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Abstract— In this work we give an overview about Lur’e
matrix equations, linear-quadratic infinite time horizon optimal
control problems and their connections to the eigenstructure
of certain even matrix pencils. We characterize the set of
solutions in terms of deflating subspaces of even matrix pencils.
In particular, it is shown that these special solutions can be
constructed deflating subspaces of even matrix pencils.

I. INTRODUCTION

Consider the linear-quadratic optimal control problem

Minimize

J (u, x0) =
1
2

∫ ∞

0

[
x(t)
u(t)

]∗ [
Q C
C∗ R

] [
x(t)
u(t)

]
dt (1a)

subject to u ∈ L2(R+, Cm) and

ẋ(t) = Ax(t) + Bu(t),
x(0) = x0, (1b)

lim
t→∞

x(t) = 0,

where A ∈ Cn,n, B, C ∈ Cn,m, and Hermitian matrices
Q ∈ Cn,n, R ∈ Cm,m. Feasibility of this minimization
problem means that for all x0 ∈ Cn, there exists some
u ∈ L2(R+, Cm) with J (u, x0) < ∞ and, additionally, the
quantity

Jopt(x0) = inf{J (u, x0) : u ∈ L2(R+, Cm)} (2)

fulfills Jopt(x0) > ∞. In frequency domain, this condition
is equivalent to the positive semi-definiteness of the so-called
spectral density function, that is

Φ(iω)=
[
(iωI −A)−1B

Im

]∗[
Q C
C∗ R

][
(iωI −A)−1B

Im

]
≥ 0

(3)
for all ω ∈ R. Under certain assumptions on the structure of
the uncontrollable modes of (1b), it is shown in [6] that the
positivity of the spectral density function is equivalent to the
solvability of the linear matrix inequality[

A∗X + XA + Q XB + C
B∗X + C∗ R

]
≥ 0, (4)
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for some Hermitian matrix X ∈ Cn,n (for Hermitian matri-
ces M,N , M ≥ N means that M −N is positive definite).
Of particular interest is the so-called maximal solution X+

which solves (4) and, additionally, X+ ≥ X for all solutions
X of (4). It is further known [6] that the maximal solution
minimizes the rank of the matrix on the left hand side of (4).
This type is called Lur’e equations and can equivalently be
written as a system

A∗X + XA + Q = K∗K,

XB + C = K∗L,

R = L∗L,

(5a)

that has to be solved for the triple

(X, K,L) ∈ Cn,n × Cp,n × Cp,m (5b)

with Hermitian X and p ∈ N as small as possible. In case of
solvability, it is shown in [6] that p ≤ m. Equations of type
(5) were first introduced by A.I. LUR’E [10] in 1951 (see
[4] for an historical overview) and play a fundamental role
in systems theory, e.g. since also properties like dissipativity
of linear systems can be characterized via their solvability
[1], [2], [3], [17]. This type of equations moreover appears in
balancing-related model reduction [5], [8], [11], [12], [14].
In the case where R is invertible, it can be readily verfied
that p = m and the matrices K and L can be eliminated by
obtaining the algebraic Riccati equation

A∗X + XA− (XB + C)R−1(XB + C)∗ + Q = 0. (6)

It is well-known [9], [18] that solvability criteria and the
construction of solutions can be constructed via consideration
of the eigenstructure of the Hamiltonian matrix

AH =
[

A−BR−1C −BR−1B∗

C∗R−1C−Q −(A−BR−1C)∗

]
. (7)

In this work, we place particular emphasis on the case where
R is not invertible. In this case, the optimal control problem
(1) is called singular. The Hamiltonian matrix (7) clearly
cannot be built. Instead we consider the even matrix pencil

sE − A =

 0 −sI + A B
sI + A∗ Q C

B∗ C∗ R

 . (8)

The aim of this work is to collect equivalences for the
solvability of the Lur’e equations, the eigenstructure of the
pencil (8) and connctions to the spectral density function as
well as the feasibility of the optimal control problem (1).



II. DEFLATING SUBSPACES AND EVEN MATRIX PENCILS

In this part we introduce the basic facts about matrix
pencils and their normal forms.

Theorem 1: Let sE − A be a matrix pencil with
E,A ∈ Cm,n. Then sE − A is called regular if m = n
and det(λE − A) does not vanish identically. If sE − A is
not regular, then it is said to be singular. A pencil sE − A
is called even if E = −E∗ and A = A∗.
Now we consider the concept of deflating subspaces of
matrix pencils. That is, roughly speaking, a generalization
of the concept of invariant subspaces for matrices.

Theorem 2: A subspace V ⊂ CN is called (right) deflat-
ing subspace for the pencil sE−A with E,A ∈ CM,N if for
a matrix V ∈ CN,k with full column rank and im V = V ,
there exists an l ≤ k and matrices W ∈ CM,l, Ẽ, Ã ∈ Cl,k

with
(sE −A)V = W (sẼ − Ã). (9)

Deflating subspaces can be well characterized by means of
the Kronecker canonical form. In the following we introduce
two kinds of Kronecker forms. The first one is the classical
form that applies to general matrix pencils. After that,
we consider a special type [16] for even matrix pencils.
For these forms, we require the following special matrices
Jk, Mk, Nk ∈ Rk,k, Kk, Lk ∈ Rk−1,k with

Jk =

 1

. .
.

1

 , Kk =

0 1
. . .

. . .

0 1

 ,

Lk =

1 0
. . .

. . .

1 0

 ,

Mk =


1 0

. .
.

. .
.

1 . .
.

0

 , Nk =


0 1

. . .
. . .

. . . 1
0

 .

Type Size Cj(s) Parameters

W1 kj × kj (s− λ)Ikj
−Nkj

kj ∈ N, λ ∈ C

W2 kj × kj sNkj
− Ikj

kj ∈ N

W3 (kj − 1)× kj sKkj
− Lkj

kj ∈ N

W4 kj × (kj − 1) sKT
kj
− LT

kj
kj ∈ N

TABLE I
BLOCK TYPES IN KRONECKER CANONICAL FORM

Theorem 1 (Kronecker Form (KCF), [7]): For a matrix
pencil sE − A with E,A ∈ Cn,m, there exist matrices
Ul ∈ Gln(C), Ur ∈ Glm(C), such that

Ul(sE −A)Ur = diag(C1(s), . . . , Ck(s)), (10)

where each of the pencils Cj(s) is of one of the types
presented in Table I.

The numbers λ appearing in the blocks of type W1 are
called the (generalized) eigenvalues of sE − A. Blocks of
type W2 are said to be corresponding to infinite eigenvalues.

Since each block of type W3 (W4) leads to an additional
column (resp. row) rank deficiency of 1, the regularity of a
pencil is equivalent the absence of blocks of type W3 and
W4 in its KCF.
In the following, we review a special modification of the
KCF from [15] for even matrix pencils, the even Kronecker
canonical form (EKCF). This form is achieved by a con-
gruence transform of sE − A and therefore preserves the
evenness.

Theorem 2 (Even Kronecker Form (EKCF), [15]): For
an even matrix pencil sE − A with E,A ∈ Cn,n, there
exists a matrix U ∈ Gln(C) such that

U∗(sE −A)U = diag(D1(s), . . . ,Dk(s)), (11)

where each of the pencils Dj(s) is of one of the types
presented in Table II. The numbers εj in the blocks of type
E2 and E3 are called the block signatures.
The appearance of block of type E1 shows that generalized
eigenvalues λ /∈ iR occur in pairs (λ,−λ). The blocks
of type E2 and E3 respectively correspond to the purely
imaginary and infinite eigenvalues. The additional sign
parameter is contained which is basically due to the fact
that for a fixed λ ∈ iR the congruence transformation with
U preserves the inertia of the Hermitian matrix λE − A.
Blocks of type E4 consist of a combination of blocks that
are equivalent to those of type W3 and W4.

III. SOLVABILITY OF LUR’E EQUATIONS

In this section we collect criteria for the solvability of
Lur’e equations. Those are given in terms of the fesibiliy of
the optimal control problem (1), the solvability of the LMI
(4), the positive definiteness of the spectral density function
(3) and the eigenstructure of the even matrix pencil (8). The
following result requires the pair (A, B) to be stabilizable
(resp. controllable). That is, for all s ∈ {λ ∈ C : Re(λ) > 0}
(s ∈ C) holds rank[ sI −A , B ] = n. In terms of dynamics,
stabilizablitity is equivalent to the fact that for all x0 ∈ Cn

holds that there exists some u ∈ L2(R+, Cm) such that (1b)
is fulfilled.

Theorem 3: Let the Lur’e equations (5) with associated
even matrix pencil sE − A as in (8) and spectral density
function Φ as in (3) be given. Assume that at least one of
the claims

(i) the pair (A, B) is stabilizable and the pencil sE − A
as in (8) is regular;

(ii) the pair (A, B) is controllable
holds true. Then the following statements are equivalent:

1) For all x0 ∈ Cn, there exists some constant c ∈ R such
that J (u, x0) > c for all u ∈ L2(R+, Cm).

2) For all u ∈ L2(R+, Cm) holds J (u, 0) ≥ 0.
3) For all ω ∈ R holds Φ(iω) ≥ 0.



Type Size Dj(s) Parameters

E1 2kj × 2kj

"
0kj ,kj

(λ−s)Ikj
−Nkj

(λ+s)Ikj
−NT

kj
0kj ,kj

#
kj ∈ N, λ ∈ C with Re(λ) > 0

E2 kj × kj εj((−is− µ)Jkj
+ Mkj

) kj ∈ N, µ ∈ R,
εj ∈ {−1, 1}

E3 kj × kj εj(isMkj
+ Jkj

) kj ∈ N,
εj ∈ {−1, 1}

E4 (2kj−1)×
(2kj−1)

"
0kj−1,kj−1 −sKkj

+ Lkj

sKT
kj

+ LT
kj

0kj ,kj

#
kj ∈ N

TABLE II
BLOCK TYPES IN EVEN KRONECKER CANONICAL FORM

4) There exists a solution (X, K,L) of the Lur’e equations.
5) There exists some Hermitian X ∈ Cn,n that solves the

LMI (4).
6) There exists some Hermitian X+ ∈ Cn,n that solves

the LMI (4) such that for all other Hermitian solutions
X ∈ Cn,n of the LMI (4) holds X+ ≥ X .

7) For all ω ∈ R such that iω is not an eigenvalue of A
holds Φ(iω) ≥ 0;

8) In the EKCF of sE − A, all blocks of type E2 have
positive signature and even size, and all blocks of type
E3 have negative sign and odd size.

9) In the EKCF of sE−A, all blocks of type E2 have even
size, and all blocks of type E3 have negative sign and
odd size.

In particular, solutions of the Lur’e equations
fulfill (X, K,L) ∈ Cn,n × Cn,p × Cm,p with

p = max
ω∈R

rank Φ(iω) (12)

Proof: The equivalences of the statements 3)-9) as well
as p = maxω∈R rank Φ(iω) is shown in [13]. The proof the
outstanding equivalences, we show that 2)⇔3), 1)⇒2) and
4)⇒1).
The equivalence between 2) and 3) follows from the fact that,
for û being the Fourier transform of u, Parseval’s theorem
yields that

J (u, 0) =
1
2π

∫ ∞

−∞
û∗(iω)Φ(iω)û(iω)dω.

Now we show that 1) implies 2): Assume that 2) is not
filfilled, i.e., there exists some or all ū ∈ L2(R+, Cm) with
J (ū, 0) = c < 0. Then, by definition of J (·, ·), we have for
all n ∈ N that

J (nū, 0) = n2c.

Therefore, the set {J (u, 0) : u ∈ L2(R+, Cm)} is not
bounded from below. This is a contradiction to 1).
For the proof that 5) implies 2), we assume that X solves
the LMI (4). Since (A, B) is stabilizable, there exists some

u ∈ L2(R+, Cm) with J (u, x0) < ∞. Then we obtain

x∗0Xx0 = −
∫ ∞

0

d

dt
x∗(t)Xx(t)dt

=−
∫ ∞

0

ẋ∗(t)Xx(t) + x∗(t)Xẋ(t)dt

=−
∫ ∞

0

x∗(t)A∗Xx(t) + u∗(t)B∗Xx(t)

+ x∗(t)XAx(t) + x∗(t)XBu(t)dt

=
∫ ∞

0

[
x(t)
u(t)

]∗ [
−A∗X −XA −B

−B∗ 0

] [
x(t)
u(t)

]
dt

≤
∫ ∞

0

[
x(t)
u(t)

]∗ [
Q C
C∗ R

] [
x(t)
u(t)

]
dt = J (u, x0).

This shows that 1) holds true.
The maximal solution X+ as described in 6) can be shown to
minimize the rank of the LMI (4), i.e., it is part of a solution
(X, K,L) ∈ Cn,n × Cp,n × Cp,m of the Lur’e equations
(5). Note that, if the stabilizability assumption in Theorem 3
is replaced by anti-stabilizability (that is, stabilizability of
(−A, B)), then there exists a minimal solution of the LMI
(4). This is closely related to linear-quadratic optimal control
on the negative time horizon.

IV. CONSTRUCTION OF SOLUTIONS VIA DEFLATING
SUBSPACES

In this part, we relate the solutions of the Lur’e equations
(5) to certain deflating subspaces of the even matrix pencil
(8). By making use of the three equations in (5) for a solution
(X, K,L) ∈ Cn,n × Cp,n × Cp,m, we obtain the deflating
subspace relation 0 −sI + A B

sI + A∗ Q C
B∗ C∗ R

 X 0
In 0
0 Im


=

 In 0
−X K∗

0 L∗

 [
−sI + A B

K L

]
.

(13)

This means that any solution of the Lur’e equations (5)
correspond to a certain deflating subspace of the associated



even matrix pencil (8). The following result characterizes
the deflating subspcaes of associated even matrix pencil that
correspond to solutions of the Lur’e equations. sE − A.

Theorem 4 ([13]): Let the assumptions of Theorem 3
be fulfilled and, moreover, let the Lur’e equations (5) be
solvable and p be defined as in (12). Then there exist
Vµ, Vx ∈ Cn,n+m, Vu ∈ Cm,n+m, Wµ, Wx ∈ Cn,n+p,
Wu ∈ Cm,n+p and Ẽ, Ã ∈ Cn+p,n+m such that

(i) For

V =

Vµ

Vx

Vu

 , W =

Wµ

Wx

Wu

 (14a)

holds
(sE − A)V = W (sẼ − Ã); (14b)

(ii) V = im[V T
µ , V T

x , V T
u ]T is E-neutral;

(iii) rank Vx = n.
In particular, for some arbitrary right inverse V −

x of Vx holds
that the matrix

X = VµV −
x . (15)

is part of a solution of the Lur’e equations (5), i.e., there
exist K ∈ Cp,n, L ∈ Cp,m such that (5) holds true.
In the following, we relate the deflating subspaces with the
properties as in Theorem 4 to the even Kronecker form as
presented in Theorem 2.

Theorem 5 ([13]): Let the assumptions of Theorem 3 be
fulfilled and let sE −A as in (8) be given. For blocks Dj(s),
j = 1, . . . , k as presented in Table II, let (11) be the EKCF
of sE − A. Further assume that statement 9) of Theorem 3
holds true. Consider the partitioning U = [ U1 , . . . , Uk ]
according to the block structure of the EKCF. Then a matrix
V ∈ C2n+m,n+m has E-neutral range and satisfies (14) for
some W ∈ C2n+m,n+p, Ẽ, Ã ∈ Cn+p,n+m and a full rank
matrix Vx ∈ Cn,n+m if

V =
[
V1 . . . Vk

]
for Vj = UjZj , (16)

where

Zj =



either [ Ikj
, 0kj

]T

or [ 0kj
, Ikj

]T ,
if Dj is of type E1,

[ Ikj/2 , 0kj/2 ]T , if Dj is of type E2,

[ I(kj−1)/2 , 0(kj+1)/2 ]T , if Dj is of type E3,

[ Ikj
, 0kj+1 ]T , if Dj is of type E4.

If, moreover, for each block of type E1, the matrix Zj is
chosen as Zj = [ Ikj , 0kj ]T , then X constructed by (15) is
the maximal solution of the Lur’e equations.

V. CONCLUSION

In this work we have studied Lur’e matrix equations and
their connction to the singular linear-quadratic optimal con-
trol problem. Under the assumption of either controllability
or regularity of the associated even matrix pencil together
with stabilizability, equivalent criteria for the solvability
of Lur’e equations are given in terms of the feasibility
of an optimal control problem, the solvability of a linear

matrix equation, the positive semi-definiteness of the spectral
density function and the eigenstructure of a certain associated
even matrix pencil. This associated even matrix pencil was
utilized to describe the solution set. It is shown that solutions
of Lur’e equations correspond to certain deflating subspaces
of the associated even matrix pencil. These particular de-
flating subspaces were further characterized in terms of the
even Kronecker form. It is moreover shown that there exists
a solution which is maximal in terms of definiteness. The
corresponding deflating subspace was particularly analyzed.
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