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Abstract We propose an algorithm for the numerical solution of the’d.@qguations in
the bounded real and positive real lemma for stable syst€hesrecently developed ADI
iteration for algebraic Riccati equations is generalized.tir'e equations. The algorithm
provides approximate solutions in low-rank factored fokie prove that the sequence of
approximate solutions is monotonically increasing witbpect to definiteness. If the shift
parameters are chosen appropriately, the sequence isygmbie convergent to the minimal
solution of the Lur’e equations.

Keywords Lur'e equation- ADI iteration - numerical method in control theory
linear-quadratic optimal contrelbounded real lemmapositive real lemma

Mathematics Subject Classification (2000)15A24 - 49N10- 47J20- 65F30- 49M30 -
93B52- 65K10

1 Introduction

We consider an algorithm for the approximation of the mirdis@utions of the bounded
real and positive real Lur'e equations. In this introduatiwe focus on the bounded real
case.

Consider the bounded real Lur'e equation

A*X +XA+C*C =—K*K,
B*X +D*C =—J'K, 1)
D'D—1=—J%,

whereA € C™" is stable (i.e. all its eigenvalues are in the open left pife),B € C™™M,
C € CP*" andD € CP*™ are given; the unknowns in this equation are the Hermitiatrimna
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X € C™" and the further matrices € C%", J € C%Mwith g < m. We will call X asolution

of (1), if there existg € Ng andK € C%", J € C%™ such that (1) holds true. A solution
X is calledminimal if X <Y (i.e.,Y — X is positive semi-definite) for all other solutiolfs
of (1). Note that ifD*D — 1 is invertible, thenJ andK can be eliminated and (1) becomes
equivalent to the algebraic Riccati equation

A*X +XA+C*C+ (XB+C*D)(l — D*D) }(B*X +D*C) = 0.

An important application of the bounded real Lur'e equadi@bounded real balanced
truncation[11, 12], a model reduction method which preserves conticbf a system.
In particular in this application there is a need for an effitinumerical method for the
large-scale case (i.e,is large). This large-scale case arises for example whesidenng
discretizations of partial differential equations (seet®a 5 for a typical example). In the
large scale case it is unfeasible to even store the denséxn¥a C™". Our algorithm
provides a sequende) of approximate solutions of the fordd, = R;R for someR, €
CheM with, typically, ¢ < n (i.e., X is given in “low-rank factored form”). For a “shift
parameter sequencét‘x])'j‘:1 with a;j € C with Re(aj) > 0, the main computational cost
in the algorithm consists of, for eaehy (j = 1,...,K), solving a linear system of the form
(aj —A)x =V, wherev € C™P. The above features make the proposed algorithm attractive
for the case whera is large, p is small andA is sparse. This situation is typical when
considering discretizations of partial differential etioas.

The proposed algorithm is an extension of the recently dgeslADI methodfor alge-
braic Riccati equations of the tyge' X + XA+ C*C — XBB'X = 0 [8, 10], which in turn is
an extension of the ADI method for Lyapunov equations [799, 1

For the convergence analysis of the algorithm, we use theafilg connection between
the minimal solution of the bounded real Lur'e equation anaptimal control problem. It
is well-known that the quadratic form defined by the minimallion of the bounded real
Lur'e equation (1) expresses theailable storagd23]. Namely, for allxg € C" there holds

0= sup [y~ ut) P, @
ueL?(0,00;CMy /0

where

X(t) =Ax(t) +But),  x(0) =xo,

y(t) =Cx(t) + Du(t),
see [21-23]. Thereby we follow the ideas in [10], which gieesinterpretation of the ADI
method for the algebraic Riccati equation [8] in terms of timelerlying optimal control

problem.
The theoretical foundation for our algorithm is a sequerfcaibspaces

®)

= spar{e”™,... e W} C L*(0,). @

In this introduction we assume for notational simplicitythhe “shift parametersty; are
distinct (in the main part of the article we drop this assuomtthe definition of#; has to
be modified in case of non-distinct parameters).RetlL2(0, c0; CP) — L(0, 00; CP) denote
the orthogonal projection ontg ® CP. The matrixXy produced by our algorithm is proven
to represent the optimal cost for the following control dewb (see Theorem 3)

o= sup [T (RO Jut) P, ©)
)0

ueL2(0,00;CM
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subject to (3). Since the spac#g are nested, this representation shows that the sequence
(X«) is monotonically increasing with respect to monotoniditygt isX, > Xk_1 for allk € N.

In the case where
U Tk = L2(07°°)7 (6)
keN

we immediately see that we will have convergencéqf to X. The property (6) is proven
in [17] to be equivalent to theon-Blaschke condition

< Reaj)
2 Trimp " ™

We note that this non-Blaschke condition is for examples§ati if the parameters all be-
long to a fixed compact set contained in the open right halfigl(in particular, if the shift
parameters are periodic).

We further consider the ADI method for positive real Lur'euatjon

A*X +XA=—K*K,
B*X —C =—J'K, ®)
—(D*4+D)=—J*J,

where A € C™" is stable, andB € C™™M, C € C™", D € C™™M, These equations arise
in passivity characterization of linear systems [1, 2] amthie passivity-preserving model
reduction method gbositive real balanced truncatidi2,18]. Our considerations are based
on the fact that the minimal solution expresses the avalatdrage for passivity, that is

XXX = sup —2Re/ y(t)*u(t) dt 9)
uel2(0,00;CM) 0
subject to (3).

At this point, we briefly summarize existing approaches &gblution of bounded real
and positive real Lur'e equations.llif-D*D (resp.D + D*) is invertible, then, of course, the
huge variety of existing methods for algebraic Riccati ¢igua (see [3] for an overview) can
be used. In the case where this matrix is however singukare thre only few methods avail-
able: Thestructured doubling algorithrwvas recently developed for Lur'e equations [15]. In
contrast to our method, the structured doubling algoritlu@schot provide factorizations of
low rank form and is therefore memory consuming in the lasgale case. Another approach
to numerical solution was presented in [15], where soméitatipart” of the Lur'e equation
is extracted such that an algebraic Riccati equation iSmdxda The latter is then solved by
Newton-Kleinman iteration [3]. This method can be formathsuch that approximate low
rank factors are obtained. A drawback of this approach isttieextraction of the critical
part consists of successive nullspace computations whighba numerically unstable.

This article is organized as follows. In the forthcoming Bt 2, we introduce the sys-
tems theoretic and functional analytic framework. Somal&mentals on singular optimal
control, spectral factorization and their relations tortlinimal solutions of positive real and
bounded real Lur’e equations are presented. Thereaft8edtion 3, we consider (general-
izations of) the spaces; from (4). In particular we consider an orthonormal basislese
spaces (the Takenaka—Malmquist system) and provide nmepirsentations of the solution
maps associated with the dynamical system (3) with respettitig basis. In Section 4 we
apply these findings to the optimal control problem. In paitr, we show that the matrix
representations from Section 3 can be used to determineoliiios Xy of (5). This gives
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rise to an iterative algorithm for the determination of thimimal solutions of the bounded
real (and positive real) Lur'e equations. In this sectional@ prove convergence of the
algorithm. In Section 5 we demonstrate our results by metasiamerical example.

2 Linear systems and singular optimal control

We present the connection between the minimal solutiontef_ur'e equations (1) and
(8) to the optimization problems (2) and (9) respectivelg give an explicit formula of the
minimal solution of the Lur’e equation in terms of operatassociated to the linear system
(3). This will be the theoretical basis for our algorithm.

Definition 1 (Output map, input-output map) Assume thafA € C"™"is stableB € C™M,
C € CP*" andD € CP*™. Consider the following maps associated to the system (3):

a) theoutput map¥ : C" — L2(0, c0; CP) which maps the initial state, to the outputy (for
controlu = 0),
Wxg =t — Cerlxo; (10)
b) the input-output magF : L2(0,00;C™) — L?(0,c0; CP) which maps the input to the
outputy (for initial conditionxy = 0);

1t
Fu=tw— /0 CceAtTBu(T) dr + Du(t). (1)

The adjoints¥* : L%(0,00; CP) — C", F* : L?(0,00; CP) — L?(0,0;C™) are given by

W*z:/ N TCH (1) dr,

° e (12)

F*z:te/ BN (T-UC*z(1) dr + D*z(t).
t

With the above introduced mappings, the supremized express(2) is ||LIJxo+]Fu||E2 —
||u||fz; the supremized expression in (9) become&Re(u, ¥xo + Fu), 2.
Outer systems play a crucial role in linear-quadratic optioontrol.

Definition 2 (Outer system)Assume thatA € C™" is stable,B € C™™, C € CP*" and
D € CP*™. The system (3) is calleduter, if the operatoif in (11) has dense range.

The property of a system being outer can be characterized ygabraic criterion on the
matricesA, B, C andD.

Proposition 1 Assume that & C™" is stable, B¢ C™™, C € CP*" and De CP*™, The
system(3) is outer, if, and only if,

rk

_’\::JFAS} —ntp VA ECwithReA)>0. (13)

Proof The proof will make use of the following two facts:

a) A bounded operator that maps between Hilbert spaces Inag dange, if, and only if,
its adjoint has a trivial nullspace.
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b) By the representation & in (12) and the variations of constants formula, the follayvi
holds true: Forz LZ(O,oo; CP) there holdsy =F*ze L2(O,oo;(Cm), if, and only if, there
exists some absolutely continuows: L?(0,; C") with

—Ww=A'w+C*z
. ; 14)
v=B"'w+D"z

Note that, by the fact thah is stablew € L2(0,00;C") is uniquely determined by ¢
L2(0,00;CP).

First we prove that, if" has dense range, then (13) holds true: Assuming the convitise
latter, then there exists somec C with ReA > 0 and someve C", Z e CP with [{] # 0,

such that
_|o
= lol-

Then we have % 0, since, otherwisé—A | +A*)W= 0 with W+ 0, which is a contradiction
to the stability ofA. Now define
MRl
z 7

These functions fulfill (14). By b), we have-8 F*z SinceZ# 0, we havez # 0, whence
kerF* is nontrivial. By a), this is a contradiction #bhaving dense range.

Finally we assume (13) and aim to prove tlidtas dense range. To this end, we prove that
F* has a trivial nullspace. Assume that kerF*. Then, by b), there exists some absolutely
continuousw € L2(0,00; C"), such thaf?] solves the differential-algebraic equation

-es ][]

Then it follows by a transformation of the matrix penfil;#" S ] into Kronecker form [5,
Chap. XIlI,§7] thatz has the form

—Al+A* C*| W
B* D*||Z

dfio
dt |00

14

2t)= 3 pelt)e ™,

k=1

wherepy,...,ps: [0,00) — C™ are vector-valued complex polynomials, ahd..., A, are
distinct complex numbers with

k(M EAC) i fork=1,..,0 (15)
B D

Numbers with the latter property are callgdneralized eigenvaluesf the matrix pencil

[s" & ~B]. Egs. (13) & (15) implies thads,...,A; have positive real part. The property

z€ L?(0,00;CP) then gives rise tgy = ... = px = 0, and thug = 0.

Remark 1By taking the Schur complement, we see that (13) holds tfuand only if, the
transfer functiorG(s) := D +C(sl— A) B has full row rank on the open right complex half
plane.
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Now we study solvability of Lur'e equations and charactetize properties of the solu-
tions. We study the more general case of Lur'e equations

A'X+XA-C"QC=-K"K,
B'X - (D*QC+S'C) =—JK, (16)
—(D*QD+S'D+D*S+R) =—J*J,

where A € C™" is stable,B € C™™, C € CP*", D € CP*™M and Q € CP*P, Se CP*M,
R e C™Mwith R= R* andQ = Q*. Note that we obtain the bounded real Lur'e equation
by settingQ = —I, S= 0 andR = I; the positive real Lur'e equation is given by (16) with
p=mQ=R=0andS=1.

The following concepts are crucial for the existence of mali solutions of Lur'e equa-
tions and their relation to optimization problems.

Definition 3 (Popov function, Popov operator)Assume thaf € C""is stableB € C™™,
CeCP" DeCPMandQ e CP*P, Sc CP*M Re C™Mwith R= R* andQ = Q*. Then,
for G(s) = C(sl — A)~1B+ D, thePopov function : IR — C™ ™M is defined by

M(1w) := [G(1w)* 1] {g g} {G(;w)} :

Let the operatoir be defined as in Definition 1. THeopov operator : L?(0,c0; C™) —
L2(0,00;C™) is

%= [F* 1] [g F’j m . (17)

Remark 2 (Popov operator, Popov function, Lur'e equations)

a) The Popov operator is positive semi-definite, if, and dflthe Popov function fulfills
M(iw) > 0forallw e R [4].

b) If the Lur'e equation (16) is solvable, then the Popov fiorcfulfills 7 (1) > 0 for all
w € R [16].

c) If the Popov function fulfills7 (1) > 0 for all w € R and the system (3) is controllable,
then there exists a minimal solution of the Lur'e equatio8)(Ihis follows from the
results in [16] and the substitutions

X~ =X, C*QC~ Q,
C*QD+C*S~ C, D'QD+SD+D*S+R~ R, (18)
“minimal solution” ~~ “maximal solution”.

d) Inthe bounded real case, the Popov operator reads‘FF. Solvability of the bounded
real Lur'e equation (1) therefore impligf|| < 1. This property is calledontractiv-
ity. The Popov function now reade — | — G*(1w)G(1w). By b) the solvability of (1)
implies ||G(1w)|| < 1 for all w € R. Further using stability oA, the maximum princi-
ple yields that thes#,-norm of G does not exceed one. By b), under the assumption of
controllability, the converse implications are also true.

e) In the positive real case, the Popov operator is givewby F* + F. Positive semidef-
initeness of this operator is call@éssivity Here the Popov function is given bg —
G*(1w) + G(1w). If the positive real Lur'e equation (8) is solvable, thebility of A and
the maximum principle give rise t6(s) + G(s)* > 0 for all s € C with Re(s) > 0. The
latter property is callegositive realness
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Remark 3 (Dissipation inequality)

a) Solutions of the Lur'e equation (16) are special solgtiohthedissipation inequality

A*X+XA—C*QC  XB-—(C*QD+C*S)

The solutions of (3) fulfill

]
X(t1)*Xx(t1) — X(t2) " Xx(t2) > _/

€]

] (Sl er woemsrs

see [23]. More precisely, if the left hand side in (19) equaliK J]” [K J] for some
K € C*" J e C*™M then the solutions of (3) fulill

x(tl)*X (tl) — X(tz)*XX(tz)

X
%) * L7 IS ~
_ /tl [ﬁgﬂ {g FSJ m;ﬂ dr + /tl IRX(T) + Ju(T)|2dr Vit € R sty <o,
(21)

see [21].

b) If the Popov function fulfillg7 (1) > 0 and the system (3) is controllable, then the Lur'e
equation (16) has a minimal solution. If the system (3) ibifitzable, and the dissipation
inequality (19) has a solution, then the Lur'e equation (i a minimal solution [16].

Now we present the relation between the minimal solutiomsggoimization problems sub-
ject to the linear system (3). The following result is onlyliglst modification and special-
ization of those presented in [4].

Theorem 1 Assume that & C™" is stable, Be C™™ C e CP*", D € CP*M™and Qe CP*P,
Se CP*M Re C™Mwith R= R* and Q= Q*. LetTF be the input-output operator arié
be the output operator of the systéf). Assume that the dissipation inequal{td) has
a solution. Let X be the minimal solution of the Lur'e equasi¢16) and let Ke C9*N,
J € C%*M be such tha{16) holds true. Then the following hold true:

a) The system
X(t) =AX(t) +Bu(t), x(0) = xo,

(22)
y=(t) =Kx(t) +Ju(t),

with output map¥= : C" — L2(0,00;CY) and input-output magF= : L?(0,0;C™) —
L2(0,00;CY) is outer.
b) The operatoif= and the Popov operatql7) are related by

X =TF:F=. (23)

¢) The operator¥ =, W=, the output mapV, and the input-output map of the systeni3)
are related by

Fz4e = (FQ+S)¥. (24)

d) The minimal solution fulfills
X =zy- Q. (25)
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e) For all ue L?(0,00;C™) there holds

_/|Fu+W¥xo Q S| |Fu+ Wxo o e 2
(P [, oot
Proof

a) LetX be the minimal solution. Then, by using the substitutiond8), it has been shown
in [16, Sec. 5] that

im [—)\I +A

’ ﬂ _ ™9 YA e C with Re(A) > 0.

Then it follows from Proposition 1 that (22) is outer.

b) Let " be the input-output operator of the systeth) = Ax(t) + Bu(t), Yext(t) = x(t).
Then we hav& = CI" 4D andF= = KI" +J. Letu € L?(0,;C™) be continuous. Then
by integration by parts, we obtain foe [0, ) that

(F*A'XTu)(t)
00 " T

_ / B (T OA"X / A T-9IBY(s) dsd
t 0

g « T « T
- / Bee? <T*t>xd—dr / AT-9By(s) dsdr + B*eX (U / AT-9BY(s) ds
t 0 0

t
.00 B T ot

—_ / Bt <T*‘>xd—dr / AT-9BY(s) dsdr — BYX / At-9BY(s) ds
t 0 0

® * T ® *
—_ / BN (TUXA / AT-9By(s) dsdr — / B e (TUXBUYT)dr
t 0 t

— B*X/Ot A -9Bu(s) ds
=— (F*XACu)(t) — (F*XBu)(t) — (B* X u)(t).

Making use of this expression, we obtain for all continuous L2(O,oo;(Cm) andt €
[0, 0) that

(F=F=zu)(t) =((KIM)*(Kru)(t) + (3" (Krw)(t) + ((KF)*u)(t) +I"u(t)

=(F*K*KI ) (t) + (I K u) () + (MK Ju)(t) + I*Ju(t)

= — (M (A*X+XA—C*QC)I u)(t) + (J'KI u)(t) + (M *K*Ju) (1)
+(D*QD+S'D+D*S+R)u(t)

—(F*XBU)(t) + (B*XI u)(t) + (M *C*QCI u)(t) + (J*K M u)(t)
+(F*K*Ju)(t) + (D*QD+ S'D+D*S+Ru(t)

—(F*C*QCI u)(t) + (I *(C*QD+C*S)u)(t) + ((D*QC+ S'C)u)(t)
+(D*QD+S'D+D*S+R)u(t)

- [Cr|+ D} : [g FSJ [cr|+ D} K1) = (WD),

The density of the continuous and square integrable fumstio L? then implies that
X =TFLF=.
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c) By integration by parts, we obtain that for &jle C" there holds
/t "B (TUATX A odT = — /t ) B*eA*(T’UXd—dTeATxodr + BN UMy :°
=— /t.m B &N (T-UX A xodT — B*XeXo.
Using the previous formula, we obtain
(F*Q+S')Wxo = /t "B (TUC* QO i + (D' QC+ S'C)exo
- /t'oo BN (U (KK 4+ A*X + XA x0T + J*KePix + B Xexg

= (FL4s)%0 + / BreX (-0 (AX + XA xodT + B Xerxg
t
= (Fz%=)xo.

d) Stability of Acombined withA*X + XA—C*QC+ K*K = 0 implies
X= / (—C'QC+K K)eMdt = —W QW + Wiy,
0

e) Letu e L?(0,00;C™). Then, by using b), ¢) and d), we obtain
B < {Iﬁ‘uﬂﬂxo} {Q S} {Iﬁ‘uﬂﬂxo}
u ISR u L2
=—(U,(F'QF +F*'S+STF+R)U) 2 — (U, (F'Q+ S)Wx0) 2 — ((F*Q+S")Wxo, U), 2
— (P'QWxo,u) 2 — %W Q¥Xo
=—(UFzF=u) 2 + (U FZY¥=Xg), 2 — (FEY¥=Xo, u) 2 — (P QWXo, U) 2 — X W QWX
=— |[Fzu+ W=xo||> + W2 ¥=xo — X)W QWxo
=—[[Fzu+¥=xo||* + XX %o.
Remark 4 (Lur’e equations)

a) Equation (23) is calledpectral factorizatiorj4, 24].
b) If the Popov operator is positive definite and boundedieitible, thenF= will be
boundedly invertible as well. In this case, (24) implies

Wi = WH(F*Q+ S ) FIFZ (F'Q+ SHW = W (F'Q+S)'Z HF Q+S)W.
Consequently, the minimal solution reads
X =W (FQ+S)Z HF'Q+S)W—-wQw,

which coincides with [20, Proposition 7.2] (up to a minusmsighich is due to a different
sign convention).

c) The property off = being outer implies that for altyg € C", € > 0, there exists some
u € L?(0,00;C™) with |[Fzu+ Y=xo||? < £. As a consequence, we have, from Theorem
1 e), that for alikg € C"

. Fu+Wxo| |Q S| |Fu+Wxo
wo-, o (VLA e
o ueL?(0,00;CM) u SR u L2
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d) Forthe bounded real Lur’e equation, the minimal solutiesds
X =Wzy- Ly,

In particular,X is positive semidefinite in this case.
In the positive real case, we have
X = Wi,

so that the minimal solution is again positive semidefinite.
e) It follows from Theorem 1 e) that far € L?(0,; C™) there holds

Fu+W¥xo Q S| |Fu+ Wxo .
([ /), e

(i.e. uis an optimal control) if, and only iffzu+ Y-=xo = 0. Using Theorem 1 a), this
means that there exists some[0, ) — R" such that the differential-algebraic equation

R o

is fulfilled. Then it follows by a transformation of the matpencil [S:KA jE‘] into Kro-
necker form [5, Chap. XII§7] that x andu can be expressed by sums of exponen-
tial functions of typezﬁ:1 pr(t)e Mt (cf. proof of Proposition 1), wherey, ..., p, are
vector-valued complex polynomials, and the distinct nurslie, ..., A, are the general-
ized eigenvalues of the pen¢i" 2 ~P]. By using the substitutions in (18), the latter are
shown in [16] to be the negatives of the stable generalizgehealues of theven matrix
pencil

0 —sl+A B
s& —o = [sI+A*  —C'QC —C*QD-C*S
B* -D'QC-SC -D*QD-SD-D*S—R

3 Convolution systems and matrix representations

In this section we review results from [10] which give matm@presentations of the adjoints
of the output ma@ and the input-output map with respect to a certain orthonormal basis
of L%(0, ).

Definition 4 Let (aj){_, be a complex sequence with (g) > 0 for all j € N. We define
the correspondingakenaka—Malmquist syste(mj)le, Yj € L%(0,00) by

o =t et Y1 =+/2Rga1) - @,
O =¢-1—(aj+0_1) (€ *x@_1), Yj =1/2Reaj) - @, (28)

wheresx denotes the convolution product, i.ggxh)(t) = jg g(t —1)h(T)dr.
The space generated by the fiksfakenaka—Malmquist functions is denoted.sy( o).

Remark 5

a) The Takenaka—Malmquist system is orthonormal (see¥/gAppendix B] for a proof).
b) The spaces# (o) can be interpreted as rational Krylov subspaces [10].



The ADI method for bounded real and positive real Lur'e eigunest 11

c) Theconvolution systerfy;)", ¢; € L2(0, ), which is defined by
pri=tse M = % xpjq, (29)

fulfills span{ @1, ..., ok} = ().
d) Consider the distinct numbegs, ...,qy with {qs,...,qs} = {a1,...,ax}. Let¢; be the
number of indices in whickj; appears ir(or,—)'j‘:1 (thusk =¢1+...4+¢3). Then

J
sparﬂ[dJl,...,dJk}:EBspan{th'e’qit ‘IZO,...,fjfl },

j=1
see [10,17].
The most important property of the above introduced spatt®ist isF*-invariant.

Theorem 2 Let Ac C"™" stable and B: C™™M, C e CP*", D € CP*™, For F as in(11) and
4 (o) the sequence of subspaces from Definition 4, we have that

F* (i (a) ® CP) € A (a)®C™.

Proof The proof is contained in [10] for the cag&&= 0. The general result follows by
regardingD as a pointwise multiplication operat@ : L2(0,;C™) — L?(0,00;CP). The
latter obviously fulfills

D" (J(a) ® CP) C H(a) © C™.

The above invariance gives rise to the existence of matpresentations df* with respect
to the Takenaka—Malmquist systems. These will be explicitihstructed in the following.

Definition 5 Let (aj)§_, be such that Rexj) > 0 for all j € N. Let ()74, Yj € L2(0, o)
be the corresponding Takenaka—Malmquist system (28)k EdN, the mappingy : CX —
L2(0, ) is defined by

k
IX= "% Xj-j. (30)
2
Further, for the identity matrik € CP*P, we identify1y : C*P — L?(0, 00; CP) with the tensor
producti, ® 1. We omit an additional subindex for sake of brevity.

Orthonormality of the Takenaka—Malmquist system implrest ty defines an isometric em-
bedding. The orthogonal projector onit(a) @ CP is therefore given by

P = ity : L2(0,00;CP) — L2(0,0;CP). (31)

With operatord¥ andF as in (10) and (11), we define the matrices

R = [ F1 € CkPkm (32)
Sc=1W e CkPn, (33)

We have
AY =&, R = RFR = 1Pl s (34)

where the equalityk[F = RFR follows by taking adjoints irf*R, = R(F*F and the latter
equality follows from Theorem 2.
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Algorithm 1 from [10] provides a recursive method for theetatination ofS, andF.
The determination of is based on the fact that the unnormalized Takenaka—Mabhqui
system systenig))_, (28) fulfills

W (@) = (a1 —A")~IC,
W (@) = WH(@-1v) — (@ +T1) (0 - A) W (gy)  weCP,
see [10, Corollary 13]. The determinationmgfrelies on the following consideration: LAt:
L2(0,00; C") — L2(0, 00; CP) be the input-output map of the system (3) witk- | andD = 0.
ThenF = AB+ D, whereB € C™*™ andD € CP*™ are regarded as constant multiplication
operators or.2(0,0;C™). ThenA* satisfies the recursion (hefgj)T_, is the convolution
system from (29))
A*($1v) = (a1 —A)IC vy,
A (§v) = (aj — A)ICvgj + (a; — A) A% (9j-1v)  WveCP,
see [10, Corollary 14]. A transition from the baés, . . ., ¢x) to the basigyx, . .., gk) then

gives rise to the construction &%. The precise construction is given in Algorithm 1 (we
refer to [10] for further details).

Algorithm 1 ADI iteration for output and input-output maps.
Input: A e C™" a stable matrixB € C™™, C € CP*", D € CP*™ and shift parametersy, ..., ax € C with
Re(ai) > 0.
Output: S = (¥ € CKPXN, R = (i € CkPxkm

1: Vi = (a1 —A¥)~IC

2: § = +/2Reay)-V;

3: Q1= /2R¢ga1) VB

.1

4. L= JaRday)

5 F=QL1+D

6: fori=23,... . kdo

7 Vi=Via—(a+aic1) (o —A) Vi

8 §=I[3.4, V2Reai) ViJ*

90 Q=[Q-1,/2Reai)-V/B]

. Re(aj)
10: Vi = Re(aiil)
S ar+d;
vZRe@) a1 -0 T3+ aj
110 M= v Mi2= .
. .
V/2Re(a;) Qi—1— 0 O;i +0j
1 1 7\/2Rd(11)
. 0l -
Mig=| " |, Ma= {1 O}’ Mis = :
1 —/2Rgqi-1)
1

120 M= MM MMM
. ~_[wLica 0] |Lica Of [W(ai+Tig)l O
e L"{ 0 0] M'{O 1“ oyl -1
. [Fi-1,0]
14: F = —
' bm®m+pm
15: end for
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4 The projected optimal control problem

In this section we consider the optimal control problems&Z3B) and (9) & (3), and their
relations to the corresponding optimal control problema/fiich the outpuy is replaced by
Ry with the orthogonal projectd¥ as in (31).

We start with the bounded real case.

Theorem 3 Assume that & C™" is stable, Be C™™M, C € CP*" and De CP*™. Further
assume that the bounded real dissipation inequality

A'X + XA+ C*C XB+C'D .
BX+D'C DD-I | =% X=X (35)

has a solution X C™". Define¥ andTF by (10) and (11).

Let (aj)%_; be a complex sequence wie(a;) > 0 for all j € N, and let i € CkP<km,

S € C*P*N pe defined as if32) and (33).

Then the matrix - FF € Cckm<km js positive semi-definite. In particular, there exists
some matrix Ey € Chekm with full row rank and

I =R Fc=Fz (F=k- (36)

Further, there exists some-g € C%*" such that

FZSsk= RS (37)
For the orthogonal projector Pas in(31), the matrix X defined by
Xe=SSc+ S kS (38)
fulfills
XXxXo = sup |RFu+RWxo|”—|ull®. 39)

UEL2(0,00;C™)

Proof Since the dissipation inequality (35) has a solution ani$ stable, we obtain by
Remark 3 b) that the bounded real Lur'e equation has a minsolationX = X* € C™",
Then Theorem 1 implies that the operator F*FF is positive semi-definite. Sindg, < |
we haveF*RIF < F*FF, which implies that — F*RJF > | — F*FF. Sincel —F*FF is positive
semi-definite it follows that — F*RF is positive semi-definite. We have

| — R FRc=1 — 1gF 1t Fige = 15 (1 =F*RIF) 1 > 0,

so thatl — F/Fy is positive semi-definite. Thus, there exists sdfag € C*k™ with full
row rank and satisfying (36).
We prove that iniF;S) C im(F= k). By taking orthogonal complements, this is equiva-
lent to
ker(F= k) C ker(S¢Fy).

Let xp € C" andu € L?(0,00;C™). Then, by stability of, the statex(t) of the system (3)
tends to zero, if tends to infinity. Then (20) yields

XoX%0 = [[Fu+Wxo||? — [Jul®.



14 Arash Massoudi et al.

By further using (34) and (36), we see that
XoX%0 > [[Fu+Wxo||* — ul®

> ||AFu+RWxo|? — [|Reull? — [|(1 — R)ull?
= (iRt u+ 1Sl |* = [[gull? = || (1 = Roul?
= [|Rctcu+ Sexol|? — flrcull  [1(1 = Roul? (40)
= (1gu, (FRc— Digu) + 2Re(igu, B Soxo) + [[Sexol? = || (1 = Roul?

— (1KU,F2 F= ) 1¢u) + 2Re(1u, K Soxo) + | Seoxol|> = [1(1 = Rou®

— |[F= kigull® + 2Re(iu, B Sow) + (Sl |* — [|(1 = Roul|*.

Assume that
kerF= y ¢ kerScF.
Then there exists some e CK™ with S;FU # 0 andF= 0 = 0, and thus we can choose
somexp € C" such thatx;S;F # 0. Then, forA € C, substitutingxy andu := 1 (A0) €
L2(0,00;C™) into (40), we obtain
XXX > — [|F= ki k(A G)[|* + 2Re(11k(A 0), F Soxo) + | Sexol|* = [[(1 = R (A 0) 2

= — [ AF= 0l + 2Re(A (0, R Soxo) ) + [|Sexol|*

=2Re(A (0,R¢S0)) + [|Sexol| .
In particular, by an appropriate choice dfe C, we can make the expression on the right

hand side arbitrarily large, which leads to a contradictidance kefF= x) C ker(S;F).
SinceF= i has full row rank,F_:,,kF_;“’k is invertible and therefore

S i= (F=F2 ) Pz kR (41)

is well-defined. We now show that it satisfies (37). ket C". By the above established
subspace inclusion iff Sc) C im(FZ ), there exists & € Ck™ such thatFy Sx = Fiz
Then

F2 1Sz kx = 2 (F=kF2 ) = kRS = FE  (F= kFE ) = F2 2= F2 2= R Sx

Sincex € C" was arbitrary this proves thdiZ ,S= = 'S, i.e the above define6=
satisfies (37). '
It remains to prove thaXy as in (38) fulfills (39). Using (36) and (37), we have for all
X0 € C" andu € L?(0,;C™) that
IR U+ R0 | — | ul?

= — (1gu, F2 F= i¢u) + 2Re{1¢u, R Soxo) + | Sexol|* — (1 = Boyu?

= — (1¢u, F2 (F= ki U) — 2Re(IU,F2 | Sz ko) + (| Sexo | — 1| (1 = Roul|?

= — |[F= kigu+ Sz %0l >+ [|S= 0%0l% + 1Sl * — (1 (1 = Roul?

=~ [Fzsctu-+ Szl = 11 = Rl + XX

<XXXo-
This gives rise to

XXo > sup  |[RFU+RWxo|[? — [|uf]?.
UEL2(0,00;C™)
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On the other hand, using the surjectivity fef i, there exists soma € Ckm with F=xl=
—S= kXo. Then, foru = 10, we see that equality holds true in the above calculatiohiss T
proves (39).

Remark 6 (Bounded real Lur'e equations and projected ogtaoatrol problems)

a) Equation (36) can be regarded as a discrete version opéutral factorization (23). The
matrix Sz i takes the role of the operatét in Theorem 1.

b) The formula (41) forSz i shows thatX, equalsS{[l + &sz‘k(F;_,kF:f‘k)*ZF;,kFl("]&.
It is easily verified thaF_;“'k(Fg,kF_;“'k)*ng,k is the Moore-Penrose pseudo-inverse of
FZ (F= k. Therefore X = S;[I + R(l — F¢F) TR ]S. This formula should be compared
to the one given in Remark 4 b) fof.

Next we prove that the sequen@é) is monotonically increasing with respect to definite-
ness. We further present a criterion on the shift parametach that convergence to the
minimal solutions is achieved.

Theorem 4 Assume that & C"™*" is stable, Bc C"™™ C e CP*" and De CP*™. Further
assume that the bounded real Lur'e equat{@hhas a minimal solution X C™". Define
Y andF by (10) and (11).

Let (aj){_; be a complex sequence wite(aj) > 0 for all j € N, and let k € Ckpxkm,
S € CkP<N pe defined as if32) and (33); let X, be defined as in Theorem 3.

Then

Xe <Xy, X <X VKeEN,

and the sequenc@) converges. If, additionally,a)j’, satisfies the non-Blaschke condi-
tion (7), then(Xx) converges to X.

Proof Forxg € C" andu € L?(0,%;C™) we have

IREU+RWolI72 < [|PesaFu+Rers Wxol

since4(a) C (). It follows that

XXXo = Sup  [RFu+RWxol?— |lul]?
ueL2(0,00,CM)
< sup [|ReaFu+ R Wxol 2 — [ul]? = XXt 1%0-
ueL2(0,00;CM)

Similarly, using that
IRFuU-+RWxo||F2 < [[Fu+WxolZ2,

we obtain
XoXXo < xXxo  Vxoe C"

Convergence of the sequenc&) follows by the fact that it is non-decreasing and bounded
from above byX with respect to definiteness.

In the case where the non-Blaschke condition (7) is fulfjitee union of the spaces(a)
over allk € N is dense in.2(0,00; C™) [17]. The sequencér) therefore converges to the
identity in the strong operator topology, that is

lim By=y  vyeL*0,e;C™). (42)
—00
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Letxg € C"ande > 0. By (26) there exists somec L?(0,;C™) with
* 2 2
XoX%o < [[Fu+¥xo||“ — [|u]|* + 5.

By (42), there exists somi € N with ||(Fu+ ¥xo) — R(Fu+ ¥xo)[|> < § for all k > N.
Then we obtain that for ak > N there holds

XXX < [[Fu+Wxo||> — [|ul[®+ §
< ||AdFu+ RWxol|? + || (Fu+ Wxo) — R(Fu+ Wxo)||? — [[ul|> + &
< ||AFu+RWxol|? — [[ul]® + & < XpXiXo + €.

Using further thaiXx < X, we obtain
(X = X)X = X0Xx0 —XpXXo <& Vk=>N.
It follows that the sequendeXy) converges tcX.

Next we introduce a slighty different, numerically more adtageous, representation
for the matrixX as in (38).

Theorem 5 Assume that & C"™*" is stable, Bc C"™™, C € CP*" and De CP*™. Further
assume that the bounded real dissipation inequ#) has a solution Xe C™". Define
andF by (10)and (11).

Let (aj){_; be a complex sequence wite(aj) > 0 for all j € N, and let k € Ckpxkm,
S € CkPXN e defined as i32) and(33).

Then there exists some matrix & C’**P with full row rank and

| — R = GiGx. (43)
Further, there exists some R (CZKX” such that
GiR« = S (44)

The matrix X as in(38) fulfills
X = ReRe. (49)

Proof The matrix| — KR € CkP<kp is positive semi-definite by Theorem 3. Therefore,
I —FRe Cckm<kmis hositive semidefinite as well. This implies the existeoicgome matrix
Gy € Cl*kpwith full row rank such that (43) holds.

By (36) we have kel — F/F¢) = ker(F= k). From (37) we obtain keF= ) C ker(S{F),
whence kefl — R F) C ker(SiF).

We now prove iniS) C im(I — RF). This is equivalent to k¢t — RF) C ker(S;).
Lety € ker(l — RF/). Theny = RFy. Therefore

Sy =SHhFY (46)

andFRy = SRRy The latter is equivalent tdl — F'F)Fy = 0. Thereby we obtain that
Fey € ker(I — FF), which by the inclusion of nullspaces established in theiptes para-
graph givesH'y € ker(§;F). HenceS;RF/y = 0. From (46) we then obtaify = 0. We
conclude that ket — RF) C ker(S;), as desired.
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From (43) we obtain ket — RF) = ker(Gy), so that infl — RF) =im(Gj). Together
with the already established subspace inclusiofSinc im(l — KF/), this shows that
im(S¢) C im(Gy). SinceGy has full row rankG¢G;; is invertible and therefore

R := (GkGi) "G 47)
is well-defined. We now show that it satisfies (44). ket C". By the above established
subspace inclusion if&) C im(G}), there exists @ € CkP such thaSix = Gz Then
GiRx = G} (G Gy) 1GkSx = G (GkGy) GGz = Gjz= Six.

Sincex € C" was arbitrary this proves th&R = S, i.e the above definelg satisfies (44).

By Remark 6 b) we hav = S|l + R (I — F'F) TR ]S. Using the above established
subspace inclusion iff) C im(I — RF/) and the fact thafl — RF;)" (I — RKF/) is the
orthogonal projection onto ith— FF;) we may alternatively write this as

Xe= S0~ RO (1= ) + Rl - RER) RS

The following identity for Moore-Penrose pseudo-inversasost easily proven by verify-
ing the Moore-Penrose conditions [6, Sec. 5.5.4]:

(I=RFR) " = (1 =RE) (1 —RR) + R —RR) TR
From this we see that
X =S =R TS (48)

On the other hand we have, using (47),
ReR« = S:Gi(GGi) °GiS,

and it is easily verified tha‘Bﬁ(GkG;)*sz is the Moore-Penrose pseudo-inversexGy.
SinceG{ Gy = | — KF; by (43), it follows thatRgR, = X.

Remark 7 (Bounded real Lur'e equations)

a) It follows from (32) that; (I — F\WFi) i =1 — RF.

b) The formula (48) foiXyx should be compared to the equationXoin Remark 4 b), which
in the bounded real case can be re-writtexXas W* (I — FF*) 1,

c) Observing the lower triangular block structure of magiin Algorithm 1, that is

[Fi,l,o}

A= lQ@el) +[00]]°

(49)

we can determine the matric& € Ci<P andR, € Cli*n recursively as follows: We
have

| -RF"
_ I —FaF", - [F-10] (Qi(ri®_|m))*
—(QC@lm) [F1 0" | = (Q(T ®1m) + [0,D]) (Qi(Ti@1m) + [0,D]) "]

By making the ansatz

~_|Gi—1 Gr2j
Gi= { 0 GZZJ’
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we obtain

G 1Gi1 G 1G12j
G12iGi-1 G12iG12i + G5, Go2i

—G/Gi=I|-FF"

_[ | —F1R, ~[F1 0 (QE @)
T - QG ®Im) [F2 0" 1= (Q(L@1m) + [0,D]) (AL @Im) + [0,D])"]

Thus, the matridxGy»; is the unique solution of the linear equation
G 1G12i = — [F-1 0] (Qi(Li®Im))".
Thereafter, the matrigy,; can be obtained by a factorization
G32iGa2i =1 — (Qi(Li@Im) + [0,D]) (Qi(Li @ Im) + [0,D]) " — Gi2; G-
Since, by Algorithm 15 is obtained fron§_1 by

5= zmaayve] 0

we can, by making the ansatz
- |R-1
R=| %2

rewrite equation (44) as

[Gi*—l 0 } {371} _ { S1 }
Gl Goi] [Rei V2Re(ai) V|
Hence Ry is the solution of the linear equation

GoiRei = v/ 2Re(ai) - Vi — G1piRi-1.

By Theorem 5 and Remark 7 c), we can set up the following alyorfor the determi-

nation of the minimal solution of bounded real Lur'e equasio

Al

gorithm 2 ADI iteration for the bounded real Lur'e equation.

Input: a stable matrixA € C™", andB € C™™, C € CP*", D € CP*™ such that the bounded real Lur'e

€q

uation (1) has the minimal solutidhe C™", and shift parameters, ..., ax € C with Re(aj) > 0.

Output: Ry € C**" such thaR;R, = X ~ X.

1:

2
3
4
5
6
7

®

10:
11:

Perform steps 1-5 in Algorithm 1

. Determine a matriz; with full row rank andG;Gy = | — F1F
. Determine a matriR; with GiR; = §;
c fori=23,...,kdo
Perform steps 7-14 in Algorithm 1.
Determine a matriGi; with G ,G12i = — [Fi—1 0] (Q(Li @ Im))”
Determine a matri%z; with full row rank and
GjyiG22i =1 — (Qi(Gi @ Im) + [0,D]) (Qi(Ti @ Im) + [0,D] )" — Gi5;G1zi
_ |Gi—1 Gz
Gi= { 0 Gpj
Determine a matriRyj with GEZJ Roi = /2Re(0i) - V" —=GipiRi-1
. |R-1
ALY
end for
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Remark 81f A € C™" is stableB=0¢c C™™M, C ¢ CP*" andD = 0 € CP*™, then the
bounded real Lur'e equations reduce to the Lyapunov equatio

A X +XA+C'C=0.

In this case, the matrices in Algorithm 2 reBd= 0, G; = | andS = R,. Then Algorithm 2
reduces to the well-known and established ADI iteratiorLf@punov equations [7,9, 19].

Now we consider positive real Lur'e equations. First we pres version of Theorem 3
for positive real systems. The proof can be done by adaptiadjries of the proof of Theo-
rem 3.

Theorem 6 Assume that & C™" is stable, B C™™, C e C™" and De C™™, Further
assume that the positive real dissipation inequality

A X+XA XB-C*

BX—C —(D'+D)| =& X=X (51)

has a solution Xe C™".
Define® andF by (10) and (11). Let (or,-)‘]?°:1 be a complex sequence wi®(a;) > 0 for

all j €N, and let g € CkP<km g  CkP<" be defined as i32) and (33).
Then the matrix fF+ F € ckm<km js positive semi-definite. In particular, there exists some
F= k € Ckmwith full row rank and

Fk* + Fk = F_;_’kFE.,k' (52)
Further, there exists some-g € C%*" such that
FZ Sk =S (53)

For the orthogonal projector Pas in(31), the matrix X defined by

Xi = St Sz k- (54)
fulfills,
XXXo=  sup  —2Re(u,RFu+RWxo). (55)
ucL2(0,00;C™M)

Remark 9Using (34) and the self-adjointnesskf we obtain from (34) and (55) that

XXX = sup —2Reu,RFu+RY¥xo)
ueL2(0,00;CM)

= sup —2Reu,AFRU+RWX)
ucL2(0,00;C™M)

= sup —2ReRu,FRU+ WXo)
UEL2(0,00;C™M)

= sup —2ReUu,Fu+W¥xo).
ue A (a)eCm

Again, we can formulate a convergence result. The proof éogious to that of Theo-
rem 4 and therefore omitted.
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Theorem 7 Assume that & C™" is stable, B C™™, C € C™" and D€ C™™. Further
assume that the positive real Lur'e equati@) has a minimal solution X C"™". Define
andF by (10)and (11).
Let (aj)}_, be a complex sequence wie(aj) > 0 for all j € N, and let k € Ckpxkm
S € CP<n pe defined as if32) and (33); let X, be defined as in Theorem 6.
Then

X < X1, X <X VKeEN,

and the sequenc@) converges. If, additionally,aj){”, satisfies the non-Blaschke condi-
tion (7), then(Xx) converges to X.
Remark 10 (Positive real Lur'e equations and projectedrapticontrol problems)
a) Ifthe Popov operatdf* +F is positive definite and boundedly invertible, then the iratr
F& + F is positive definite. In this case, the matk fulfills
X = SR +R) S

cf. Remark 4 b).

b) Inthe following we show that, by using the fact that thenimef; has the lower triangular
block structure as in (49), the matrices; € Clixim andSs € C%*" can be recursively
determined (cf. Remark 7 c):

We have
F+R
Fo1+F*, [i-1m O] (Qi(Li @ 1m))*
B {(Qi(ri@)lm)) [ gm] D+D" +[0m] (Q T 1m)" +(Q G m) [

By making the ansatz
o = {Ff,ifl FElZ,i}

0 F=2j
we obtain
FziqF=ia F2i 1F=12i
FoioiFzi-1 FoipiFz12i + FoppiF22i

=FFzi=FR+F
S PN 13m0 QUG )
= QG ) [ 7] D+D" + 0] (AT @ ) + (G @ ) []

Thus, the matridr=12; is the unique solution of the linear equation
F2i Fz12i = [li—ym 0] (Qi(Li @ 1m))"
Thereafter, the matrik=2,; can be obtained by a factorization
FiFz22i =D+ D"+ [01n] (Q(L @ Im))* + (Qi(Li ®1m)) [ 2] — F210iF=12i.

Since, by Algorithm 1, the matrice$ andS_; are related by (50) we see, by making
the ansatz
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that equation (53) now reads

ez [32] = L ey o]

Hence,S=2; is the solution of the linear equation

Fz00iS=2i = V2Reai) - Vi" —F292i S i1

* *
Fioi Fzoo)

Algorithm 3 ADI iteration for the positive real Lur'e equation.

Input: A e C™" a stable matrixB € C™™, C € CP*", D € CP*™ such that the positive real Lur'e equation
(8) has the minimal solutioX € C™", and shift parametersy, ..., ax € C with Re(a;) > 0.
Output: Sz € C'v*" such thatSt | S = X~ X.

1: Perform steps 1-5 in Algorithm 1

2: Determine a matri¥= ; with full row rank andF:i}ng,l =F+F

3: Determine a matri$:= 1 with F2,8:1=5

4: fori=2.3,...,kdo

5: Perform steps 7-14 in Algorithm 1.

6:  Determine a matri¥=z1o; with FZ;_;F=12; = [li-ym 0] (Qi(Li ® Im))*
7 Determine a matrif=22; with full row rank and

F2p9iFz22i = D+ D" +[01n] (Qi(Li @ Im))* + (Q(Li @1m)) [%] — F212;F=12i

. __ |Fzi—1 Feaoj
& Fui= { 0 Fz2pj
9: Determine a matri$=2; with F_;*223i852,i =/2Regai) Vi —F25,S=i1

S
100 S =|51

= {SEZJ}
11: end for

Remark 11We note that Algorithm 2 reduces to well-known ADI iteratifar Lyapunov
equations [7,9, 19] (cf. Remark 8): K€ C™" is stable,B=0¢c C™™, C € C™" and
D= %Im € C™M then the positive real Lur'e equation reduces to the Lyapleguation

A'X+XA+CC=0.

The matrices in Algorithm 3 then redgl= 0, F=; = %I andS=; = S, whence Algorithm 2
then again reduces to ADI iteration for Lyapunov equations.

5 Numerical Example

We present a numerical example to show the applicabilityvofadgorithm and to demon-
strate the expected performance of the ADI iteration forgbsitive real Lur'e equation in
terms of monotonicity and convergence behavior.
We consider a convection-diffusion equation on the unitasg® := [0,1] x [0, 1],
namely
%xX(&,t) =kAx(&,t) +b Ox(&,t), (&,1) € Q xRxo. (56)

The input is a scalar function formed by the Robin boundarydd@mn

ut) = v(&) TOX(E ) +ax(&,t), (£,t)€dQ xRs,
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and the output consists of the integral of Dirichlet bougdaues, i.e.

Yt = [ _x(&.tdo.

whered Q denotes the boundary @, g; denotes the surface measure, ad) denotes
the outward unit normal.

We considelb = [19] and sek = a = 1. To discretize the PDE (56), we apply a finite
element discretization with uniform triangular elemertftfixed sizeh = N_]il whereN € N
is the number of points in each coordinate direction. In taidi we define the subspadgC
HY(Q) using piecewise-linear basis functions. As a result, waiak finite dimensional
dynamical system

EX(t) = Ax(t) +Bu(t),

y(t) =Cx(t)

with state space dimensian= N2, E ¢ R™" is a symmetric positive definite mass matrix,
A € R"™ is a non-symmetric stiffness matri8,c R™! is the input matrix, an@€ € R" is
the output matrix.

The system is asymptotically stable and the maiix A* is negative definite. Further-
more, we haveB = C*. A simple calculation then shows that the system is pas3ike.
positive real Popov operator has no bounded inverse, direcpdsitive real Popov function
M(w) = G(1w) + G(1w)* (with G(s) = C(SE— A)~B = C(sl - E"*A)~1E~!B) vanishes
at infinity.

(57)

Relative residual norm

-14 \
101 - X - N “q7 ]
First choice of shift parameters " m it NN ySs s
= = = Second choice of shift parameters
107 L L L L L L
0 10 20 30 40 50 60 70

Iteration

Fig. 1 Comparison of different shift parameters for ADI iterati@onvection-diffusion equation with the
space dimension = 4900
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We find an approximate solutiod € C™" of the positive real Lur'e equation (8) by
applying Algorithm 3. Thereby, we use the modifications jsgd in [10, Remark 7.1]
& [8, Remark 3.3] which allow computations without explitiversion ofE. In addition, in
steps 6 and 7 of Algorithm 3, we do not need to compute the egjmeQ; (Li ® ), because
we compute it once in step 14 of Algorithm 1. In fact, we neejlith access the lagtrows
of the matrixF in order to obtain the value of this expression (cf. RemarkY)0

The choice of shift parameters has a major effect on the cgemee speed of the ADI
algorithm. In our example, we choose the following two diffet sets of shift parameters.

1. As a first set of shift parameters, we generate 30 parasnagéng the Wachspress
method [19] on the basis of 4900 eigenvalues of the Diridtégiacian given by (i +
j%),i,j=1,2,...,70. We use the obtained shift parameters in the first 30 iberstAf-
terwards, we select a subset of these parameters whictdprbtfie highest reduction
in the value of residual norm. In our case, we chose 13 shiftpaters and re-use them
every 13 iterations.

2. The second set of shift parameters is motivated by therstaits in Remark 4 e). Specif-
ically, we generate a set of 30 shift parameters using Peheliristic procedure [13] on
negatives of the stable eigenvalues of the even matrix penci

0 —-AE+A B

AE—o = |[AE+A" 0 —C*
B* —C 0

3.8

3.6

3.4

2.8

Trace

2.6

2.2F

First choice of shift parameters g
= = = Second choice of shift parameters

18 L L L L L
0 10 20 30 40 50 60

Iteration

Fig. 2 Monotonicity of ADI iteration: convection-diffusion eqgtian with the space dimensian= 4900
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We sort the obtained 30 parameters in a decreasing orderegfect to the values of
their real part in order to obtain a smooth convergence. Weome 30 iterations of
Algorithm 3 using these shift parameters. Subsequentlyexteact a subset of these
parameters which provided the highest reduction in theevafuresidual norm. From
this set of shift parameters, we extract 8 parameters taeesvery 8 iterations.

We add a large real shift parameter of ordet21i® the above two sets of shift parame-
ters and consider it to be the first parameter in the set. Wehiskarge shift parameter just
in the first iteration of Algorithm 3 and do not repeat it in tluether iterations. The reason
for adding a very big shift parameter can be explained asvall Since in the positive real
case the Popov function has a zero at infinity, a delta impuib@ccur in the optimal con-
trol. The Takenaka-Malmquist basis function correspogdia big shift parameter should
suitably approximate the behavior of this delta impulse.

We have performed the calculations with several state gia@nsions using MATLAB
7.10.0 (R2010a). At each iteratidn we observe the relative residual norm of the positive
real Lur'e equation using the approach proposed in [14, &§e€igure 1 shows the relative
residual norm with respect to the iteration for the spaceedisionn = 4900 and for the
two different choices of shift parameters which we haveohticed earlier. We can conclude
from this figure that the second set of shift parameters geogifaster convergence behavior
to the solution of positive real Lur'e equation correspaigdio the system (57). In fact, with
atolerance of 10 on the relative residual norm for the problem with the spacedsion
n= 4900, the second choice of shift parameters leads to cagwveegn 41 iterations whereas
the first set of parameters requires more than 70 iteratmrihé desired convergence.

In order to illustrate the monotonicity of the ADI iteratiowe observe the trace o,
denoted by tracgX), at each iteration of Algorithm 3. The trace ¥f can be computed
efficiently as

trace(Xy) = trace(St Sz ) = [|S= k|2 ,

where|| - |z denotes the Frobenius norm. Figure 2 shows the trace of@mif, generated
by Algorithm 3 with the two sets of shift parameters introedcearlier in this example.
From this figure we observe thiat(Xy) < tr (X1), for all k € N, which is consistent with
Theorem 7.
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