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SUMMARY

We introduce a numerical method for the numerical solutibthe Lur'e equations a system of matrix
equations that arises, for instance, in linear-quadrafioite time horizon optimal control. Via a Cayley
transformation, the problem is transformed to the disetiete case, and the structural infinite eigenvalues
of the associated matrix pencil are deflated. This gives goetic problem with several Jordan blocks
of eigenvalue 1 and even size, which arise from the nontriGianecker chains at infinity of the original
problem. For the solution of this modified problem, we use dtracture-preserving doubling algorithm
(SDA). Implementation issues such as the choice of the pateamin the Cayley transform are discussed.
The numerical examples presented confirm the effectiverfabss method.
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1. INTRODUCTION

Several problems in control theory, such as linear-quadogtimal control, dissipativity analysis
[1-4], model reduction$-9], H. control [L0], differential games11], lead to the computation of
the semi-stable Lagrangian deflating subspace of a matnigilpef the form

0 —-sI+A B
s€ — A= |sI+ AT Q C Q)
BT ct R

with 4,Q € R»", B,C ¢ R»™, Rc R™™ and@ = Q7, R = RT. The wordsemi-stablenere
means that all the associated eigenvalues are in the clefidtlf-plane, and a subspadec R?"
is calledLagrangianif dim2/ = n and for every pair of vectors, w € U holdsv” Jw = 0, where

0o I,
7=15. %] @
When R is nonsingular, this problem (under a mild rank assumptisréquivalent to solving the
algebraic Riccati equatio(ARE) [10,12,13]
ATX + XA— (XB+O)RY(XB+C)'+Q=0. (3)
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Its maximal solutionX € R™" is related to the semi-stable Lagrangian invariant sulesgfaough

S

While there is abundant literature on ARESs including textt®and survey articleslB-16], the
case of singulaR has been treated more sporadically in journal articlés21]. The singularity or
R is however a structural property in several applicati@# &and can therefore not be excluded by
arguments of genericity.

The closest analogous t8)(when R is singular are théur'e equationg23,24]

ATX + XA+ Q=K"K,
XB+C=K"L, 4)
R=1L"L,

to be solved for the triplg X, K,L) € R™" x RP"™ x R*»™ with X = X7 andp as small as
possible.

Let us briefly review the known approaches for solving theasitally, these can be divided into
elimination and perturbation approaches:

a) The works D5, 26] present an iterative technique for the elimination of &hlés corresponding
to ker R: By performing an orthogonal transformation 8f and an accordant transformation
of L, the equations can be divided into a regular part’ and ayisiar part’. The latter leads to
an explicit equation for a part of the matriX. Plugging this part into4), one obtains Lur'e
equations of slightly smaller size. After a finite numbertefs this leads to an algebraic Riccati
equation. This also gives an equivalent solvability ciiterthat is obtained by the feasibility of
this iteration.

b) In [21] a deflation technique is proposed. A “critical deflating spdce” of the even matrix
pencil (1) is determined. Thereafter, matrices which are spanniisgctitical subspace are used
to eliminate certain parts of the Lur'e equation, such thatagected algebraic Riccati equation
is obtained. This projected ARE is accordantly solved by afda-Kleinman iteration. The
deflation has been done by numerical computation of soetdfleneutral Wong sequences”,
a successive nullspace computation.

¢) In the engineering practice, the most common approachdaolution of Lur'e equations is
the perturbation o? by I, for somee > 0. Then, by using the invertibility oR + I, the
corresponding perturbed Lur'e equations are now equivédeihe Riccati equation

ATX. + X.A— (X.B+C)(R+el) ' (X.B+O)" +Q =0. (5)

Itis shown in R7,28] that the corresponding maximal solutiokis then converge to the maximal
solution of @).

The big problem of the perturbation approach c) is that, sptfere exist no bounds for the
perturbation errof| X — X.||. On top of that, the numerical condition of the Riccati edquai5)
increases drastically agends ta.

The approaches in a) and b) also have certain numerical dksbthey rely on successive
nullspace computations, which may be an arbitrarily ilkdiioned problem. In a) it is necessary
to identify, for several matriced/,, (starting fromM, = R), two complementary subspacks ;.
andif ;, such that);, is invertible when restricted t&r; , and zero when restricted @, ;.. In
practice, often this choice is not clear-cut, since the Wengvalues of the matricesl;, may not
have a large gap in magnitude. One needs to choose an aritlitrashold under which they are set
to zero; it is possible to end up with matrices that are ilhditioned ori4; , and “not quite zero” on
Us ;.. Similarly, In b) one has to determine spanning matricesife€-neutral (see Deb) deflating
subspac®’ of the even matrixX); by the same reasons, this is numerically ill-conditianed
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| Type | Size | C;(s) | Parameters |
W1 k}j ij (S—)\)ij _Nkj kjEN,)\E(C
W2 kj X kj SNkj — ij k]' eN

Table I. Block types in Weierstrass canonical form

We present here a numerical method based on a modificatibe stirticture preserving doubling
algorithm(SDA), an iterative scheme for continuous- and discreteetalgebraic Riccati equations
[29]. It is shown in B(Q] that, unlike other iterative schemes, this algorithm hasdyconvergence
properties also when the pencil has eigenvalues (of evetipiiity) on the unit circle, as is the
case in our problem.

The method works directly on the unperturbed problem, withibe need for regularization, and
has the distinctive advantage that no rank decisions aideded his feature sets it apart from most
algorithms for singular control problems that appeared@literature.

As a byproduct of this analysis, we obtain some auxiliarylteghat are interesting in the context
of the SDA literature: we derive a formula for its initial vals that is more compact than the known
one, and discuss how we can use it to improve the heuristichdose the parameterin the
required Cayley transform.

2. CONTROL AND MATRIX THEORETIC PRELIMINARIES

The symbols| - ||, || - || stand for the spectral and Frobenius matrix norms, resytiFor
Hermitian matricesP, Q@ € C™", we write P > Q (P > Q) if P — Q is positive (semi-)definite.
The symbolR(s) stands for the field of real rational functions.

For every positiveé:, we define the matrices,, M, Ni. € R** as

Ty = M= IR  Ne=

Definition 1

Let s€ + A be a matrix pencil withe, 4 € R™™. Thensf + A is calledregular if m =n and
rankgs) (s€ + A) = n. A pencil s€ + A is calledevenif £ = —£7 and A = A”. A pencil with
£, A € R?2 js calledsymplectidf £JE7 = AJ AT, with J as in Q).

Many properties of a regular matrix pencil can be charaxgeriin terms of théMeierstrass
canonical form (WCF)

Theorem Z [31])
For any regular matrix penci€ + A with £, A € R™™, there exist matrice#; € Gl1,,(C), U, €
G1,,(C), such that

Ui(s€ + A)U, = diag(C1(s),...,Cr(s)), (6)
where each of the penci (s) is of one of the types presented in Tahle

The numbers\ appearing in the blocks of type W1 are called fgeneralized) eigenvaluex
s€ + A. Blocks of type W2 are said to be corresponding to infiniteeiglues.

A special modification of the WCF for even matrix pencils, $wcalledeven Weierstrass
canonical form (EWCE)is presented ind2]. Note that there is also a ‘realness-preserving version’
of this result B3].
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Type | Size D;(s) Parameters
ijJCj (A*S)ijkaj +
El 2k; x 2k; (A+s)lkj—N,Z; O, 1, k;eN, A eC
. ki e NypeR,
E2 k; x k; €j((—is — p)Jp; + My;) E? c {7I1L 1}
7 )
) ki €N
E3 | kjxk; | e(isMy, +Jk,) 566{41 .
7 )

Table II. Block types in even Weierstrass canonical form

Theorem 3 [32))
For any even matrix pencil + A with £, A € R™", there exists a matri¥ € Gl,(C) such that

U*(s€ + A)U = diag(D1(s), ..., Dr(s)), @)
where each of the pencil3; (s) is of one of the types presented in Table
The numberg; in the blocks of type E2 and E3 are called tileck signaturesThe blocks of

type E1 contains pairs\, —\) of generalized eigenvalues. Together with realnes$ afid A, this
implies that non-imaginary eigenvalues occur in quadiple), —\, —\). The blocks of type E2

and E3 respectively correspond to the purely imaginary afidiie eigenvalues.

Definition 4

An eigenvalue\ of a matrix pencil is called-stable c-critical or c-anti-stablerespectively ifRe()\)

is smaller than, equal to, or greater than 0. A right deflagimngspace is callectstable(resp.c-anti-
stablg if it contains only c-stable (resp. c-anti-stable) eiganes, and-semi-stabléresp.c-semi-
anti-stabl§ if it contains only c-stable or c-critical (resp. c-antiisle or c-critical) eigenvalues. The
same definitions with the prefix c- replaced by d- hold if wergigthe expressioRe(\) to [A| — 1.

Definition 5
Let M € C** be given. A subspace c CF is calledM-neutralif 2* My = 0 for all z, y € V.

Definition 6
Giveny € R, v # 0, theCayley transfornof a regular penciké — A is the pencil

sEy — Ay, E,=A+~E, A, =A—-~¢E.
This is the extension to matrix pencils of the scalar map

C: CU{ox} =» CU{cx},
A—ny
A= Py
We haveC(\)| = 1if, and only if, X is infinity or on the imaginary axis. Moreover, in the case 0,
we havelC()\)| < 1if, and only if, Re(\) > 0, whereas, in the case> 0, there hold$C(\)| < 1 if,
and only if,Re()\) < 0.

Via transformation into (even) Kronecker form, it can berséleat the Cayley transform of
a matrix pencil preserves left and right eigenvectors amdaiochains, while the eigenvalues are
transformed according to— C(A).

We recall from R0] the following theoretical results on Lur'e equations ahdit solvability that
are needed in our article.

Theorem 71 [20])

Let the Lur'e equations4) with A, Q € R™", B,C € R™™ and R € R™™ be given and assume
that the associated even pendil is regular and the pait4, B) is stabilizable. Then, the following
statements are equivalent.
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() There exists a solutioX, K, L) of the Lur'e equations.

(i) Forallw € Rwithw ¢ o(A) it holds®(w) > 0, where

o[l

B r 0 A—’)/I ! B m,m
o[ [ S emore

)

is thespectral density functioar Popov functiorof the system.

(i) In the EWCF of s€ + A, all blocks of type E2 have positive signature and even siad,all
blocks of type E3 have negative sign and odd size.

Moreover, if the above conditions hold,
a) ®(s) € R(s)™™ is invertible (as a matrix with entries in the fidld s)).

b) Among the solutions there is one, called sitabilizingsolution and denoted byX , K, L),
such thatX < X for each other solutiofX, K, L), in the positive definite ordering.

c) If (X4, K4, Ly ) is the stabilizing solution, then the matrix

X, 0
V=span| I, 0 9)
0 I’”’L

spans the unigue + m-dimensional semi-c-stab&neutral subspace of the penci)(

d) If
Q C
ESED (10
thenX . is the only (Hermitian) positive semidefinite solution dj.(
e) LetU be a matrix such that7’f holds, and partition it a& = [U;, ..., U], with block sizes
compatible with the right-hand side of)( The subspac¥ is spanned by
V=[Vi ... V]ecmtmrtm forv; =U;Z;, (11)
where
[ I, , Ok, |7, if D; is of type E1,
Zj =4 L, 25 0k, 217, if D, is of type E2,

)

[I(kj+1)/27 O(kjfl)/Q]T if ’Dj is of type E3.

In other words, the subspad® ¢ontains all the vectors belonging to the Kronecker chiagteive
to c-stable eigenvalues, no vectors from the Kroneckemshalative to c-anti-stable eigenvalues,
the firstk,; /2 vectors from the chains relative to c-critical eigenvalsesl the firs{k; + 1)/2 from

the chains relative to eigenvalues at infinity.
Moreover, in the following we need these two elementary lesm

Lemma 8
Let X, Y, G € R™™ be symmetric matrices with < X <Y andG < 0; then

X(I-GX)'<y(I-Gy) ™"

5
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Proof
Let X, = X +elandY. =Y +¢I; then,Y.-! < X! and both inverses exist. Thus, we have

(I-GY )Y, ' =Y '-G<X'-G=(1-GX)X_ "

Inverting the leftmost and rightmost term of the above irddiqyand letting: — 0 yields the desired
result. O

Lemma 9
Let a nonsingular symmetric matrix and its inverse be pan#d as

2 -l

with X, 5 e R"v™ Z U € R"»"2 andY,T € R"*"2, such that, moreove <0, Z > 0. Then
S<0,U >0.

Proof

In the case wher¢ is nonsingular, the Schur complement formula yiedds = X — Y Z-1y 7 <
0, and similarly forU if X is nonsingular. As above, a continuity argument can be usettain
the thesis when these blocks are singular. O

3. THE STRUCTURED DOUBLING ALGORITHM AND ITS CONVERGENCE RBPERTIES

The structure-preserving doubling algorithm (SD29,[30,34] is a matrix iteration which computes
two special deflating subspaces of a matrix pencil, one stahile and one semi-anti-stable. It is
directly related to several other types of algorithms tteeteal on performing a “repeated squaring”
in a matrix pencil settingd5-37].

A pencil s — M with £, M € RN+M:N+M s said to be irstandard symplectic-like form (SSF)

if
In -G E 0
e 8 w5 2 (12)

where the block sizes are chosen such fhat RN andF € RM:M,

Theorem 10
[38] Suppose thatL — M is an SSF pencil such that both matrides— GH andI,; — HG are
nonsingular. Then, the deflating subspaces of the pencil

In -G E 0
S |: 0 F’ :| - |:_HI II\/I:| ’ (13)
E' =E(Iy -GH)'E G'=G+E(Iy —-GH) 'GF

L L (14)
F'=F(Iyy — HG)™'F H' =H + F(I; — HG)"'HE

coincide with those of £ — M, and its eigenvalues are the squares of the correspondjegwlues
of s — M.

The structured doubling algorithm (se®9 for more details) consists in iterating the
transformation 14), producing sequence&Ey, Fy, Gy, H) from a starting (Eo, Fo, Go, Hop)
defining a pencil in SSF.

Notice that, whenV = M, a pencil in SSF is symplectic if and only 87 = F, G = G" and
H = HT. SDA preserves symplecticity, i.e., at each steye haveE! = F;, G\, = GL, H, = HF.
Some computational savings can be obtained by exploitiisgotioperty in the algorithm; namely,
one needs to compute only one 8., and F.q = EkT+1 and only one ofly — Gy H; and
I — HiGy = (In — G Hy)".
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Upon repeated squaring, eigenvalues viih< 1 converge to zero and eigenvalues with> 1
to infinity, and this leads to convergence in SDA. In fact, ensuitable assumptions, convergence
happens also in presence of unimodular eigenvalues. Wet tepe the convergence result for the
symplectic case, since this all that we need in the followivgre general convergence results
obtained with similar techniques can be found3g][

Definition 11

LetsL — M be a matrix pencil with eigenvalues, . . ., A\; and corresponding partial multiplicities
ri,...,rs. Furthermore, assume that all partial multiplicities esponding to the unimodular
eigenvalues are even. Then ttenonicalsemi-stable (resp. semi-unstable) subspace is defined as
the unique deflating subspace whose associated eigenvauepartial multiplicities

T if \s is d-stable (resp. unstable),
re/2 if A;is unimodular,
0 if \; is d-unstable (resp. stable).

Theorem 17 [30])
Let the SDA be applied to a symplectic pendiP) such that all its unimodular eigenvalues have
even partial multiplicity. Suppose that there exist masiG .., H., € R™™ such that

Lfm} ’ {Gﬂ (15)

span respectively the canonical semi-stable and semalesnvariant subspaces df3). Suppose
in addition that the sequenceBy,, F, = E{', G, Hy,) defined by SDA are well-defined. Then,

o | Eill = [|Fk]| = 027F),
o |Hoo = Hyl| = O(27"),
o |G — Gi| = O27F).

Well-definedness of the sequence can be proven under suiitghbtheses, which hold true in the
optimal control applications.

Theorem 13 [34])

Suppose that,, H, are semidefinite, one positive and one negative. Then, S&lisdefined (i.e.,
I — Gy H, andI — H; G}, are nonsingular), and the sequenegsS, G1, ... and0, Hy, Hy, ... are
monotonic.

One can transform a regular pencil into SSF easily usingahasing result.

Theorem 14
Let s&€ — A be a matrix pencil witlf, A € RVN+M.N+M ‘gnd partition both matrices as

E=[& & A=[A A

with &, 4; € RN+M:N and&,, Ay € RN MM An SSF pencil having the same eigenvalues and
right deflating subspaces of the original pencil exists d anly if [51 Ag] is nonsingular; in this
case, it is unique and it holds

{E -G

—H F} =[& A4 &) (16)

Proof
We are looking for a nonsingular matrix such that

Q6 &) -QA Ag]s[é ‘FG][_% ?]

7



8 F. POLONI AND T. REIS

By taking only some of the blocks from the above equation, ate g

1 0 . I0
le = |:0:| N Q.AQ = |:I:| N l.e., Q [51 Ag] = |:O I:| R
thus@ must be the inverse c{E’l Ag]. Taking the other two blocks we get
E -G
QAI = |:—H:| ) QEQ = |: F :| )
which promptly yields 16). O

Notice that the formula in Theoref can be applied also to SDA for continuous-time Riccati
equation 9], where it yields (using the notation a?9])

A G T[4 -G1[4, -G 17
_f —AT| T |-H -AT||-H -AT|

Rearranging the blocks gives a systémX = N, with M and X 2n x 2n symmetric matrices,
whose solution cost&? flops [40, Appendix C]. This compares favorably with the formulas2,[
Equations (9)—(11)], which require two LU factorizatiotise solution of four linear systems of the
form M X = N, one product and one explicit inversion, all of them involyunsymmetric: x n
matrices, for a total cost @fi3 + %)n3 flops [40]. Moreover, these formulas are simpler to analyze
and can be implemented as a single LAPACK call.

The same trick can be applied, with computational advantag&DA for nonsymmetric algebraic
Riccati equations41].

4. A REDUCED LUR’E PENCIL

Let s€ — A be the pencil 1) associated to the Lur'e equatior§.(Throughout the remaining part,
we employ the following assumptions.

A1l The Lur'e equations4) are solvable.
A2 The pencil () is regular.
A3 The pair(A, B) is stabilizable.

Let~ > 0 be such that botf () as in @) andA — ~I are nonsingular (there exist at least one such
7, sincerankg ) ®(s) = m by assumption), and define

0 I, T 0 — A
T := [1 0], T = {O 0} A=A —~T.

We apply Theoreni4 to the Cayley transform of€ + A, in order to obtain the entries of its SSF,
which we denote by

sl G| E 0 (18)
0 F -H I’rH—'rn
The resulting expression is
E -G _
U E A (19

Notice that the inverse exists, since both the leading 2n principal block of A,

{ 0 A—w}
AT —yI Q

8
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and its Schur complemewdt(~) are nonsingular, and that the c-stable subspace will be¢hene
d-unstable one after the Cayley transform (sifice 0).
The quantity in {9) can be expressed as

Ion +27ZT 0

* I,

~

B -G
-H F

} AT (A 20T = Lo 20 AT = { ] @)

where we denote by the leading principatn x 2n block of A7
This block structure translates to the SSF blocks; namedycan define
P-p, Fo {F 0 }

Y
* I m

G=[G 0, Erﬂ (21)

*

so that the smaller blockB, F', G, H have all sizen x n. In particular, the pencillg) is block
lower triangular; it follows that a special right deflatingospace is

02n><m
I, |’
whose only eigenvalue i$ = C,(c0) with algebraic and geometric multiplicity:, while the
deflating subspaces relative to the other eigenvalues #éne fiorm

v
L * 7
whereV has2n rows and is a deflating subspace of the reduced pencil
I, —G] E 0
S[o F|~ [—H In] (22)

Moreover, asZ is Hermitian in @0), it follows that the leadingn x 2n block A := I, + 2vZT is
such thatAT is Hermitian. This means th@” = F andG = G7, H = HT, that is, the pencil2)
is symplectic.

The pencil 22) is given by P (s€ — A) P, whereP is the projection on

() -~

With this characterization, it is easy to derive the WCF23f) (from that of the Cayley transform
of (1). We see thaker £ is the space spanned by the first column of each block of typdad'a
corollary, we see that there are exaatly= dim ker E such blocks). These blocks are transformed
into blocks of type W1 withA = 1 by the Cayley transform. Thus projecting on their orthogona
complement corresponds to dropping the first row and columom feach of the blocks of type
W1 corresponding ta = 1. In particular, it follows that if the criteria in Theorerhold, then in
the WCF of the pencilZ2) every block of type W1 corresponding to a d-critical eigaoe has
even size. Therefore, all the unimodular eigenvalues ofédeced pencild2) have even partial
multiplicities. By considering which vectors are needashireach vector chain corresponding to
blocks in the WCF to form the subspace iri) we get therefore the following result.

Theorem 15

Suppose that ford, @ € R™", B,C € R™™ and R € R™™ the Lur'e equations4) satisfy
AssumptionsAl, A2 andA3. Let V span an invariant subspace of the reduced pe@g)l With
E, F,GandH asin Q0), (21). Then,

~ v o
V= {O 1} (23)

9



10 F. POLONI AND T. REIS

spans a deflating subspace @j.(In particular, if V' spans the canonicai-dimensional d-semi-
unstable invariant subspace &2}, thenV spans the subspade in (9). Moreover, under our
assumptions the Lur'e equations have a stabilizing salytad thugz . exists in (L5).

Remark 1
From the above discussion, one also obtains that the matrixappearing in 9) is the canonical
weakly stabilizing solution of the discrete-time algebriccati equation (DARE)

X =EX(I-HX)'ET +@. (24)

If the matrix H., in (15) exists as well, then we can apply Theor&&to show that the sequence
G\, generated by SDA converges %0,. Unfortunately, this hypothesis is too restrictive for an
important class of Lur'e equations, namely those corregdpanto optimal control problems with
positive semidefinite cost functional, i.e., whel®) holds true. Indeed, in all cases in whighis
singular but the even pencil)is regular, there is an E3 block of length > 3 in the EWCF of (),
and thus usingd0, Lemma A.2], one can show that all solutions to the Lur’e ¢igua are singular.
In particular, the canonical anti-stabilizing subspacthefpencil is spanned by

]

for a suitable solutiotk_, and thus the topmost block is singular.

However, in numerical experiments, we observe thiatconverges taX; nevertheless, while
H,. diverges and~, H;, and H, G, are bounded. The same phenomenon was observed al3@ in [
Example 5.5] without a full proof. We now prove here a coneaice result that covers these cases.

Theorem 16
Suppose that’y < 0andH, > 0 in SDA, and that there exists at least akesatisfying

X >0, and [Q is an invariant subspace dfZ%). (25)

Then, there is anX, satisfying @5) such thatX, < X for each otherX satisfying it, and the
sequencéH;,) converges tox.,..

Proof
An early result in the theory of doubling method5] shows thatH, = X,«, where X}, is the
sequence defined by

Xo =0, Xpp1 =Ho + EY X (I — GoXy) Ey. (26)

Therefore, we may reduce the problem to computing the lif{26). Notice that this is a fixed-
point iteration for the DARE associated with the pentit)( Using Lemma8, we can easily prove
by induction thatX,; > X} and thatX — X, > 0 for each positive semidefinite solutidh of the
Riccati equation. The sequengg, is bounded and increasing, and therefore it convergesnits |
X, is a positive semidefinite solution of the DARE, as obtainggassing 26) to the limit, and
satisfiesX, < X for every other solutiotX” > 0. O

Remark 2
The same results hold with all the inequalities reversedafpiif we change sign t6:, and Hy, for
eachk, the formulas in 14) are unchanged).

Remark 3
A corresponding result holds fa¥,, namely: suppose théf, > 0, Hy < 0, and there exists at least
oneY such that

Y >0, and [ﬂ is an invariant subspace df3). (27)

Then, there is a minima¥, satisfying it, andG, — Y, (proof: apply the previous remark to the
dual equatiory’ = Go + EoY (I — HoY) 'ET). As above, we may also reverse all inequalities and
replace “minimal” with “maximal”.

10
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Remark3 is the one that applies to our setting. We can prove the falgwonvergence result
by showing that its hypotheses are satisfied for the SSF lpsnociuced by Lur'e equations under
condition (LO).

Theorem 17
Let the solvable Lur'e equationd)(with A,Q € R™", B,C € R™™ andR € R™™ be given and
assume that the associated even pefik(regular and the pait4, B) is stabilizable. Furthermore,
assume that

45

T R]ZO

and lety > 0 be such tha® () with ®(s) € R(s)™™ as in §) andyI — A are nonsingular. Then,
for the matricesr, F', G andH as in 0), (21), the SDA iteration is well-defined and the sequence
(G) converges to the maximal solutidn, of the Lur'e equations4).

Proof

By Theorem? e), there is exactly one positive semidefinite solution to the Lur'e equations,
and thus, by Theorerm3, there is only on&@” = X, satisfying 7). In view of the modification of
Theoreml6 given in Remark3, we now only need to show that the matridésF, G andH as in
(20), (21) fulfill G > 0 and H < 0. The former statement follows by Lemr@aFor the latter one,
we first prove positive semidefiniteness by additionallyuasiag thatR is nonsingular, and then
invoke a continuity argument again as in the proof of Lem@asnd9. WhenR is invertible, the
leading2n x 2n block of A> " is the inverse of the Schur complementrof

ot el e

B —BR™'BT A—BRCT — AT
“[(A=BR'CT —y)T  Q-CR7'CT

(28)

Notice that-BR~ !B < 0andQ — CR~'C™T > 0, asthe latter is a Schur complementin a positive
semidefinite matrix, and thus the matrix 28] satisfies the hypotheses of Lem@dn particular,
the matrix H, which is the lower right block of the inverse of the matrix (®8), is negative
semidefinite. O

5. IMPLEMENTATION OF SDA FOR LUR’E EQUATIONS

Based on the results of the previous sections, we can uselhel Slgorithm to compute the
solution to a Lur'e equation. The resulting algorithm isagpd as AlgorithmL.

As we saw in Sectiol, the symplecticity of the pencil is preserved during the Siations,
and helps reducing the computational cost of the iteratiboreover, in this way we can preserve
the eigenvalue symmetry of the original pencil along theatien.

Algorithm 1 produces a sequencé&) of approximations of the maximal solutioX.
Corresponding sequencés,, L, of L and K satisfying @) can be constructed by performing an
eigenvalue decomposition

ATXk-i-XkA-i-Q XkB—i-C > 0 T
BT X, +CT R =10 ]l o L o],

21 ERm’m, U1 ERmJFn’m, 22 ER”’", U2 ERm-HL’",
ordered such that; contains the largest diagonal elements, and taking
(K, L] =%)°Uf.

Notice, though, thafl and L are non-unique and are typically not needed in applicatioesuse
them here only to check the residual of the Lur'e equatepssteriori Namely, with this choice

11



12 F. POLONI AND T. REIS

Algorithm 1: A structured doubling algorithm for the maximal solutioneof ur'e equation
input : A, B, C, @Q, R defining Lur'e equations4) fulfilling A1-A3
output: An approximation of the maximal solutiaki
Choose a suitable > 0;

Compute
0 A—~I B! 0 A+ ~I
T+ |AT—~1 @ C AT+~ Q|
BT c’ R BT o
Partition
E -G
T=|-H E7|;

* *

Use SDAonE, F = ET, G,H to computeGoe, Hoo !
ReturnX; = G;

of K, andL,, we can define theelative Lur’e residualas

H |:ATXk+XkA+Q XkBJrC] B [K,{] K. Ly

BTX, +CT R LT . 29)
ATX + X, A+Q XiyB+C '
BTX,+CT R h

A delicate choice which affects the accuracy of the compst#dtion is the choice of in the
Cayley transform. A heuristic strategy to this purpose espnted in49]. The authors perform an
error analysis in thec norm for their version of the formulas that give the initialvesEy, Gy, Hy
of SDA, obtaining a first-order upper bourtd) for the absolute error, and then apply an univariate
optimization method to approximateg min F'(v). This heuristic is not always satisfactory, as it
minimizes the error in the first step of the algorithm onlyparticular, the objective functioR' ()
has a qualitatively different behavior from the actual eatbainable by SDA in the limiy — 0: the
former typically converges to a finite limit, while the lat@iverges. However, up to our knowledge,
it is the only such heuristic available.

The simpler expression for the SDA initial values giveniii)(allows one to apply the standard
accuracy theory for linear systems in order to give a simptesr bound for their computation;
namely, the forward error is bounded by

o= (% i) A

This formula gives a tighter bound than the oneZf][ for instance in cases in which the blogk
is ill-conditioned but the full matrix is well-conditioned’he new approach can be extended easily
to Lur'e equations: the equation for the initial valuesli8)( and thus we have the error estimate

F(7) = Foo(Ay) A [l oo

Hence in our experiments we use the same optimization meth@d)] (Fibonacci search), but with
this new objective functiorf ().

’ o0

6. NUMERICAL EXPERIMENTS

We have implemented Algorithrh (SDA-L) using MATLAB ®, and applied it to the following test
problems.

12
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Figure 1. Relative residual fé?l

n  m| SDA-L R+Se=10"° R+Se=10"° R+Se=10"'? R+Ne=10""%

10 3| 5.-103] 2-10708 8.10"10 1010708 3.10710
50 5| 4-107%® | 8-107% 2.10708 2.10704 4.10710
500 10| 2-107' | 8§.10°10 2.10798 2.107%4 8.10710

Figure 2. Relative residual fé2

Problem#| SDA-L R+Se=10"° R+Se=10"°® R+Se=10""* R+Ne=10""%

3 2-100™ ] 6-10792 610702 610702 1-1079
4 4.107% | 6-10797 610799 9.10708 610799
5 7-10718 | 3.10797 1-10799 2.10798 1-10799
6 1-1071% | 7.10712 2.10713 4.10713 2.10799

P1 a Lur'e equation with a random stable matdxe R™", a randomC' = B, @ = 0 and R the
m x m matrix with all the entries equal to 1, withank(R) = 1. Namely, B was generated
with the command

B=rand(n, m;
To generate a stablé, we used the following sequence of commands:

V=randn(n);
Wer andn( n) ;
A=-VxV - \WW ;

P2 a set of problems motivated from real-world examples, takigm some modifications from the

benchmark setAREX [42]. Namely, we took Examples 3 to 6 (the real-world applicativ

problems) of that paper, which are a set of real-world proisigarying in size and numerical

characteristics, and changed the valué:dd get a singular problem. In the original versions

of all examplesR is the identity matrix of appropriate size; we simply re@ddts(1, 1) entry
with 0, in order to get a singular problem.

P3 a highly ill-conditioned high-index problem wittn =1, A =1, + N,, B =e, (the last
column of then x n identity matrix),C = —B, R = 0 and

-2 -1
-1 -2 -1
-1 -2 -1
-1 -2

Such a problem corresponds to a Kronecker chain of leagth 1 associated to an infinite
eigenvalue, and its canonical semi-stable solutioX is- 7. Notice that the conditioning of

the invariant subspace problem in this case'i¢*»*+1), for an unstructured perturbation of

the input data of the order of the machine precisi¢p43, section 16.5].

The results of SDA-L are compared to those of a regularinatiethod as the one described in
(5), for different values of the regularization parameteAfter the regularization, the equations are

solved using SDA after a Cayley transform with the same patam (R+S), or with the matrix sign
method with norm scalingdp, 44] (R+N). We point out that the control toolbox of Matlab coints

a commandjcar e that solves a so-callageneralized continuous-time algebraic Riccati equation
this is equivalent to finding( .. for a pencil in the form1). However, this command is not designed

to deal with a singular?, nor with eigenvalues numerically on the imaginary axisefBfore, when

13



14 F. POLONI AND T. REIS

Figure 3. Forward error fdP3

n| SDA-L R+Se=10"% R+Se=10"% R+Se=10"'2 R+Ne=10"8
1] 1-100%% ] 1.-1073 10-107095 1-10796 1-107%4
2| 81079 | 3.10792 1-10792 4.10702 110702
3| 41079 | 1.107% 6-10702 1-10101 610792
41| 3-10792 | 4.107% 2.10701 10-10701 5-10701
5| 810792 | 1.10%0 5.10~01 2.10100 6-10~01

applied to nearly all these experiments, this command fap®rting the presence of eigenvalues
too close to the imaginary axis.

For the problenP3, where an analytical solutioX' = I is known, we reported in Figuréthe
values of the relative forward error

ForP1 andP2, for which no analytical solution is available, we compuitestead the relative Lur’e
residual £9), which are in Figureg and2 respectively.

We see that in all the experiments our solution method obtinetter result than the ones based
on regularization. The reader may wonder why the residuapfoblem 5 inP2 is two order of
magnitude larger than for the other problems. It turns oat the culprit is the choice of in
the Cayley transform: with a hand-picked value, the erra@pdrto9 - 10~1¢. This shows that the
heuristic for the choice of is still not perfect; as far as we know, finding the optimalueabf the
parameter is still an open problem in all applications of Cayley traafs.

7. CONCLUSION AND OPEN ISSUES

In this work we have introduced a new numerical method fostilation of Lur'e matrix equations.
Unlike previous methods based on regularization, this @gugr allows one to solve the original
equation without introducing any artificial perturbatiomdawithout relying on possibly ill-posed
rank problems on the block.

The first step of this approach is applying a Cayley transftonconvert the problem to an
equivalent discrete-time pencil. In this new form, the iitéreigenvalues can be easily deflated,
reducing the problem to a discrete-time algebraic Ricogtiaton with eigenvalues on the unit
circle. For the solution of this latter equation, the stauet-preserving doubling algorithm was
chosen, due to its good convergence properties in presdneigemvalues on the unit circle, as
proved in BQ]. Direct methods, such as the symplectic eigensolverepted in 5], can also be
used for the solution of the deflated DARE.

Moreover, we derive a novel, simpler formuld 6] for the initial values of SDA, and,
correspondingly, a simplification of the heuristic criteriin [29] for the choice of the parameter
~ of the Cayley transform.

The numerical experiments confirm the effectiveness of @w approach for regular matrix
pencils. It is not clear whether a similar method can be aathjat work in cases in which the pencil
(1) is singular, a situation which may indeed happen in theedmnaf Lur'e equations. Another
issue is finding a method to exploit the low-rank structureofwhen present). These further
developments are currently under our investigation.
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