form,

Adi(t) = 0. (14)

Fork e {1,...,n}, letuk(t) be the voltage between the initial and terminal node of
thek-th branch, and define the vector
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uty=1 : |. (15)
Un(t)

By the same argumentation as before, the construction ailtheop matrix gives
rise to

Bou(t) = 0. (16)

Since any column ofy contains exactly two non-zero entries, namely 1 and -1, we
have
1

Al ] =0 17)
1
~——

€RM
This give rise to the fact that the KCL systeiwi(t) = 0 contains redundant equa-
tions. Such redundancies occur more than ever in the RyiL= 0.

Remark 4.3 (Self-loops in electrical circuits)Kirchhoff’s voltage law immediately
yields that the voltage along a branch with equal incidenadeas vanishes. Kirch-
hoff's current law further implies that the current from alfdeop flows into the
corresponding node, and also flows out of this node. A coreseguis that self-
loops are physically neutral: Their removal does not inflcethe behavior of the
remaining circuit. The assumption of their absence is tfogeeno loss of generality.

The next aim is to determine a set of (linearly) independgotaéons out of the so

far constructed equations. To achieve this, we presentales@nnections between
some properties of the graph and its matridgsBy. We generalize the results in
[And91] to directed graphs. As a first observation, we maydenthe branches and
nodes ofG = (V,E, ¢) into according to connected components, such that we end
up with

Ao Bo,1
AO = .. ’ BO = .. ’ (18)
Aok Bok

whereAg;, Bp; are, respectively, the all-node incidence matrix andadpl matrix

of thei-th connected component.

A spanning subgrapk of the finite graphg has an all-node incidence matiy
which is constructed by deleting rows A§ corresponding to the branches of the
complementary spanning subgraph K. By a suitable reordering of the branches,
the incidence matrix has a partition

Ao = [Aox Aog-k]- (19)

Theorem 4.4. Let a finite graphy = (V, E, ¢) with n branches E= {ey,...,en} and
m nodes\&= {vi,...,vm} and no self-loops. Let®e R™" be the all-node incidence
matrix ofG. Then
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a) rankAg = m—k;

b) G contains a cutset, if, and only fankAy = m— 1.

c) Gis atree, if, and only if, pc R™™ 1 andkerAqg = {0}.
d) G contains loops, if, and only ikerAg = {0}.

Proof. a) Since all-loop incidence matrices of non-connectedhigabow a rep-
resentation (18), the general result can be directly iefirif we prove the state-
ment for the case whekgis connected. Assume thAg is the incidence matrix
of a connected graph, and assume fat = 0 for somex € R™. Utilizing (17),
we need to show that all entriesxére equal for showing that rafl = m— 1.

By a suitable reordering of the rows A§, we may assume that the fiksentries

of x are non-zero, whereas the last- k entries are zero, i.ex,= [x] 0|7, where

all entries ofx; is non-zero. By a further reordering of the columns, we may
assume thaty is of the form

. A1 O
Ao = |:A21 Azz] ’

where each column vector 8§ ; is not the zero vector. This giv@éflxl =0.
Now take an arbitrary column vectag1; of Ay1. Since each column vector of
Ag has exactly two non-zero entries,; either has no, one or two non-zero
entries. The latter case implies that thiéh column vector ofA;; is the zero
vector, which contradicts to the constructior®ef. If ap1; has exactly one non-
zero entry (at thg-th position, relationx;Aj1 = 0 gives rise to the fact that
the j-th entry of x; vanishes. Since this is a contradiction, the whole matrix
A1 vanishes. Therefore, the all-node incidence matrix is leliagonal. This
however consequences that none of therastk nodes is connected to the first
k nodes, which is a contradiction ¢being connected.

b) This result follows from a) by using the fact that a graphteins cutsets, if, and
only if, it is connected.

¢) By definition,G is a tree, if, and only if, it is connected and the deletionrofea
bitrary branch results in a disconnected graph. Using s)ntlieans that the dele-
tion of an arbitrary columm\y results is a matrix with rank smaller tham— 1.
This is equivalent to the columns 8§ being linearly independent and spanning
ann— 1-dimensional space, in other words régk= m— 1 and ke”y = {0}.

d) Assume that the kernel &f is trivial. Seeking for a contradiction, assume that
G contains a loop. Define the vectob = [by1,...,bj,] € RY"\ {0} with

1, if branchk belongs td and has the same orientation,
bk =< —1, if branchk belongs td and has the contrary orientation,
0, otherwise.

3

Leta;...,an be the column vectors &j. Then, by construction djj, each row
of the matrix

[bi181 ... binan]
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contains exactly one entry 1 and one entry -1 and zeros etsewfihis implies
Agbl =0.
Conversely, assume th@tcontains no loops. By separately considering the con-
nected components and the consequent structure (1&), df is again no loss
of generality to assume thégtis connected. Let be a branch off and letkC be
the spanning subgraph whose only branck iEheng — K results in a discon-
nected graph (otherwiség a1, ...,8,) would be a loop, wheréa,...,a,) is
an elementary path iéi — I from the terminal node to the initial node &t This
however consequences that the deletion of an arbitraryroolf Ag results in
a matrix with rank smaller than— 1, which means that the columnsA&f are
linearly independent, i.e., kép = {0}.

O

Since, by the dimension formula, there holds din#ge= k, we can infer from (14)
and (17) that kehd = spar{cy,...,ck}, where

Cij
Ci= with Cji = {

Cmi

1, if branchj belongs to thé-th connected component
0, else

(20)
Furthermore, using the argumentation of the first part inptfeof of d), we obtain
that
AoBJ =0. (21)

We will show that the row vectors dy even generate the kernel Af.
Based on a spanning subgragtof G, we may, by a suitable reordering of columns,
perform a partition the loop matrix according to the brarsobleC andg — I, i.e.,

Bo = [Bok Bog—x] - (22)

If a subgraph7 is a tree, then any branahin G — 7 defines a loop ing via
(e,a1,...,8yv), where(qs,...,ay) is an elementary path ifit from the terminal
node to the initial node oé. Consequently, we may reorder the rowsBaf and
Bg_7 to obtain the form

B In—
Bor = {Biﬂ , Bog-7 = { ntl] : (23)

Such a representation will be crucial for the proof of thédwing result.

Theorem 4.5. Let a finite graphg = (V,E, ¢) with no self-loops, n branches£
{e1,...,en} and m nodes \& {vy, ...,vn} and all-node incidence matrixpe R™"

and b loops{ls,...,Ip} be given. Furthermore, let k be the number of connected
components of. Then

a) imB! = kerAg;
b) rankBy =n—m+k.
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Proof. The relation int C kerAg follows from (21). Therefore, the overall result
follows, if we prove raniBy > n—m+k. Again, by separately considering connected
components and using the block-diagonal representatit8is the overall result
immediately follows, if we prove the cage= 1. Assuming thag is connected, we
consider a tre§” in G. Then we may assume that the all-loop matrix is of the form
Bo= [BoT Bog,ﬂ with submatrices as is (23). However, since the latter suitixma
has full column rank and — m+ 1 columns, we have

rankBp > rankBpg_7 =n—m+1,
which proves the desired result. a

Statement a) implies that the orthogonal spaces cBgirand keyy coincide, as
well. Therefore,
imAJ = kerBo.

To simplify verbalization, we arrange that, by referringtmnectedness, incidence
matrix, loop matrix etc. of an electrical circuit, we meae torresponding notions
and concepts for the graph describing the electrical dircui

It is a reasonable assumption that an electrical circuibimected; otherwise, since
the connected components do not physically interact, theybe considered sepa-
rately.

Since the rows of\y sum up to the zero row vector, one might delete an arbitrary
row of Ag to obtain a matridA having the same rank #&g. We callA theincidence
matrix of G. The property ranky = rankA implies imA(T) =imAT. Consequently,
the following holds true:

Theorem 4.6(Kirchhoff’s current law for electrical circuits)Let a connected elec-
trical circuit with n branches and m nodes and no self-loopgiven. Let Ac R™1n
and, for j=1,...,n, letij(t) be the current in branch;en the direction of initial to
terminal node of g Let i(t) € R" be defined as if13). Then for all times t holds

Ai(t) = 0. (24)

We can furthermore construct theop matrix Be R""™1" by pickingn—m+ 1
linearly independent rows @&. This implies inB! =imBT, and we can formulate
Kirchhoff’s voltage law as follows.

Theorem 4.7(Kirchhoff’s voltage law for electrical circuits)Let a connected elec-
trical circuit with n branches and m nodes be given. Let BR"™1" and, for
j=1,...,n, let y(t) be the voltage in branch;éetween the initial and terminal
node of g. Let ut) € R" be defined as ii15). Then for all times t holds

Bu(t) = 0. (25)

A constructive procedure for determining the loop maBigan be obtained from
the findings in front of Theorem 4.5: Having a trgein the graphg describing an
electrical circuit, the loop matrix can be determined by
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B= [BT |n—m+l] )

where thej-th row of By contains the information on the path jh between the
initial and terminal node of then— 1+ j-th branch ofG.

The formulations (24) and (25) of Kirchhoff’s laws give risethe fact that a con-
nected circuit includea = (m— 1) + (n—m+ 1) linearly independent Kirchhoff
equations. Using Theorem 4.5 andAf=imAT, imB] =imBT, we further have

imB" = kerA.

Kirchhoff's voltage law may therefore be rewritten @4) € imAT. Equivalently,
there exists some(t) € R™ 1, such that

u(t) = AT g(t). (26)

The vectorp(t) is called thenode potentialltsi-th component expresses the voltage
between the-th node and the node corresponding to the deleted rodyof his
relation can therefore be interpreted as a lumped versi¢hldf The node potential
of the deleted row is set to zero, whence the deletion of a foy can therefore be
interpreted as grounding (compare Sec. 3).

Equivalently, Kirchhoff’s current law may be reformulated way that there exists
someloop currenti (t) € R"~™1 such that

i(t)=BTi(t). (27)

The so far developed graph theoretical results give risdumaed version of The-
orem 3.10

Theorem 4.8(Tellegen’s law for electrical circuits)With the assumption and nota-
tion of Theorem 4.6 and Theorem 4.7, for all timgs,t the vectors(it;) and uty)
are orthogonal in the Euclidean sense, i.e.,

i”(ty)u(tp) = 0.

Proof. For the incidence matriA of the graph describing the electrical circuit, let
®(ty) € R™ 1 be the corresponding vector of node potentials at tim&hen

iT (t1)u(tz) =i" (t)AT @(t2) = (Ai(t))T @(t2) = 0- @(t2) =0. (28)

O

4.3 Auxiliary results on graph matrices

This section closes with some further results on the commettetween proper-
ties of subgraphs and linear algebraic properties of cporeding submatrices of
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incidence and loop matrices. Corresponding for undiregieghs can be found
in [And91]. First we declare some manners of speaking.

Definition 4.9. LetG be a graph and leK be a spanning subgraph.

(i) Lis called aK-cutsetif L is a cutset ofj and a spanning subgraph &f.
(i) lis called aC-loop, if | is a loop and all branches of | are contained i

Lemma 4.10. Let G be a connected graph with n branches and m nodes, no self-
loops, incidence matrix & R™ 1" and loop matrix B R"™™1" Further, letk
be a spanning subgraph. Assume that the branchgsané sorted in a way that

A=[AcAg-x], B=[BcBgx].
a) The following three assertions are equivalent:

(i) G does not contaillC-cutsets;
(i) kerAl . ={0};
(ii) kerBx ={0}.

b) The following three assertions are equivalent:

(i) G does not contailC-loops;
(i) kerAg = {0};
(iii) kerBZL,C = {0}.

Proof. a) The equivalence between (i) and (ii) follows from Theorémh b). To
show that (ii) implies (i), assume th&cx = 0. Then

X . Al
(O) S kel’[B;c Bg,;d =1m [AEK’C] R

i.e., there exists somec R™1, such that

(6) [ )

In particular, we havé‘gf,cy: 0, whence, by assumption ii), there hoids 0.
Thusx=ALy=0.

To prove that (iii) is sufficient for (ii), we can perform tharse argumentation
by interchanging the roles @%% andBy.

b) The equivalence between (i) and (ii) follows from Theorérh d). The equiva-
lence between (ii) and (iii) can be proven analogous to gattyainterchanging
the roles offC andgG — K, and the loop and incidence matrices).

O

The subsequent two auxiliary results are concerned witpepties of subgraphs
of subgraphs, and gives some equivalent characterizatiaesms of properties of
their incidence and loop matrices.
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Lemma 4.11. Let G be a connected graph with n branches and m nodes, no self-
loops, incidence matrix & R"~1™ and loop matrix B R"~™1", Further, letk

be a spanning subgraph ¢f, and let be a spanning subgraph &f. Assume that

the branches of are sorted in a way that

A=[Ac Ac_c Agx], B= [Bz Bx £ Bg «].
and define
Ax =[Ar Ac-c], Bx =[Bcz Bxc],
Ag_r=[Ac—rAsx|], Bg-r=[Bx—rBgx].
Then the following four assertions are equivalent;
(i) G does not contailC-loops except foL-loops;
(ii)
kerAx = kerA. x {0}.

(i) For a matrix Z, withimzZ, = kerA} holds
kerZLAx_ . = {0}.

(iv)

kerBS_, = kerBf._ .

(v) Foramatrix 6_x withimYg_x = kengf,C holds
Y& Bg x=0.

Proof. To show that (i) implies (i), leBx be a loop matrix of the grapkl (note
thatBy. andBy do, in general, not coincide). The assumption thakalbops are
actually L-loops implies thaBy is structured as

Bx = [B. 0].

Since imBy = kerAc, we have keAx = imBL x {0}. This further implies that
imB. = kerA. in other words, b) holds true.

Now we show that (ii) is sufficient for (i). Létbe a loop inC. Assume thak® hasnk
branches, and hasn, branches. Define the vector= [byy,...,bin, ] € RY™\ {0}
with

1, if branchk belongs td and has the same orientation,

bk =< —1, if branchk belongstd and has the contrary orientation,
0, otherwise.

Then (i) gives rise tdy, +1 = ... = by, = 0, whence the branches kf— £ are not
involved inl, i.e.,l is actually anZ-loop.
Aiming to show that (iii) holds true, assume (ii). Let keerT:A,C,L. Then
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Ax_cxekerZ = (imZ;)* = (kerAL)t =imA,.
Thus, there exists a real vectgrsuch that
Aic_cx=Ary.

This gives rise to

-y Ac | _ _
( X > € ker [AIC J = kerAx = kerA; x {0}

and consequently vanishes.
For the converse implication, it suffices to show that c¢) iewpl
kerAx C kerA x {0} (the reverse inclusion is holding true in any case). Assume

that
y € kerA
X JC s

i.e.,Acy+ Ax_-x= 0. Multiplying this equation from the left wit&., we obtain
x € kerZLAx_. = {0}, i.e.,x=0andA.y = 0. Hence,

(i) € kerAz x {O}.
The following proof concerns the sufficiency of (ii) for (iv} suffices to show that
(i) implies
kerB;_, C Br_,,
since the converse inclusion holds true in any case. AsshatB}_ .x = 0. Then
BL.X

B'x= | BL_ x| € kerAc =kerA. x {0},
0

whenceBL. _/x.
Conversely, assume that (iv) holds true, and let

y
(x) € kerAg.

Then T
y _ _ B.
x| ekerA=imB" =im |BL_,|,
0 By«

i.e., there exists some real vectowith y = BL.z x=B._ .z anngf,Cz: 0. The
latter implies thak = BL._ .z=0, i.e., b) holds true.
It remains to be shown that (iv) and (v) are equivalent. Adsgrthat (iv) holds true.
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Then
kerB;_ C kerBi_, =imYg_¢,

whence

Yi_Bg k=BG xYe )" =0,
Finally, assume that,’ .Bg x =0, and letB,_,x=0. Thenx € imYx_, i.e.,
there exists a real vectgy such thak = Y ~y. This implies

o (82)-(§59)-0)
G- Bg—)CX BgflcY’C*l:y 0
So far, we have shown thef _.Bg_x =0implies keB[,_, C kerBf,_ .. Since the

other inclusion holds true in any cad8]( - is a submatrix 0B, __), the overall
result has been proven. a

Lemma 4.12. Let G be a connected graph with n branches and m nodes, no self-
loops, incidence matrix & R™ 1" and loop matrix B R"™"™1" Further, letk

be a spanning subgraph ¢f and let£ be a spanning subgraph @f. Assume that
the branches of are sorted in a way that

A=[Ac Ac—rc Ag—x], B=[Bz Bk Bg «].

Then the following four assertions are equivalent:

(i) G does not contailfC-cutsets except fof-cutsets;
(i) Theinitial and terminal nodes of each branch/6f- £ are connected by a path
inGg— K.
(iii)
kerAl_,c = kerAlL ..
(iv) For a matrix Z;_x withimZg_x = kerA]_, holds
Zr Ag x=0.
v)
kerBx = kerB. x {0}.

(vi) Fora matrix Y withimY, = kerB. holds
kerY[Bx_ . = {0}.

Proof. By interchanging the roles of loop and incidence matricks, groof of
equivalence of the assertions c)—f) is totally analogoutégproof of equivalence
between (ii)—(v) in Lemma 4.11. Hence, it suffices to show (ha(ii) and (iii) are
equivalent:

First we show that (i) implies (iii): As a first observatiomte that, sincé¢_,
is a submatrix oA, (iii) is equivalent to imAx_, C imAg_x. Now seeking for
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a contradiction, assume that (iii) is not fulfilled. Then,thg preliminary consider-
ation, there exists a column vect@®y of A with a3 ¢ imAg_x.. Now, fork as
large as possible, successively construct column veetors. ;8 of Ax with the
property that

a ¢ imAg_x +spaddy,...,&} foralli e {1,... k}. (29)

Let ap,...,a; be the set of column vectors éjic which have not been chosen by
the previous procedure. Since the overall incidence mathas full row rank, the
construction ofag,. .., 8 leads to

Ag_x +sparéy,...,a.a} =R torallie {1,....j}. (30)

Now construct the spanning graghby taking the branches, ... ,a;. There holds
thatG — C is disconnected due to (29). Furthermdatesontains a branch df — L,
namely the one corresponding to the column veetorSince, furthermore, (30)
implies that the addition of any branch 6fto G — C results is a connected graph,
we have constructed a cutsetiinthat contains branches &f— L.

The next step is to show that (iii) is sufficient for (ii): Asse that the nodes are
sorted by connected componentgin- K, i.e.,

Ag_x :diaQAg,)C,l,..wAg,]Qn). (31)

Then the matrice8g_x ;i = 1,...,nare the all-node incidence matrices of the con-
nected components (except for the compomgnbnnected to the grounding node;
thenAg_k i, is an incidence matrix). Seeking for a contradiction, asstimate is
a branch inkC — £ whose incidence nodes are not connected by a pagh-riC.
Thenak has not more than two non-zero entries and one of the follpivilo cases
holds true:
(a): If eis connected to the grounding node, ttegris the multiple of a unit vec-
tor corresponding to a position not belonging to the grodnmt®mponent, whence
a ¢ AgK.
(b): If econnects two non-grounded nodes, thghas two non-zero entries, which
are located at rows corresponding to two different matriggsic; andAg_x j in
Ag_x. This again impliesy ¢ Ag_x. This is again a contradiction to (jii).
For the overall statement, it suffices to prove that (i) im@pl(i): LetC be a cutset
of G that is contained irC: Assume thae is a branch ofC that is contained in
K — L. Since there exists some pathgn- K that connects the incidence nodes of
e, the addition ok to G — C (which is a supergraph @f — K) does not connect two
different connected components. The resulting graph igthee still disconnected,
which is a contradiction t@ being a cutset of.

O
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4.4 Notes and references

(i) The representation of the Kirchhoff laws by means ofdecice and loop ma-
trices is also calleshodal analysisand mesh analysijsrespectively [DK69,
CDK87,JJH92].

(i) The partin Proposition 4.10 about incidence matriced subgraphs has also
been shown in [STOO]; the parts in Lemma 4.11 and Lemma 4.bRtah-
cidence matrices and subgraphs has also been shown in [STF@Dparts on
loop matrices is novel.

(iif) The correspondences between subgraph propertielieead algebraic proper-
ties of the corresponding incidence and loop matrices isnésting feature.
It can be seen from (20) that the kernel of a transposed inc&lenatrix can
be computed by a determination of the connected componéatgmph. As
well, we can infer from (23) and the preceding argumentati@t loop ma-
trices can be determined by a simple determination of a @eaversely, the
computation of the kernel of an incidence matrix leads todégrmination
of the loops in a (sub)graph. It is further show indB Ipal3] that a matrix
ZZA;C,g (see Lemma 4.11) has an interpretation as an incidencexnudtri
the graph which is constructed frafh— £ by merging those nodes which are
connected by a path if. The determination of its nullspace thus again leads
a graph theoretical problem.

Note that graph computations are by far preferable to lia&gbraic method
to determine nullspaces. Efficient algorithms for the afogationed problems
can be found in [Deo74]. Note that the aforementioned grhpbretical fea-
tures have been used in [Sch02, SLO1] to analyze speciaégiep of circuit

models.

5 Circuit components: sources, resistances, capacitances
inductances

We have seen in the previous section that, for a connectettield circuit with

n branches andn nodes, the Kirchhoff laws lead 9= (m— 1)+ (n—m+1)
linearly independent algebraic equations for the voltaay®s currents. Since, al-
together, voltages and currents arevariables, mathematical intuition gives rise to
the fact tham further relations are missing to completely describe theud. The
behavior of a circuit does indeed not only depend of inteneativity, the so-called
network topologybut also on the type of electrical components being locateitie
branches. These can, for instance, be sources, resistaapesitances and induc-
tances. These will either (such as in case of a source) jlredtie voltage or the
current, or they form a relation between voltage and cuméatcertain branch. In
this section we will collect these relations for the aforatiened components.
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5.1 Sources

Sources describe physical interaction of an electricaludimith the environment.
\oltage sources are elements where the voltage) : | — R is prescribed. In cur-
rent sources, the current-) : | — R is given beforehand.

Fig. 7: Symbol of a voltage source

iz(t)
D

Uz(t)

Fig. 8: Symbol of a current source

We will see in Section 6 that, the physical variahlg$-),uz(-) : | — R (and there-
fore also energy flow through sources) are determined bywbeat electrical cir-
cuit. Some further assumptions on the prescribed functigiis),iz(:) : 1 — R (such
as, e.g., smoothness) will also depend on the connectifittyecoverall circuit; this
will as well be subject of Section 6.

5.2 Resistances

We make the following ansatz for a resistance: Consider dwtior material in the
cylindric spatial domain (see Fig. 9)

Q=[00x{(&,&) : &+ & <r} cR® (32)
with length? and radius.

For & € [0, 4], we define the cross-sectional area by

Ag, = {63 x{(&,&) 1 &+ &7 <17} (33)
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Fig. 9: Model of a resistance

To deduce the relation between resistive voltage and cuin@n Maxwell’s equa-
tions, we make the following assumptions.

Assumption 5.1(The electromagnetic field inside resistances)
(a) The electromagnetic field inside the conductor matesiatationary, i.e.,

dy— dp—

(b) Q does not contain any electric charges.

(c) For all & € [0,¢], there holds that the voltage between two arbitrary poirits o
Ag, vanishes.

(d) The conductance function ®2 x Q — R? has the following properties:

(i) gis continuously differentiable.
(i) gis homogeneous. Thatis(®,&1) = g(E, &) forall E ¢ R®andé&;, & €
Q.
(iii) g is strictly incremental. That is(E; — E»)"g(E1 — E, &) > 0 for all dis-
tinct E;,E; e R3and& € Q.
(iv) gisisotropic. Thatis, (E,&) and E are linearly dependent for all E R3
and¢ € Q.

Using the definition of the voltage (10), property c) consapes that the electric
field intensity is directed according to the conductor, E€t, &) = e(t, £) - &, where
& Is the canonical unit vector irdirection, and(-,-) is some scalar-valued func-
tion. Homogeneity and isotropy, smoothness and the inanéatien property of the
conductance function then implies that

for some strictly increasing and differentiable functiap : R — R with
9x(0) = 0. Further, by using (9), we can infer from the stationarifyttee elec-
tromagnetic field that the field of electric current densgydivergence free, i.e.,
divj(-,-) = 0. Consequentlygy(e(t, §)) is spatially constant. The strict monotonic-
ity of gy then implies thag(t, &) is spatially constant, whence we can set up



30 Timo Reis

for some scalar-valued functi@only depending on time(see Fig. 12).
Consider now the straight pathbetween(0,0,0) and(¢,0,0). The normal of this
path fulfillsn(&) = e for all £ € S. As a consequence, the voltage reads

ua>=/QvT@d-Ea@»dqs>
:/e}e(t)-exds(a
N (34)
- / e(t)ds(é)
S
?
:/ e(t)dé = le(t).
0

Consider the cross-sectional ardg (compare (33)). The normal ofly fulfills
n(&) = e for all £ € Ap. Then obtain for the voltaga(t) between the ends of
the conductor and the curreift) through the conductor that

o= [ me MOt 8asE)

- [ e O )-edSE)
- J], doen)-edse)
/ Gu(e(t))dSE)

:(m’

c

\/
(o]
X
=~
—~
S~—
S~—
Il
—
N
S~—
(o]
X
7 N

)

i(t) = g(u(t)), (35)

whereg: R — R is a strictly monotonically increasing and differentiablaction
with g(0) =

Remark 5.2 (Linear resistance)Note that, in the case where the friction function

is furthermore linear (i.e., (E(t,£),&) = cq- E(t,&)), the resistance relatio(35)
becomes

i) = G -u(t), (36)

where
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Ug (t)
T

.—.P— ————@

Fig. 10: Symbol of a resistance

2,
i Cg>O

G=

is the so-calledtonductance valuef the linear resistance.
Equivalently, we can write

u(t) =R.-i(t), (37)
where p
K: T[I"Z—Cg > O

Remark 5.3 (Resistance, energy balancdhe energy balance of a general resis-
tance that is operated in the time interViy, t¢]

W = /t: u(T)i(T)dt = /t: u(t)g(u(t))dr > 0,

where the latter inequality holds, since the integrand isifige. A resistance is
therefore arenergy-dissipating elemerite., it consumes energy.
Note that, in the linear case, the energy balance simplifies t

tf
W=G- \ u?(t)dr > 0.
0

5.3 Capacitances

We make the following ansatz for a capacitance: Considenageelectromagnetic
medium in a cylindric spatial domaif? c R® as in (32) with lengtt? and radius
r (see also Fig. 9). To deduce the relation between capaesititage and current
from Maxwell's equations, we make the following assumpsion

Assumption 5.4(The electromagnetic field inside capacitances)
(@) The magnetic flux intensity inside the medium is statigrhat is,

p —
2B=0.

(b) The medium is a perfect isolator, that i$;, ) =0forall £ € Q.
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(c) Inthe lateral area
Atat = [0,0] x {(§,&) : &+ & =1’} C 0Q

of the cylindric domain?, the magnetic field intensity is directed orthogonal
to Aja. In other words, for allé € A5 and all times t, the positively oriented
normal n&) and H(t, &) are linearly dependent.

(d) There is no explicit algebraic relation between the #lecurrent density van-
ishes and the electric field intensity.

(e) Q does not contain any electric charges.

(f) For all & € [0, 4], there holds that the voltage between two arbitrary poirfts o
Ag, (comparg(33)) vanishes.

(g) The function §: R® x Q — RR? has the following properties

(i) feis continuously differentiable.
(i) fe is homogeneous. That ise(D, &) = fe(D, &) for all D € R? and
é1,6,€ Q.
(iii) The function £&(-,€) : R® — R? is invertible for some (and hence any)
EecQ.
(iv) fe is isotropic. That is, §(D,&) and D are linearly dependent for all
DeR3andé € Q.

Using the definition of the voltage (10), property ¢) consames that the electric
field intensity is directed according to the conductor, iEgt,&) = e(t, &) - e for
some scalar-valued functi@-, -). Isotropy, homogeneity and the invertibility &
then implies that the electrical displacement is as wediatgd along the conductor,
whence

D(t,&) = fo H(E(t,€),&) = au(eft, &)) -

for some differentiable and invertible functiap : R — R. Further, by using that,
by the absence of electric charges, that the field of eledisiglacement is diver-
gence free, we obtain that is even spatially constant. Gures#ly, the electric field
intensity is as well spatially constant, and we can set up

for some scalar-valued functie-) only depending on time.
Using that the magnetic field is stationary, we can, as fastasces, infer that the
electrical field is spatially constant, i.e.,

E(t,&) =e(t)-e

for some scalar-valued functiag-) only depending on time, we can use the argu-
mentation in as in (34) to see that the voltage reads

u(t) = le(t).
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Assume that the curremnt) is applied to the capacitor. The current density inside
Q is additively composed of the current density induced bydhplied current
jappl(+,-) and the current densitjinq(-,-) induced by the electric field. Since the
medium inQ is an isolator, the current density insi@e vanishes. Consequently,
for all timest and allé € Q, there holds

0= jappl(taf) + jind(taf)'

The definition of the current yields

//A T (©)iapat £)95E).

The definition of the cross-sectional arglg and the lateral surfacel;; yields
0Ap C Aja- By Maxwell’'s equations, Stokes theorem, stationarityhef tnagnetic
flux intensity and the assumption that the tangential corapbmagnetic field in-
tensity vanishes in the lateral surface, we obtain

//A () epalt £)950)
// )-fina(t,£)dS(E)

//Ao Y %D —el -curlH(t,&)dS(&)

dt//Ao Dt H)asE) - ygAVT(E)~H(t,E)dS(E)

That is, we obtain a dynamic relation
it) = §au(t)) (38)

for some functiory : R — R. Note that the quantitg(u) has the physical dimension
of electric charge, whenog(-) is calledcharge functionlt is sometimes spoken
about the chargg(u(t)) of the capacitance. Note thafu(t)) is a virtual quantity.
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Especially, there is no direct relation between the chafgeaapacitance and the
electric charge (density) as introduced in Section 3

Fig. 11: Symbol of a capacitance

Remark 5.5(Linear capacitanceNote that, in the case where the constitutive rela-
tion is furthermore linear (i.e.,{D(t, &), &) = cc-D(t, §)), the capacitance relation
(35)becomes

i(t)=C-u(t), (39)
where 5
C= o >0
lce

is the so-calledapacitance valuef the linear capacitance.

Remark 5.6 (Capacitance, energy balancé&otropy and homogeneity of &nd the
construction of the function,further implies that the electric energy density fulfills

LV (0x(€) -6, &) = fe(ax(€) -6, &) = e- &y

Hence, the function,g R — R is invertible with

O H(0) = € 75Ve (- 8) = ghVex(q),
where
Vex: R =R,
q — Ve(d- ).

In particular, this function fulfills ¥x(0) = 0 and \&x(q) > Ofor all g € R\ {0}.
The construction of the capacitance function and the astiom(8) on f, implies
that g: R — R is invertible with

qil(') = é'qgl (m) = % |m2Ve,x (m) .

As well, there holds M0) = 0 and \-(q-) > Ofor all g € R\ {0}.
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Now we consider the energy balance of a capacitance thatesabgd in the time
interval [to, t1]
tt
W= / u(n)i(r)dr
{

0
tf

= [ g au(r))- Fau(n)dr

fo

tf
_ /to Ve (au(m) - gau(m)de (40)

T=tp

Consequently, the function-\has the physical interpretation of anergy storage
function A capacitance is thereforergactive elementi.e., it stores energy.
Note that, in the linear case, the storage function simglifte

Ve(du) =3-C 1w =3-C " (CW)’=3C-P

whence the energy balance then reads

T=tp

Remark 5.7 (Capacitances and differentiation rule¥he previous assumptions im-
ply that the function g R — R is differentiable. By the chain rulg38) can be
rewritten as

i(t) = C(u(t))-u), (41)
where
Cluc) = ﬁQ(Uc)-

Monotonicity of q further implies thaf () is a pointwisely positive function.
By the differentiation rule for inverse functions, we ohtai

Clue) = g-aue) = (&Ve(aue))

5.4 Inductances

It will turn out in this part that inductances are componemlitsch store magnetic
energy. We will see that there are certain analogies to dapaes, if one replaces
electric by accordant magnetic physical quantities. Thelenaf action of an in-
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ductance can be explained by a conductor loop. We furtheertrek (simplifying)
assumption that the conductor with doma&nforms a circle which is interrupted
by an isolator of width zero (see Fig. 12). Assume that theleiradius is given by
r, where the radius is here defined to be the distance fromitie enidpoint to any
conductor midpoint. Further I&t be the conductor width.

u(t)

Fig. 12: Model of an inductance

To deduce the relation between inductive voltage and ctifirem Maxwell's equa-
tions, we make the following assumptions.

Assumption 5.8(The electromagnetic field inside capacitances)
(a) The electric displacement inside the med@rs stationary, that is,

0P —
4p=o.

(b) The medium is a perfect conductor, that i$;,€) = Ofor all £ € Q.

(c) There is no explicit algebraic relation between the &lecurrent density and
the electric field intensity.

(d) Q does not contain any electric charges.

(e) The function: R3 x Q — R? has the following properties

(i) fmis continuously differentiable.
(i) fm is homogeneous. That ism(B,&1) = fm(B,&2) for all B € R® and
$1,62€ Q.
(iii) The function fu(-,€) : R® — R3 is invertible for some (and hence any)
EeQ.
(iv) fm is isotropic. That is, f(B,&) and B are linearly dependent for all
BeR3andé € Q.

Let & = &ex+ éyey + &-6, and leths : R — R be a differentiable function with

hs(x) =0 forallx € [0,r — /2] U[r +1p/2, ),
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and
hs(x) > 0 forallx e (r —In/2,r +11/2).

We make the following ansatz for the magnetic flux intensity:

H(t,&) = ho(& +&2)-hit) -ex,
whereh(-) is a scalar-valued function defined on a temporal domain iiclwvthe
process evolves (see Fig. 12).

Using the definition of the current (8), Maxwell's equatippsoperty (c) and the
stationarity of the electric field consequences

. _ T i d
') //{owIh/z,r+lh/2]x[o,lde (&) 10,8)d98)
- // VT(£)-curlH(t, £)dS(E)
{0} x[r—In/2,r+1n/2] x[0,l4]

- // e - 2bL(E2 1 £2) - & -(t)AS(E)
{O}X[I’7|h/2,r+|h/2]><[0,|d]

=2 bi(&7 + E2)dS(€) -h(t).
//{O}X[r|h/2,r+|h/2]x[0’|d] (Ey &;)dS(€)-h(t)

=iCm

Assume that the voltage(-) is applied to the inductor. The electric field intensity
inside the conductor is additively composed of the fieldnsiy induced by the
applied voltageEappi(+,-) and the electric field intensitfing(-,-) induced by the
magnetic field. Since the wire is a perfect conductor, thetetefield intensity van-
ishes inside the wire. Consequently, for all timesd allé € R2 with

0< & <lgand(r—In)? <&+ &7 < (r+1n)?

there holds
0= Eappl(ta 5) + Eind(ta E)

Let A C R3 be a circular area that is surrounded by the midline of the yiie.,
A= {(Exfyasz) eRrR®: &= |d/2 andsyz-i-fzz < r2}_

Isotropy, homogeneity and the invertibility &f, then implies that the magnetic flux
is as well directed orthogonal #, i.e.,

B(t,€) = '(H(t,€),€)
= x(hs(E2+ EZ) (1)) - &
2 2
= U (hS(Ey ) 'i(t)> &

Cm
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for some differentiable functiogyy : R — R.
By Maxwell’'s equations, Stokes theorem, the definition & Woltage and a trans-
formation to polar coordinates, we obtain

u(t) = féA”T(‘” Eappi(t, £)ds(€)
:—515 VT (€)- Eng(t,£)dSE)
JA

:_//nT(E)-curlEmd(t,E)dS(f)
AN ———

Dl (%
__ 9 g
gl By sy
ﬂlf%%nrfzz)-i(t))-ex
. d hs(fyz‘f‘fzz) :
—a//wa<7Cm i) ) dsie)

r+lnh/2 hS 2 )
=4 27'[/r YUk <_(y ) ~|(t)) dy.

~In/2 Cm

That is, we obtain a dynamic relation

u(t) = u(c) (42)

for some functiony : R — R, which is calledmagnetic flux function

Remark 5.9 (Linear inductance)Note that, in the case where the constitutive rela-
tion is furthermore linear (i.e.,/f(B(t,&),&) =ci - H(t, £)), the inductance relation
(35)becomes _

u(t) = L-i(t), (43)

where
27TCi r+ln/2

Cm r—lp/2

L s-hs(s?)dE >0

is the so-callednductance valuef the linear inductance.
Remark 5.10(Inductance, energy balancdsotropy and homogeneity of, fand

the construction of the functiag, further implies that the magnetic energy density
fulfills
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ug(t)

Fig. 13: Symbol of an inductance

35Vm (U (hs(&7 + EDN(L)) - &, €)
=fm (Ux (hs(&] + &) -h(1)) -&, &) = H(t, &)
=hy(&7+&2)-h(t) e
Hence, the functiogy, : R — R is invertible with

W t(h) = g5 Ve ((h) 80 = ggVmx(h),

where
Vmx: R =R,
h — Vm(h-e).
In particular, this function fulfills ¥,x(0) = 0and \lnx(h) > 0for allh € R\ {0}. The
latter together with the continuous differentiability of(f, &) and ;1(-, &) implies
that the derivatives of both the functigig * and g are positive and, furthermore,
Wy (0) = 0. Thus, the functio : R — R is differentiable with

r+lp/2 2 2
z,u’(i)_2n/+h yw;<M-i) deo.
r—Ip/2 Cm Cm

Consequentlyy possesses a continuously differentiable and strictly rtamoally
increasing inverse functiog—* : R — R with signg—1(p) = sign(p) for all p € R.
Now consider the function

VL: R—)R,

Y, 1
Yr— . Y (p)dp.

The construction of ¥implies that V. (0) = 0and \ (¢, ) > Ofor all ¢y, € R\ {0}
and, furthermore,

Y (Wir) = g Ve(Ye) forall g €R.

Now we consider the energy balance of an inductance thatésatgd in the time
interval [to, t1]
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= [ Sui)hvawic)dr (44)

I
£3
b
—
<
=
—~
~
S~—
~—
o
—~

T=tp
Consequently, the function \has the physical interpretation of anergy storage
function An inductance is therefore again a reactive element.
In the linear case, the storage function simplifies to
V() =3- L7 g2 = 3- L7 (L()* = 3-L-%,

whence the energy balance then reads

W, =

T
=
™

Y
~
S~—

Remark 5.11(Inductances and differentiation rule§)he previous assumptions im-
ply that the functiony : R — R is differentiable. By the chain rul€42) can be
rewritten as _

u(t) = L(i(t)) -i(t), (45)
where

Lug) = g-iy).

Monotonicity ofy further implies that the functios(-) is pointwisely positive.
By the differentiation rule for inverse functions, we ohtai

-1

Liic) = gbwiic) = (&Ve(wic))

5.5 Some notes on diodes

Resistances, capacitances, inductances are typical cangsoof analogue electri-
cal circuits. The fundamental role in electronic enginegris however taken by
semiconductor devices, such as diodes and transistoralge®otes and Refer-
ences). A fine modelling of such components has to be done tialpdifferential
equations (see e.g. [MRS90]).
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In contrast to the previous sections, we are not going to iibdse components on
the basis of the fundamental laws of the electromagnetid.fiake are rather pre-
senting a less accurate but often reliable ansatz to theigeso of their behavior
by equivalent RCL circuits. As a showcase, we are consigeatindes:

An ideal diode is a component that allows the current to floarie specified direc-
tion while blocking currents with opposite sign. A matheitatlax formulation of

up(t)
| q ip(t)
Fig. 14: Symbol of a diode

this property is
ip(t) =gp(up(t)) - up(t),

where gp(u) _ {oo, ifu>0

0, ifu<o.

A mathematically more precise description is given the gigetion of the behavior
(ip(t),up(t)) € {0} x Reg U Rxp x {0}.

Since the product of voltage and current of an ideal diodeagdwanishes, this
component behaves energetically neutral.

It is clear that such a behavior is not technically realizal can be nevertheless
be approximated by a component consisting of a semicondapgetal with two
regions, each with a differedioping Such a configuration is called ap-junction
[Sho47].

The most simple ansatz for the modelling of a non-ideal diedey replacing it by
a resistance with highly non-symmetric conductance behngsich as, for instance,
theShockley diode equatigB8ho47]

ID(t)=|S'<e ' —1),

whereis > 0 andu, > 0 are material dependent quantities. Note that the behavior
of an ideal diode is the more approached, the biggeg.is

A refinement of this model also includes capacitive effe€tis can be done by
addiding some (small) capacitance in parallel to the rascst model of the diode
[Too06].
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5.6 Notes and references

() In[KK93,DK69,CDK87,JJH92, Tis], component relatiohave also been de-
rived. These however go with an a priori definition of capaeitharge and
magnetic flux as physical quantities. In contrast to this,approach is based
on Maxwell's equations with additional assumptions.

(i) Note that, apart from sources, resistances and capaads, there are vari-
ous further components which occur in electrical circulsch components
could, for instance, beontrolled sourcedSTO00] (i.e., sources with volt-
age or current explicitly depending on some other physicaintjty), semi-
conductors [BT07, MRS90] (such as diodes and transistong)n-devices
[Riall, RT11,RT13] or transmission lines [Rei06].

6 Circuit models and differential-algebraic equations

6.1 Circuit equations in compact form

Having collected all relevant equations describing antetst circuit, we are now
ready to set up and analyze the overall model. Let a connetzettical circuit with
nbranches be given; let the vectéft, u(t) € R" be defined as in (13) and (15), i.e.,
their components are containing voltages and current aithgective branches. We
further assume that the branches are ordered by the typergfament, i.e.,

ig(t) Ug (t)
ic(t) uc(t)
I(t) = IL(t) ) U(t) = uL(t) ’ (46)
ip(t) Uy (t)
iI(t) UI(t)
where
IK(t)a UK(t) S RnRa IC(t)v UC(t) € Rncv IL(t)a UL(t) S RnLa
irV(t),Uq/(t) ERH'V7 iz(t),UI(t) cR".

The component relations then read, in compact form,
ig(t) =9(ug (1), ic(t)=galuct), uclt)=guwi-1),

for
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g: R — R"&, q: R"c — R"c,
Uy 01(u1) Uy Qa(ug)
H . ? . H . ?
Ung gnK(UnR) Un. Ome (Un,)
Y R™. — Rz,
i1 Ya(ug)
N e : ;
inL Lpnc(inc)

where the scalar function, g;, ¢ : R — R are respectively representing the behav-
ior of thei-th resistance, capacitance and inductance. The assurapfiGection 5
imply thatg(0) = 0, and for allu € R™c \ {0}, there holds

u'g(u) > 0. (47)

Further, sincey, *(qc) = %CKVCk(qC")’ U (W) = %LKVLk(Lka), the functions
g:R"%c — R, ¢ : R"2 — R"2 posses inverses fulfilling

q Hde) = ggrVe(@e), W) = g Ve(we), (48a)
where
nc ne
Ve@ac) = Y Ve(de),  VeWr) = Ver(Wek)- (48b)
k=1 k=1

In particular, there holdg-(0) = 0,V,(0) = 0 and
Ve(qe) >0, Ve(g,)>0 forallgr € R"C, g, € R":.

Using the chain rule, the component relations of the reactiements read (see
Remark 5.7 and Remark 5.11)

ic(t) = Cluc(t) - e(t),  uc(t)=L(>iL)-ic). (492)

where
Cluc) = giza(ue),  L(ic) =g w(ic). (49b)

In particular, monotonicity of the scalar charge and fluxdlioms implies that the
ranges of the functiong : R"c — R"c:"c £ : R"z — R"2:"c are contained in the
set of diagonal and positive definite matrices.

The incidence and loop matrices can, as well, be partitiaeedrding to the subdi-
vision ofi(t) andu(t) in (46), i.e.,

A=[Ag Ac AL Ay Ar],  B=[Bg Br B, By Brl.
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Kirchhoff’'s laws can now be represented in two alternativeysy namely the
incidence-based formulation (see (24) and (26))

A'R,i'R,(t) +ACiC(t) +ALiL(t) —|—Aqﬂq/(t) +A1ij_'(t) =0

ug (1) = AR @), uct) =Alo(t), uct)=Aler),  ©0)
us(t) =ALet),  up(t)=ApLelt),  ur(t)=A7e(t)
or the loop-based formulation (see (25) and (27))

BRUK(t) + BCuC(t) + BLUL(t) + BIVUrV(t) + BIUI(t) =0

ig®)=BRi(t), ic®)=8BLt), i.t)=BLir), 6
i () =BLI(t), ipt)=BLit), izt)=Blit).

Having in mind that the functions,,(-) andiz(-) are prescribed, the overall circuit
is described by the resistance lay\(t) = g(ug (1)), the differential equations (49a)
for the reactive elements, and the Kirchhoff laws eithehiform (50) or (51). This
altogether leads to a coupled system of equations being ref glgebraic nature
(such as the Kirchhoff laws and the component relationsdeistances) together
with a set of differential equations (such as the componelations for reactive
elements). This type of systems is, in general, referred tifeerential-algebraic
equations A more rigorous definition and some general facts on typeesented
in Section 6.2. Since many of the above formulated equatmesxplicit in one
variable, several relations can be inserted into one andthebtain a system of
smaller size. In the following we discuss two possibilities

a) Modified nodal analysis (MNA)
We are now using the component relations together with thiglémce-based
formulation of the Kirchhoff laws: Based on the KCL, we elimate the resistive
and capacitive currents and voltages. Then we obtain

AcC(ALO))AL G O(t) +Ag 9(AR (1) +AciL(t) + Agig(t) +Ariz(t) = 0.

Pluggin the KVL for the inductive voltages into the componeation for in-
ductances, we are led to

—AL(t) + L(i(t) Fict)=0.

Together with the KVL for the voltage sources, this givessbecalledmodified
nodal analysis
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AcCALO()AL G @) +Ag 9(AR @(t)) +ALi£(t) + Agig(t) + Agiz(t) =0,
—ALQ(t) + L(i (1) §ict) =0,
—AL@(t) +uy(t) =0.
(52)
The unknown variables of this system are the functions faenmotentials, in-
ductive currents and currents of voltage sources. The réntaphysical vari-
ables (such as the voltages and the resistive and capauitirents) can be alge-
braically reconstructed from the solutions of the abovéesys

b) Modified loop analysis (MLA)
Additionally assuming that the characteristic functigRof all resistances are
strictly monotonic and surjective, the conductance fumtfossesses some con-
tinuous and strictly monotonic inverse functionR™& — R"&., This function as
well fulfills r(0) = 0 and

ig -r(ig)>0 forallig € R"%\ {0}.

Now using the component relations together with the loogedaformulation
of the Kirchhoff laws, we obtain from the KVL, the componeetations for
resistances and inductances, and the KCL for resistive mahactive currents
that

BLL(BLI(1)BLG1(t)+Bgr(BR (1)) +Beuc(t) + Brug(t) + By (t) =0.
Moreover, the KCL together with the component relation fapacitances reads
—BLI(t) + C(uc(t)) - Suc(t) =0.

Using these two relations together with the KVL for the vgitasources, we are
led to themodified loop analysis

BLL(BLI(1)BL §!(t)+Bgr(By (1)) +BeUc(t) +Bruz(t) + Byuy(t) =0,
—Br1(t) + C(uc(t)) §uc(t) =0,
—BJ1(t) +iz(t) =0.

(53)

The unknown variables of this system are the functions fop lcurrents, capac-
itive voltages and voltages of current sources.

6.2 Differential-algebraic equations, general facts

Modified nodal analysis and modified loop analysis are systehequations with
a vector-valued function in one indeterminate as unknowmé&of these equations
contain the derivative of certain components of the to-digesl function, whereas
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other equations are of purely algebraic nature. Such sygsteencalledlifferential-
algebraic equationsA rigorous definition and some basics of this type are pitesen
in the following.

Definition 6.1 (Differential-algebraic equation, solutian)et U,V c R" be open,
let] = [to,ts) be an interval for some tc (to,%]. LetF :U xV x | — R¥ be a func-
tion. Then an equation of the form

F(x(t),x(t),t)=0 (54)

is calleddifferential-algebraic equation (DAEA function X:) : [tp, w) — V is said

to be asolutionof the DAE(54), if it is differentiable withx(t) for all t € [ty, w), and

(54)is pointwisely fulfilled for all te [ty, w).

A vector ¥ € V is called consistent initial valugif (54) has a solution with

X(to) = Xo.

Remark 6.2. (i) If 7:U xV x| — RXis of the formF (x,x,t) = x— f(xt), then
(54) reduces to an ordinary differential equation (ODE). In tkese, the as-
sumption of continuity of fV x | gives rise to the consistency of any initial
value. If, moreover, f is locally Lipschitz continuous wiéispect to x (that is,
for all (x,t) € V x I, there exists some neighborhatddand some > 0, such
that || f (X1, T) — f(%2, T)|| < ||x0 — X|| for all (x1,T), (X2, T) € U), then any ini-
tial condition determines the local solution uniquely [8&)57.3]. Local Lip-
schitz continuiuty is, for instance, fulfilled, if f is camtiously differentiable.

(i) If F(-,-,-) is differentiable, anddd—).(}‘(xo,xo,to) is an invertible matrix at some
(X0,X%0,t0) € U x V x |, then the implicit function theorem [Tao09, Sec. 17.8]
implies that the differential-algebraic equati¢s4)is locally equivalent to an
ODE.

Since theory of ODEs is well-understood, it is - at least fratheoretical point of
view - desirable to lead back a differential-algebraic eigueto an ODE in a certain
way. This is done in what follows.

Definition 6.3 (Derivative array, differentiation index)Let U,V C R" be open, let
| = [to,tf) be an interval for somete (tp,]. Letl€ N, F:U xV x| — RX, and
let a differential-algebraic equatio(b4) be given. Then thg-th derivative array of
(54)is given by the firsut formal derivatives 0{54) with respect to time, that is

Fu# D0 X0 0),... x0.x0.0 = | & —0.  (55)
S F(X(t),X(t),1)

The differential-algebraic equatiaf®4) is said to havalifferentiation indexu € N,

if for all (x,t) € V x I, there exists some uniques V such that there exist some
%,..., X+ € U such thatF, (xH+D x| ... x x(t),t) = 0. In this case, there ex-
ists some function fV x | — V with (x,t) — x for t, x andx with the above prop-
erties. The ODE
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X(t) = f(x(t),t) (56)

is said to baenherent ordinary differential equation of (54)

Remark 6.4.

(i) By the chain rule, there holds

(ii)

0 =3 F(x(t),x(t),t)

F(X(1),x(t),t) - X(t) + %{}'(X(t),x(t),t) X(t) + %]—"(X(t),x(t),t).

A further successive application of the chain and produl teiads to deriva-
tive array of higher order.

Since the inherent ODE is obtained by differentiatiofithe differential-
algebraic equation, any solution ¢64) solveg56) as well.

Yo Slo

(i) The inherent ODE is obtained by picking equations of {irth derivative

array which are explicit for the components ®f In particular, equations
in the 7, (xH1) (t), xK(t),...,X(t),x(t),t) = 0 which contain higher deriva-
tives of x can be abolished. For instance, a so-cadlechi-explicit differential-
algebraic equatign.e., a DAE of the form

C(xa(t) = fr(xa(t), %2(1),t)
O_< fa(xq(t), %2(t),t) ) (57)

may be transformed to its inherent ODE by only differentigtihe equation
fo(xa(t),x2(t),t) = 0. This yields

0=g2-fa(xa(t)Xa(t), )X (t) + 3% f2(xa (1), Xa (1), )¥a (1)

: (58)

=2 F20xa (1), %a(t), 1) FL(xa (1) X (1), 1) + 5% Fa(Xa (1), X2 (1), )Xo (t).
If ﬁixz fo(x1(t),x2(t),t) is invertible, then the system is of differentiation index
U =1, and the inherent ODE reads

(Xl(t)) B ff(l (t) 2(t)t)

%o(t)) ~\ - (& Rta) 1)) & Bat) )00l X ().t )
(59)

In this case,(x1(-),%2(:)) solves the differential-algebraic equati@s7), if,

and only if, it solves the inherent OOB9) and the initial valuexi o, X20) ful-

fills thealgebraic constramltg(xlo, X20,t0) = 0.

In case of smgula fz(xl( ),X2(t),t), some further differentiations are nec-

essary to obtain the inherent ODE. A semi-explicit form ntagntbe ob-

tained by applying a state space transformatiqh) = T(x(t),t) for some

differentiable mapping TV x| — V with the property that T-,t) : V xV

is bijective for all te I, and, additionally, applying some suitable mapping

W : R¥x | x | — R¥ to the differential-algebraic equation that consists of

x1(t) — f1(xa(t),%2(t),t) and the differentiated algebraic constraint. The alge-
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braic constraint that is obtained in this way is referred toradden algebraic
constraint This procedure is repeated until no hidden algebraic caist is
obtained anymore. In this case, the solution set of therdiffeal-algebraic
equation(57) equals to the solution set of its inherent ODE with the addi-
tional property that the initial value fulfills all algebraiand hidden algebraic
constraints.

The remaining part of this subsection is devoted to a diffeaéalgebraic equation
of special structure comprising both MNA and MLA, namely

0=Ea(ETx(t))ETx1(t) +Ap(ATxy(t))+ Baxa(t) + Baxa(t) + fi(t),
0= B(x2(t))%(t) —BJx(t), (60)
0= —B3x(t) + f3(t),

with the following properties:

Assumption 6.5(Matrices and functions in the DAE (60))

Given are matrices E R™™ A c RM™ B, ¢ RN, By ¢ R™M and continu-
ously differentiable functiong : R™ — R™M™ B :R™ — R"™2™ andp : R™ —
R™ with

(a) ranl{E ) A7 827 B3] =Ny;

(b) rankB3 = ng;

(c) a(z1) >0,B(z) >0forallzy e R™, z € R™;

(d) p'(2)+ (p")T(2) > Oforall ze R,

Next we analyze the differentiation index of differenta@@iebraic equations of type
(60).

Theorem 6.6. Let a differential-algebraic equatioi60) be given and assume
that the matrices E= R":™M A c R B, ¢ RN By € R™MN and functions
a:R™M - RMM o:R™ - RM™M™ B:R"2 - RN have the properties as in
Assumptions 6.5. Then, for the differentiation ingesf (60), there holds

a) u =0, if, and only if, B = 0 andrankE = n;.
b) u=1,if, and only if, it is not zero and

ranKE, A, Bs] =n; andkefET, B3] = kerE" x {0}. (61)
c) u=2,if,and only if,u ¢ {0,1}.
We need the following auxiliary results for the proof of tHeoae statement:
Lemma 6.7. Let Ac R™™ B R™"2, Cc R™™with C+CT > 0. Then for

ACAT B
wo[rAE

holds
kerM = ker{A, B]" x kerB. (62)
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In particular, M is invertible, if, and only ifkerAnkerB" = {0} andkerB = {0}.

Proof. The inclusion " in (62) is trivial. To show that the converse subset relatio
holds true as well, assume thet kerM and partition

()
X2
according to the block structure bf. Then we obtain
0=x"Mx= % x] A(C+CTATx; =0,
whence, by

C+C" >0,
there holdsATx; = 0. The equationMx = 0 then implies thatBx, = 0 and
BTX1 =0. O
Note that, by setting, = 0 in Lemma 6.7, we obtain k&A™ = kerAT.

Lemma 6.8. Let matrices Ec R™™ A c R™ B, ¢ R By ¢ R™:M and
functionsa : R™ — R™MM o RM™ — RMM B :R"™ — R with the properties
as in Assumptions 6.5 be given. Further, let
WeR™P, W eRWP,
W, e RPPL W) e RPPL (63a)
W e RSPz W, € RNs:P2

be matrices with full column rank and

imW =kerE', imW =imE,
imW, =kerfA, B3]TW,  imWy =imWT[A, Bs], (63b)
imWs =kerW T Bs, imW, =imBIW.

Then the following holds true:

a) The matrice$W, W], [Wy, Wi ] and[Wa, Wh] are invertible.
b) kerETW = {0};

c) kerWTBg = {0} if, and only if ker[ET , B3] = kerET x {0};
d) WW has full column rank aninWW = ker[E, A, By]";

e) keW[ZTBsW, = {0};

f) kerfA, BaWo] "Wy = {0};

g) kerBJww = {0};

h) kerWTBsWs = {0}.

Proof. a) The statement fdiw, W] follows by the fact that botkV andV have
full column rank together with
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imW = kerE™ = (imE)* = (imw)*.

The invertibility of the matrice$Wy , Wi ] and [Ws, W5] follows by the same
argumentation.

b) Letx € kerETW. Then, by definition ofV andWV, there hold$/Vx € kerET and
Wx € imW =imE = (kerET)*, and thusiWx = 0. SinceW has full column
rank, there holdg = 0.

c) Assume that k" Bz = {0}, and letx; € R™, x3 € R™ with

[ET By (2) )

A multiplication of this equation from the left witd/T leads towTBsxs = 0,
and thusz = 0.
To prove the converse direction, assume WABsxz = 0. Then there holds

Baxs € ketW' = (imW)! = (kerE")* =imE.
Hence, there exists some € R™ such thaEx; = BsXs, i.€.,
_Xl .
( Y ) € ker [E Bg| = kerE x {0},
whencexs = 0.

d) WW has full column rank as a product of matrices with full colurank.
The inclusion inWW C ker[E, A, B3]T follows from

ET (ETW)Wy

AT lww = AT =0.

ot " (sl
To prove iMWW D kerlE, A, Bg]", assume thak € kerE, A, B3]". Since,
in particularx € kerET, there exists somge RP with x =Wy, and thus

S
By definition of\W,, there exists somge RP2 with y = Wbz, and thus
X=WWz e imWW.
e) Assume that € RP2 with W] WTB3gW,z = 0. Then

WTBsWhz e kerW] = (imwy)*+
= (imWT[A, B3])* = kerlA, B3]"W C kerBIW = (imWTB3)*,
3

whence
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WTB3W,z € (imWTB3)t NimWT Bz = {0}.
This implieswT™BsW»z = 0, and thus
Wz € ketWT Bz = imW, = (imWs)*.

Therefore, we havi/,z € imWoNimW, = {0}. The property o#V, having full
column rank then impliez= 0.

f) Letze ker(ATW)nkerBIW. Since, by definition ofV, there hold§V ze kerE,
we have

ET
Wze ker [AT] ={0},
BT
3
whencez = 0.
Letz e kerBIWW. ThenWW € kerB} and, by assertion d), there holds

~

g
WWze kerE, A, By]".

By the assumption thdE, A, By, B3] has full row rank, we now obtain that
WWz = 0. By the property of¥W having full column rank (see d)), we may
infer thatz= 0.

Assume thatkerWT BaWa. ThenWsz € kerWWT Bz and, by definition of\b, there
holdsWsz € ketWT Bs. Thus we have

h

~

Wz € kel W, W]TBs,
and, by the invertibility of W, W] (see a)), we can conclude that
Wsz € kerBs = {0}.

The property o, having full column rank then gives rise to= 0.

Now we prove Theorem 6.6.

Proof of Theorem 6.6a) First assume thd& has full row rank andz = 0. Then,
by using Lemma 6.7, we see that the maEx(E"x;)E" is be invertible for all
x1 € R™. Since, furthermore, the last equation in (60) is triviak tifferential-
algebraic equation (60) is already equivalent to the orgiddferential equation

Xi(t) = —(Ea(ETx(t)ET) ™ (Ap(ATxa(t)) + Bxa(t) + Baxa(t) + fu(t)),
%o(t) = B(x(t) "BIxa(b).

Consequently, the differentiation index of (60) is zerdhistcase.

To prove the converse statement, assume thd ke {0} or n3 > 0 holds true.

The first statement implies that no derivatives of the coneptsofx; (t) occur,
which are in the kernel oET, whereas the latter assumption consequences that

(64)
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(60) does not contain any derivativesx@f(which is now a vector with at least
one component). Hence, some differentiations of the egpsith (60) are needed
to obtain an ordinary differential equation, and the défaration index of (60)
is consequently larger than zero.

b) Here (and in part c)) we will make use of the (trivial) fabat, for invert-
ible matricesW andT of suitable size, the differentiation indices of the DAEs
F(X(t),x(t),t) =0andWF(Tzt),TZt),t) = 0 coincide.

LetW € R™:P, W € R™-P be matrices with full column rank and properties as
in (63). Using Lemma 6.8, we see that there exists some umigcemposition

x1(t) =Wxg1(t) + Wxo(t).

By a multiplication of the first equation in (60) respectiwélom the left with
WT andWT, we can make use of the initial statement to see that the inflex
(60) coincides with the index of the differential-algeleraguation

0=WTEa(E"WT xq2(t)) ET Wxqa(t) + WTAp(ATW xq1(t) + AT Wixqa(t))

+WTBXo(t) + WTBaxs(t) + WT (1), (65a)
0= B(x2(t))%(t) —BIWx1(t) — By Wxaa(t), (65b)
0= WTAp(ATW xq1(t) + ATWxgo(t))
+WTBoxo(t) + WTBaxa(t) +WT f1(t), (65¢)
0= —BIWxg1(t) + BIWxgo(t) + f3(t).
(65d)

Now we show that, under the assumptions that the index of ifferehtial-
algebraic equation (65) is honzero and the rank condition®1) hold true,
the index of the DAE (65) equals to one:

Using Lemma 6.7, we see that the equations (65a) and (65H)eanlved for
Xlz(t) andx'z(t), ie.,

x12(t) = —(WTEa(ETWTxq2(t)) ETW) W (Ap(ATW 31 (t) + AT Wxya(t))
+Boxa(t) 4 Baxa(t) + fa(t)), (66a)
Xa(t) = B(%a(t)) 1B (Wxaa(t) + Wxaa(t)). (66b)

In the following we will, for convenience and better ovemjaise the following
abbreviations

PATWxa(t) + ATWxaa(t))  ~  p,
P/ (ATWx1(t) + ATWxqo(t))  ~ o/,
a(E"TWTxpa(t)) ~ a,

2(t))

B(xa(t

¢
®
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The first order derivative arragy(x(@ (t),x(t),x(t),t) of the DAE (60) further
contains the time derivatives of (65c) and (65d), which @anpmpact form and
my making further use of (66), be written as

WTAQ'ATW WT B3] (%q1(t)
-BIwW 0 x3(t)

=M
_ (WTAR'ATWigo(t) +WT Boxo(t) +WT fa(t)
B BIWxaa(t) + f3(t)

WTA'ATWWTEQET W) IWT (Ap + Boxa(t) + Baxa(t) + fa(t)),

a ( BIWOWTEGETW) IWT (Ap + Baxa(t) + Baxa(t) + fa(t)) + fa(t) )
_ (WT BzBleg (WX]_]_('[) + WXlz(t)) + wt fz(t))
0 .

(67)
Since, by assumption, there holds (61), we obtain from Le®a) and d) that

kerW'B3 = {0} and kefA, Bs]"W = {0}.

Then, by making further use @f + p’T > 0, we may infer from Lemma 6.7 that
M is invertible. As a consequenog;(t) andxs(t) can be expressed by suitable
functions depending oryy(t), x2(t) andt. This implies that the index of the
differential-algebraic equation equals to one.

Now we show that the conditions (61) are also necessary #intiex of the
differential-algebraic equation (60) not exceeding one:

Consider the first order derivative arr&y (x(? (t),x(t),x(t),t) of the DAE (60).
Aiming to construct an ordinary differential equation (567

(M(U)
X(t) = [ x2(t)
xa(t)

from F1(x?) (t),x(t),x(t),t), it can be seen that the derivatives of the equations
(66a) and (66b) cannot be used to form the inherent ODE (ttieatige of these
equations explicitly contain the second derivative®eft) andx;(t)). As a con-
sequence, the inherent ODE is formed by the equations (@6)&a). Aiming to
seek for a contradiction, assume that one of the conditio{&1) is violated:

In case of rankE, A, B3] < nz, Lemma 6.8 d) implies that

ker E, Bs]"W # {0}.

Now consider matricedh, W, with full column rank and properties as in (63).
By Lemma 6.8 a), there exists a unique decomposition

X11(t) = Wix111(t) + Wixgia(t).
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Then the right hand side of equation (67) then reads

WT A0’ ATWIW, OWT Bg} >:<111£t§
BT X112(t) | .
BsWW 0 0 %a(t)
Consequently, it is not possible to use the first order dévivaarray to ex-
pressxiio(t) as a function of(t). This is a contradiction to the index of the
differential-algebraic equation (60) being at most one.
In case of kKeET , B3] # kerET x {0}, there there holds, by Lemma 6.8 c), that
kernWTBg) # {0}. Consider matricedh, W, with full column rank and proper-
ties as in (63). By Lemma 6.8 a), there exists a unique decsitigpo

X3(t) = \N2X31(t) + W2X32(t).

Then the right hand side of the equation (67) reads

T X31(t)
BsW 0 X32(t)

Consequently, it is not possible to use the first order dévizarray to express
x32(t) as a function ok(t). This is a contradiction to the index of the differential-
algebraic equation (60) being at most one.

¢) To complete the proof, we have to show that the inherent €érbe constructed
from the second order derivative arr&y(x® (t),x (t),x(t),x(t),t) of the DAE
(60). With the matrice®V, W, Wi, Wi, Wo, W5 and corresponding decomposi-
tions, a multiplication of (67) from the left with

WTAp/ATW WT BsWs 0:| (Xll(t)>
0 .

A%
0 WJ
leads to
WIWT A’ ATWW WIWTB3WS] (Xa12(t)
- W] BIWW, 0 Xa2(t)

=M1

~( WIWTA'ATWWTEGET W)~ WT (Ap + Boxo(t) + Baxa(t) + fi(t))
—\WIBIWWTEQE™W) IWT (Ap + Boxa(t) + Baxa(t) + fa(t)) + W] f5(t)
B (WlT WTBB 1B (Wxqa(t) + Wxaa(t)) + WIWT fz(t))
0 :

(68)
By Lemma 6.8 e) and f), we have

kerW]WTBsW, = {0} and kefA, BsW,|" = {0}.
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Lemma 6.7 then implies tha¥l; is invertible and, consequently, the vectors
x112(t) andxXsa(t) are expressible by suitable functions@fi(t), x112(t), Xo(t),
x31(t), X32(t) andt. It remains to be shown that the second order derivativg arra
might also be used to expresg1(t) andxas(t) as a function okyq1(t), X112(t),
X2(t), X31(t), X32(t) andt: A multiplication of (67) from the left with

ARN)
0 W,

yields, by making use oM WTA = 0, that

0 =W/ WT BB 1B] (WWixq11(t) + WWixq12(t) + Wxao(t)) +WT WT f5(t),
(69a)
0=W,BWWTEaE™W) W'
- (AD +B2Xa(t) + BaWaxaa (1) + BsWaxaa(t) + fa(t)) +W3 fa(t).
(69b)

The second order derivative array of (60) contains the dgvie of these equa-
tions. Differentiating (69a) with respect to time, we ohbtai
W WT BB 1B WiWsq 11(t)
=~ W WTBoB B} (WWikuia(t) + Wia(t)) (70)
—WWTB & (B~ H)BY (WWixa1a(t) + Wxaa(t)) —WI WT f5(t).

Using Lemma 6.8 g) and Lemma 6.7, we see that the matrix
WIWTB,B 1BJWW € RP:PL

is invertible. By using the quotient and chain rule, it canriferred that% (B
is expressible by a suitable function dependingsiih) andx,(t). Consequently,
the derivative ofx;11(t) can be expressed as a function dependinguag(t),
X12(t), X2(t), their derivatives antd Since, on the other hangh2(t), X12(t) and
X2(t) already have representations as functions depending Qft), xi12(t),
x12(t), X2(t), X31(t), X32(t) andt, this holds true foxj12(t) as well.
Differentiating (69b) with respect tiy we obtain

W BIW(WTEGETW) YW T BaWbxas
W BIWWTEaET W) W'
- (A0’ ANWX11(t) + Ap ANWIX11(t) + A0 AWXaa(t)
+Bo¥o(t) + BaWasai(t) + fu(t))
AWTBIW S VT EGET W) T
- (Ap + BoXa(t) + BaWoxaa(t) + BaWaxaa(t) + fu(t)) + W5 fa(t).
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Lemma 6.8 h) and Lemma 6.7 give rise to the invertibility af thatrix
WS BIWOWTEaET W) IWTBW, € RP2P2,

Then we may the argumentation as for the derivative of eqng69a) to see
thatxzy is expressible by a suitable function dependingn(t), Xi12(t), X12(t),
X2(t), Xa1(t), xa2(t) andt.

This completes the proof.

Remark 6.9 (Differentiation index of differential-algebraic equattis)

(i) The algebraic constraints of60) are formed by(69). Note that(69a)is trivial
(i.e., it is an empty set of equations)f#nkE = n;. Accordingly, the hidden
constraint(69a)is trivial in the case where4= 0.

(i) The hidden algebraic constraints ¢60)are formed by(69). Note that(69a)is
trivial, if ranKE,A,Bs] = n;, whereas, in the case where
kefET, B3] = kerET x {0}, the hidden constrain69a)becomes trivial.

(iif) From the computations in the proof of Theorem 6.6, we that derivatives of
the “right hand side” f(-), f3(-) enter the solution of the differential-algebraic
equation. The order of these derivatives equalg to1.

We close the analysis of differential-algebraic equatifitgpe (60) by formulating
the following result on consistency of initial values.

Theorem 6.10. Let a differential-algebraic equatio(60) be given and assume
that the matrices = R™™, A c RM™ B, ¢ R, By ¢ R™" and functions
a:R™ - RMM o:RM™ 5 RM™M™ B:R™2 - R™2M have the properties as in
Assumptions 6.5. Let WY, Wi, W1, Wb and W, be matrices with full column rank
and properties as ifi63). Let f; : [tp,0) — R™ be continuous such that

WTf: [tg,00) — RP
is continuously differentiable and
WIWT £ : [tg, 00) — RP2

is twice continuously differentiable. Further, assumet tha [tg,) — R™ is con-
tinuously differentiable such that

W, f : [tg,00) — RP2

is twice continuously differentiable. Then the initial wel

X1 (to) X10
X2(to) | = | %20 (71)
x3(to) X30

is consistent if, and only if,
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0=WT (Ap(ATx10) + BaXo0+ Baxao+ f1(to)), (72a)
0= —B}x10+ f3(to), (72b)
0 =W/ WTB,B(x20) "B X10+W W f1(to) (72c)

0=WBIWWTEa(ETx;0)ET W) IWT
- (Ap(ATx10) + Boxoo + Baxgo + f1(to) ) +W f3(to). (72d)
Proof. First assume that a solution of (60) evolves in the time u&Hty, w). The
necessity of the consistency conditions (72) follows byféoe that, by (65c¢), (65¢),

(69a), (69a) and the definitions xf11(t), X112(t), X12(t), X31(t) andxs(t), the rela-

tions
0 =W (Ap(ATXL(t)) +Boxa(t) + Baxa(t) + fa(t)),

0=—B3xu(t) + fa(t),
0 =W WTB2B(xz(t)) "By xa(t) + W WT fa(t),
0=Wy BIWWTEa(ETx (1)) ETW) W'
- (AP(ATXq(t)) + Baxa(t) + Baxa(t) + fu(t)) +WS fa(t).

hold true for allt € [ty, w). The special case= t, gives rise to (72).

To show that (72) is sufficient for consistency of the initiation, we prove that the
inherent ODE of (72) together with the initial value (71)ffilihg (72) possesses
a solution which is also a solution of the differential-ddgaic equation (60):

By the construction of the inherent ODE in the proof of Theo®6, we see that
the right hand side is continuously differentiable. Thesexice of a unique solution

=)
X() = [ x2() | : [to,w) = R™ x R™ x R
x3(-)

is therefore guaranteed by standard results on the exestartuniqueness of solu-
tions of ordinary differential equations.

The inherent ODE further contains the derivative of the ¢qua in (70) with re-
spect to time. In other words, there holds

0=& (WY WTBB(xa(t)) "Bpxa(t) + W/ WT fa(t))

0=3 W BIWWTEa(ETx(t)ETW) W'
- (Ap(ATXa(1)) + Boxa(t) + Baxa(t) + fa(t)) + WS fa(t))

for allt € [tp, w). Then we can infer from (72c) and (72d) together with (71} tha
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0 =W WTB2B(xa(t)) 'Byxa(t) +Wf WT f(t),
0=WJ BIWWTEa(ETx1 (1)) ETW) W’
- (AP(ATxq(t)) + Boxa(t) + Baxa(t) + fa(t)) + W fa(t).

forallt € [to, w). Since, furthermore, equation (68) is a part of the inhe®diE, we
can conclude that the solution pointwisely fulfills equat{67). The latter equation
is however, by construction, equivalent to

0= % (WT (Ap(ATxl(t)) + BzXz(t) + Bng(t) + fl(t))) ,
0=g (~BIxa(t) + fa(t)).

Analogous to the above argumentation, we can infer from)(#@8d (72b) together
with (71) that

0=WT(Ap(ATx1(t)) + Baxa(t) + Baxa(t) + fa(t),
0= —Blx(t) + f3(t)
for all't € [tp, w). Since these equations together with

0=WT (Ea(E"x¢(t))E %1 (t) + Ap(ATXq(t)) + Baxa(t) + Baxa(t) + fa(t))

0= B(xa(t))%a(t) — B3xa(t)
form the differential-algebraic equation (60), the desiresult is proven. a

Remark 6.11 (Relaxing Assumptions 6.5)The solution theory for differential-
algebraic equations of typ@0) can be extended to the case where conditions (a)
and (b) in Assumptions 6.5 are not necessatrily fulfilled: Sider matrices

Vi € Rnlafh’ V€ Rnl,m’
V3 € Rns,%’ Vs € RNs.83

be matrices with full column rank and

imVy =kerlE, A, By, B3]",  imVy=im[E,A, By, B3],
imV; =kerBg, imVs;=imBj].

Then, by a multiplication of the first equation(®0) from the left withy;, a multi-
plication of the third equation i§60) from the left withV;, and setting

xp(t) =Vaxa(t) +Vixa (1),  xs(t) = Vaxa(t) + VaXs(t),

we obtain
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0=V]Ea(ETVi%(t))ETViXa(t) + V] Ap(ATViX4 (1)) + V] Baxa(t)

+ V1 BaVg Ka(t) + VI fa(t),
~ (73)
0= B(x(t))%(t) — B3VaXa(t),

0=—VIBIVixa(t) + V3 fa(t).

Note that, by techniques similar as in the proof of Lemmai6dn be shown that
(73) is a differential-algebraic equation which fulfills the gremptions of Theo-
rem 6.6 and Theorem 6.10.
On the other hand, a multiplication of the first equation fribra left with \{, and the
third equation from the left with 3/ we obtain some constraints on the right hand
side, namely,

VI fi(t)=0, V3 f3(t)=0, (74)

or, equivalently,
fi(t) eim[E, A, By, B3], f3(t) € im Bg forallt € [tg, ). (75)

Solvability of (60) therefore becomes dependent on the property @f &nd £(-)
evolving in certain subspaces. Note that the componai(t$, x3(t) do not occur
in any of the above equations. In case of existence of sahytithis part can be
chosen arbitrarily. Consequently, a violation of (a) or (b)Assumptions 6.5 causes
non-uniqueness of solutions.

6.3 Circuit equations - structural considerations

Here we will apply our findings on differential-algebraicuatgions of type (60) to
MNA and MLA equations. It will turn out that the indestructural propertyof the
circuit. More precisely, it can be characterized by meanbk®tircuit topology. The
concrete behavior of the capacitance, inductance and ctenate functions will not
influence the differentiation index.

In the following we will use expressions like a&Z-loop” for a loop in the circuit
graph whose branch set consists only of branches corresgpiadvoltage sources
and/or inductances. Likewise, by(#l/-cutset, we mean a cutset in the circuit graph
whose branch set consist only of branches correspondingrtert sources and/or
capacitances.

The general assumptions on the electric circuits are faatadlbelow:

Assumption 6.12(Electrical circuits) Given is an electrical circuit with § voltage
sources, B current sources, A capacitances, pinductances, f resistances and n
nodes, and the following properties:

(a) there are ndZ-cutsets;
(b) there are nol/-loops;



60 Timo Reis

(c) the charge functions,g...,dn. : R — R are continuously differentiable with
0y (u),...,0n.(u) > Oforallu e R;

(d) the flux functiongpy,..., ¢y, : R — R are continuously differentiable with
Wi(i),--- g, (i) > Oforalli € R;

(e) the conductance functiong,g.. ,Ong :R— R are continuously differentiable
with g; (u), .. .,gfm(u) > 0forallu e R;

Remark 6.13(The assumptions on circuitsYhe absence o/-loops, means, in
a non-mathematical manner of speaking, that there are nat stireuits. Indeed,

a V-loop would cause that certain voltages of the sources cabaahosen freely
(see below).

w0l (Dlaar = upat) = uglt)

Fig. 15: Parallel interconnection of voltage sources

Likewise, ari-cutset consequences induces further algebraic constaimthe cur-
rents of the current sources.

Fig. 16: Serial interconnection of current sources

Note that, by Lemma 4.10 b), the absencé/lfoops is equivalent to
kerA,, = {0}, (76)
whereas, by Lemma 4.10 a), the absencg-ofitsets is equivalent to

ker[Ac Ag Az Ay]T = {0}. (77)
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Consequently, the MNA equations are differential-alg@beguations of typ€60)
with, moreover, the properties as described in Assumptabs

Further, we can use Lemma 4.10 b) to see that the circuit doesantain any
V-loops, if, and only if,

ker[B, Bg B Bz]" = {0}. (78)

A further use of Lemma 4.10 a) implies that the absenceaiitsets is equivalent
to
kerB; = {0}. (79)

If one moreover assumes that the functiopns 9,9n, : R — R possess global in-
verses which are, respectively, denotedhy.r,ry, : R — R, then the MLA equa-
tions are as well differential-algebraic equations of ty{®®) with, moreover, the
properties as described in Assumptions 6.5.

Theorem 6.14(Index of MNA equations) Let an electrical circuit with the prop-
erties as in Assumptions 6.12 be given. Then the diffetértiandexu of the MNA
equationg52) exists. In particular, there holds

a) The following statements are equivalent:
() H=0;
(i) rankA=n—1andny, =0;
(ii) the circuit neither containgk L7 -cutsets nor voltage sources.

b) The following statements are equivalent:
() =1
(i) ranKAc, Ag ,Ap] =n—1andkerfA-, Ay ] = kerA- x {0};
(i) the circuit neither containsLZ-cutsets noiCV-loops except foC-loops.

¢) The following statements are equivalent:

() u=2
(i) ranKAc, Ag ,Ap] <n—1orkerfA., Ay ] #kerAc x {0};
(iii) the circuit containsLZ-cutsets orC‘V-loops which are no pur€-loops.

Proof. Since the MNA equations (52) form a differential-algebraguation of
type (60) with the properties as formulated in Assumptiorts Bhe equivalences
between i) and ii) in a), b) and c) are immediate consequesfcEiseorem 6.6.

The equivalence of a) (ii) and a) (iii) follows from the defion of n,, and the fact
that, by Lemma 4.10 a), the absence®fZ-cutsets (which is the same as the ab-
sence ofR LT V-cutsets since the circuit does not contain any voltagecssjyis
equivalent to keA”. = {0}.

Since, by Lemma 4.10 a), there holds

ker[ACa AR ; A'V]T = {O}
< the circuit does not contain an§/Z-cutsets,
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and by Lemma 4.11, we have

kerAc, Ay ] =kerAc x {0}
< the circuit does not contain any‘lV-cutsets except fof -cutsets,

assertions b) (ii) and b) (iii) are equivalent. By the sangpiarentation, we see that
¢) (ii) and c) (iii) are equivalent as well. a0

Theorem 6.15(Index of MLA equations) Let an electrical circuit with the proper-
ties as in Assumptions 6.12 be given. Moreover, assumethdtimctions

91,---,0ng :R—=R
possess global inverses which are, respectively, dengted b
M, fng ‘R—R.

Then the differentiation indem of the MLA equationg53) exists. In particular,
there holds

a) The following statements are equivalent:
(i) =0
(i) rankB, =n—m+2landn =0;
(iii) the circuit neither containg” R ‘V-loops nor current sources.

b) The following statements are equivalent:
(i) u=1
(i) ranKB,,Bg ,Bz] =n—m+landkerB,,Br] =kerB, x {0};
(iii) the circuit neither containg” -loops norLZ-cutsets except faf.-cutsets.

¢) The following statements are equivalent:

(i) u=2
(i) ranKB,,Bg,Bzr] <n—m+1lorkerB,,Br]#kerB, x {0};
(iii) the circuit containsC‘V-loops or LZ-cutsets which are no puré-loops.

Proof. The MLA equations (52) form a differential-algebraic eqoatof type (60)
with the properties as formulated in Assumptions 6.5. Hehee=quivalences be-
tween (i) and (ii) in a), b) and c) are immediate consequeat@&heorem 6.6.

The equivalence of a) (ii) and a) (iii) follows from the defion of ny and the fact
that, by Lemma 4.10 b), the absence(®R -loops (which is the same as the ab-
sence ofR LT ‘V-cutsets since the circuit does not contain any currenicesyis
equivalent to keB! = {0}.

By Lemma 4.12, there holds

ker B, , Br] =kerB, x {0}
< the circuit does not contain any/Z-cutsets except faf.-cutsets,
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and by Lemma 4.11, we have

ker[BLv BK? BI]T = {O}
& the circuit does not contain any‘V-loops.

As a consequence, assertions b) (ii) and b) (iii) are egemtaBy the same argu-
mentation, we see that c) (ii) and c) (iii) are equivalent afl.w a

Next we aim to apply Theorem 6.10 to explicitly charactedoasistency of the
initial values of the MNA and MLA equations. For the resuloab consistent ini-
tialization of the MNA equations, we introduce the followimatrices.

ZC € Rnil’pf, Zr € Rnil’ﬁc,
ZK{V*C € RPC’DK{VC, Z‘R,’V*C € RPC’DK{VC, (806.)
Z'V*C E Rn{V’br’/’C, ng*C E Rn{V’ﬁr’/’C

be matrices with full column rank and

imZ =kerAl, imZ, =imA,
iMZgy o =kefAg  Ap|'Zc,  iMZgy ~=IMZ[[Ag.Ay],  (80b)
imZ,_ . =kerzlA,, imZ,_=imAl,Z..

The following result (as the corresponding result on MLA &tipns) is an immedi-
ate consequence of Theorem 6.10.

Theorem 6.16. Let an electrical circuit the properties as in AssumptionsXbe
given.LetZ, Z¢c, Zg y_¢, Zg v Zy_candZ,,_ - be matrices with full column
rank and properties as i(B0). Let iz [tp, ) — R™ be continuous such that
Z]Aziz : [to, ) — RPC
is continuously differentiable, and
Zawa ~ZEAgit : [to, 00) — RPRVC

is twice continuously differentiable.
Further, assume thaty : [to,0) — R" is continuously differentiable such that

z-‘ll—/fc‘u'l/ ! [to, ) — RPv-¢

is twice continuously differentiable.
Then the initial value

@(to) ®
ir(to) | = | ico (81)
iy (to) (7

is consistent if, and only if,
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0=2] (Ag (AL @) +Aci o+ Ayiyg+Arizo ) (82a)
0= —AL@+ Uy, (82b)
0=Z4 .y (ZFALL(ic0) *AL@+2Z5 o Z[Asiz(to), (82c)

=T _
0=Zy (ALZc(ZLA%I(AL @)AL Z0) 2]
. . . =T .
- (AR9(AR @) +Aci co+ Apigo+Ariz(t) ) + Zy_cliplto).  (820)

To formulate an according result for the MLA, consider thenicas

YL c RmfnJrl,qL’ Y, € Rm*rH*l,qL’
YKI—L c RQLxQRI—L’ yﬂilfL c RQquRI—L7 (83a)
Y; ;e RTPrL Z; , eRTE L

which are assumed to have full column rank and

imY, =kerB | imY, =imB;,,
imYgy_ o =kefBg ,Bz]"Y,,  imYgs ,=imY][Bg, Bzl (83b)
imVI,L :kerYgBI, im?I,L =im B}YL

These matrices will be used to characterize consistendyeoinitial values of the
MLA system.

Theorem 6.17. Let an electrical circuit the properties as in Assumptionk26be
given. Moreover, assume that the functions g ;0ng 1 R — R possess global in-
verses which are, respectively, denoted fy.r, g 1R R.LetYz, Ve, Yoz 1,

Y&z-r, Z7—r and Z7_, be matrices with full column rank and properties as in
(80). Let ir : [tg,) — R™ be continuously differentiable such that

Yy iz [to, ) — R%-<

is twice continuously differentiable.
Further, assume thati[to, o) — R" is continuous such that

ZzBf,/uq/ : [to, 0) — R~
is continuously differentiable and
Y7 Y. Byl : [to,0) — RIRZL

is twice continuously differentiable.
Then the initial value
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| (to) o
Uc(to) | = | Uco (84)
uz (to) Uzo
is consistent if, and only if,
0 ZYZ (BKI‘(B}-{I()) +BeUco+ BzUzo + BrVUrVO) , (85a)
0= —Blo+iz, (85b)
0=Yg; Y/ BcCluco) *Blto+Ygr_ Y] Byly(to), (85c¢)

oT _
0=Y; (BIY (V]Bgr(Bgl10)BR V) 'V}

: (BRF(BEUO) +BcUco+Brlzo+ B'VU'V(tO)) +Y7 iz(to).  (85d)

Remark 6.18(7/-loops andZ-cutsets) If a circuit contains?/-loops andZ-cutsets

(compare Remark 6.13), we may apply the findings in Remark #®.lextract

a differential-algebraic equation of typ@0) that satisfies Assumptions 6.5. More
precisely, we consider matrices

-1, -1,p
ZCRM/QR“ chm/, ZCRLVGRH pcmq/,
Zy e RWPY, ZyeRWPy
with full column rank and

3

iMZeg o =kKel[Ac, Ag , AL Ayl iMZeg pp=IM[Ac, Ag AL, Ay,
imZ, = kerA,, imZ, =imAj,.
Then, by making the ansatz
ot) = Zcxm/z‘;(t) + ZC&LVza(t)a
ip(t) =Zyiy(t) + Zyiy(0),

we see that the function.-), uy(-) can be chosen freely, whereas solvability of the
MNA equationg52)is equivalent to

ZogeyAriz(l) =0, Zyuy(-) =0.

The other components then satisfy
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0= ZEKLWIACC(AEZCKL‘VI(D(U)AEZCRL’VI% o(t)
+ Zlg corPRIAR Zeg cor @) + Zlg pprAcic (1)
+ Z-CF‘RL‘VIA’Vz’VT’V(t) + ZZRLq/IAIiI(t)a (86)
0=—ALZeg @)+ L>L () FiL),
=T ~ =T
0=—ZyAlZcg Lor®(t) + Zpuyp(t).
To perform analogous manipulations to the MLA equationaesiter matrices
Yiger € R™ M acrer, Viger € R™ M HPerey,
VI € RHI’qZ, yz S RmfnJrl’aZ
with full column rank and
imY.x cr =kerB,,Bg ,Be,Br|",  imZ.gcr =im[B,,Bg, B¢, Br],
imY; = kerBz, imYz =imBJ.
Then, by making the ansatz
1(t) =Ygzl ) + Vg erl (1),
uz(t) = Yzlz(t) + Yrlz(t),

we see that the functions), iz(-) can be chosen freely, whereas solvability of the
MLA equationg53)is equivalent to

YegcrByUy() =0, Yziz() =0.
The other components then satisfy
0=Y[ % BLLBLYgcrl(1)BLY g cr G (1)
+ VI crBaI (BR Vg crl (1) + Y g crBeuc(t)
+ Vi BTz + Vg cr Byt (t) @)
0= —BrYxerl () + Cuc(t)) uc),
0=~ V7BV crl (t) +Vriz(t).

Note that both ansatzes have the practical interpretatia for each?/-loop, one
voltage is constrained (for instance by the equalgyu,,(-) = 0 or equivalently by
Y. czByUy(-) = 0), and one current can be chosen freely.

An according interpretation can be made fbrcutsets: In eaclf-cutset, one cur-
rent is constrained (for instance by the equatiqnZ ,/Aziz(-) = 0 or equivalently
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byYziz(-) = 0), and one voltage can be chosen freely.

To illustrate this by means of an example, the configuratiorrig. 16 causes

i71() =ir2(+), whereas, the reduced MLA equatidB3) contain y1(-) + ur(+) as

a componentdiz(-). Likewise, the configurationin Fig. 15 causgg@-) = uy»(+),

whereas, the reduced MNA equatid$8) contain i1 (-) +i4,(-) as a component

ofig ().
Remark 6.19(Index one conditions in MNA and MLA)

(i) The property that£V/-loops andLZ-loops cause higher index is quite in-

tuitive from a physical perspective: In &71/-loop, the capacitive currents
are prescribed by the derivatives of the voltages of theageltsources (see

Fig. 17). In anLZ-cutset, the inductive voltages are prescribed by the deriv
tives of the currents of the current sources (see Fig. 17).

uq/(t)l<> :9 uc(t) =ico= C-Uy(to)

Fig. 17: Parallel interconnection of a voltage source anaacitance

Fig. 18: Serial interconnection of a current source and dadtance

(i) An interesting feature is thatLZ-cutsets (including pure_-cutsets) cause
that the MNA system has differentiation index two, whereagbrresponding
index two condition for the MLA system is the existencébfcutsets without
pure L-cutsets.

For CV-loops, situation becomes, roughly speaking, vice ve€3%’-loops
(including pureC-loops) cause that the MLA system has differentiation index
two, whereas the corresponding index two condition for tiA\ystem is the
existence of”‘/-loops without pureC-loops.

Remark 6.20(Consistency conditions for MNA and MLA equation)lote that,
for an electrical circuit that neither contain®’-loops nor L-cutsets, the following
holds true for the consistency conditiai®2) and (85):
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= MNA system has index two

# MLA system has index two

Fig. 19: £-cutset

7 =- MLA system has index two
\ # MNA system has index two

Fig. 20: c-loop

(i) (B2a)becomes trivial (that is, it contains no equations), if, amy if, the
circuit does not contain anfg LZ ‘V-cutsets.
(i) (82b)becomes trivial, if, and only if, the circuit does not contany voltage
sources.
(iii) (82c) becomes trivial, if, and only if, the circuit does not containy £LZ-
cutsets.
(iv) (82d)becomes trivial, if, and only if, the circuit does not containy CV/-
loops except for pur€-loops.
(v) (85a)becomes trivial, if, and only if, the circuit does not contany R CZ V-

loops.

(vi) (85b)becomes trivial, if, and only if, the circuit does not contany current
sources.

(vii) (85c)becomes trivial, if, and only if, the circuit does not containy C‘V/-

loops.
(viii) (85d)becomes trivial, if, and only if, the circuit does not containy LZ-

cutsets except for puré-cutsets.
We finally glance at the energy exchange of electrical disc@onsider again the
MNA equations
AcSAARQ(1) +Ag 9(AR (1)) +Aci£ (1) + Agig(t) + Ariz(t) =0,
—ALOM) + Gu(iL(1) =0, (88)
—ALP(t) +ug(t) =0
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A multiplication of the first equation from the left witlp" (t), a multiplication of

the second equation from the left Wiitb(t), a multiplication of the third equation
from the left withil (t), a summation and according integration of these equations
yields

tf
0= [ ¢" (1) (AcHAALQL) +AgG(AL @) +Aci £ (1) + Ay (t) + Adiz(t) ) dt

to

tf
+ [0 (-ALp+ i) dt

to

tf
+/to in,(t) (—AL@() +uy(t)) dt,

and, due tap’ (t)Azi(t) =i, (t)AL@(t), @7 (t)Ayiy(t) =iy (t)A]@(t), this equa-
tion simplifies to

tf
0= [ @ MACFAALR)) + @' (A 9(AL @(t)) + @ (t)Aciz(t)dt
to N—— N——" —— —— ——

=up-(®) =ue(t) —uf () =ug 1) =ul(t)

s tf
+ / TSy Odt+ / T (t)ug (t)dt

tf

s tf
~ [ dwgauendr [ TOgwionde [ Ooug )t

to to to

18 18
+/ u}_(t)iz(t)du/ i (t)ug (t)dt.
to to
By using the non-negativity ai}'i(t)g(ux(t)) (see (47)) and, furthermore, the rep-
resentations (40), (44) and (48) for capacitive and indeatnergy, we obtain

t=ts

+ Ve ((ict))

t=tg

t=ts

Ve(alue(t)))

t=tg

t=ts

+ Ve ((ict))

t=tg

183 ¢
— [ droizod- [T oup o

to to

t=ts te
< Ve(a(ue(t))) + [k g ©)ar )

t=tg

whereV,- : R"C — R, V. : R"2 — R are the storage functions for capacitive and,
respectively, inductive energy. Since, the integral of pneduct between voltage
and current represents the energy consumptions of a speleifient, relation (89)
represents an energy balance of a circuit: The energy gaapatcitances and in-
ductances is less or equal to the energy provided by thegeodtad current sources.
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Note that the above deviations can alternatively done om#sés of the modified
loop analysis.
The difference between consumed and stored energy is given b

tf
|k gtu @)t

to

which is nothing but the energy lost at the resistances. tate for circuits without
resistances (the so-call&C resonator¥ the balance (89) becomes an equation.
In particular, the sum of capacitive and inductive energiesains constant, if the
sources are turned off.

Remark 6.21 (Analogies between Maxwell’s and circuit equatian$he energy
balance(89) can be regarded as a lumped version of the correspondingeptpp
of Maxwell's equations, sg®). Note that this is not the only parallelism between
circuits and electromagnetic fields: For instance, Tellégdaw has a field version
as well as a circuit version, sg¢&2) and(28).

It seems to be an interesting task to work out these and fuath&logies between
electromagnetic fields and electric circuits. This woultt,ihstance, enable to in-
terpret spatial discretizations of Maxwell’'s equationsedsctrical circuits to gain
more insight.

6.4 Notes and references

(i) The applicability of differential-algebraic equati®is not limited to electrical
circuit theory: The probably most important applicatioridieutside circuit
theory is in mechanical engineering [Sim13]. The power ofH3An (extra-
mathematical) application has led to differential-algébequations becom-
ing an own research field inside applied and pure mathemeatidss subject
of several textbooks and monographs [LMT13, KM06, Ria08 3IRBCP89].

By understanding the notiandexas a measure for the “deviation of a DAE
from an ODE", various index concepts have been developechwhodify and
generalize the differentiation index. To mention only a,fdvere is, in alpha-
betical order, thegeometric indefRR94], theperturbation indeHLR89],
thestrangeness indgkMO06] and thetractability index[LMT13].

(i) The seminal work on circuit modeling by modified nodaladysis has been
done by BRENNAN, HO and RUEHLI in [HRB75], see also [WJ02, CDK87].
Graph modeling of circuits has however been done earlieDK6R]. Modi-
fied loop analysis has been introduced for the purpose of hoodier reduction
in[RS11]and can be seen as an advancemeanesh analysifpDK69,JJH92].
Further circuit modeling techniques can be found in [Ri&EB]10, Ria06].
There exist various generalizations and modifications efaforementioned
methods for circuit modelling. For instance, models focuwits including so-
calledmem-devicebas been considered in [RT11, Riall]. The incorporation
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of spatially distributed components (i.e., devices whichraodelled by partial
differential equations) leads to so-callpdrtial differential-algebraic equa-
tions (PDAES). Such PDAE models of circuits with transmissioreér{these
are modeled be théelegraph equationshave been considered and analyzed
in [Rei06]. Incorporation of semiconductor models (@yft diffusion equa-
tions) has been done in [BTO7].

(iii) The characterization of index properties by meanshef tircuit topology is

not new: Index determination by means of the circuit topglbgs been done
in [New81, GF99a, GF99b, ST00, M$SB3, TI10, ITT12]. The first rigorous
proof for the MNA system has been presented [r#/Ez ScCHWARZ and
TISCHENDORFiIn [STO0O]. In this work, the result is even shown for circuits
which contain, under some additional assumption on theineotivity, con-
trolled sources.

Not only the index but also stability properties can be ctigr@zed by means
of the circuit topology. While it can, by energy considesas (such as in
Sec. 6.3), it can be shown that RLC circuits are stable. Hewékiey are not
necessarily asymptotically stable. Sufficient criterindeymptotical stability
by means of the circuit topology are presented byZA and TISCHENDORF

in [RT10,RTO7]. These conditions are generalized to ctsotmntaining mem-
devices in [RT13] and to circuits containing transmissioe$ in [Rei06].

The general ideas of the topological characterizationssgfgptotic stabil-
ity have been used in [Berl3, BR13] to analyze asymptotibilgia of the
so-calledzero dynamicsor linear circuits. This allows the application of the
funnel controller a closed-loop control method of striking simplicity.

(iv) Afurtherareain circuit theory is the so-calladtwork synthesig hat is, from

v)

a desired input-output behavior, it is seeked for a circhibge impedance be-
havior matches the desired one. Network synthesis is a traifitional area
and is originated by @UER [Cau26], who discovered that, in the linear and
time-invariant case, exactly those behaviors are redézahich are repre-
sentable by gositive realtransfer function [Cau32]. After the discovery of
thepositive real lemmay ANDERSON some further synthesis methods have
been developed [Wil76, AN67, AN68, AV73, AV70, And73] whielne on the
based on the positive real lemma and argumentations imtteetomain. A nu-
merical approach to network synthesis is presented in [Reil

An interesting physical and mathematical feature of Riix€uits is that they
do not produce energy by themselves. ODE systems whichge@viergy bal-
ances such as (89) are calledrt-Hamiltonian(alsopassivg, and are treated
from a systems theoretic perspective\lmN DER SCHAFT in [vdS96]. Port-
Hamiltonian systems on graphs have recently be analyzed®N113], and
DAE system with energy balances in [vdS13]. Note that eneoggiderations
play a fundamental role in model order reduction by passpieserving bal-
anced truncation of electrical circuits [RS10].
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