Additive Combinatorics 2 – 1st problem set Summer 2021

Christian Reiher

- 1. Prove that $G(4) \ge 16$, i.e., that there are arbitrarily large natural numbers which cannot be represented as a sum of 15 biquadrates.
- 2. Let $k \ge 2$. Prove $G(k) \ge k + 1$, i.e., that there exist infinitely many natural numbers not belonging to the set

 $A_k = \{x_1^k + \dots + x_k^k \colon x_1, \dots, x_k \in \mathbb{N}_0\}.$

- 3. Suppose that $t \ge 2$ is an integer and that n is odd. Prove that there exists an integer i such that $0 \le i < 2^{t-2}$ and either $n \equiv 5^i \pmod{2^t}$ or $n \equiv -5^i \pmod{2^t}$.
- 4. Hardy and Littlewood conjectured that for every $k \ge 2$ and every $\varepsilon > 0$ there exists some $n_0 = n_0(k, \varepsilon)$ such that for every $n \ge n_0$ there are at most n^{ε} solutions $(x_1, \ldots, x_k) \in \mathbb{N}_0^k$ of the equation $n = x_1^k + \cdots + x_k^k$. Prove that this is false for k = 3.

Hint: $(1 - 9x^3)^3 + (3x - 9x^4)^3 + (9x^4)^3 = 1$

Discussion on Tuesday, April 20

Hints

- 1. Prove $x^4 \equiv 0, 1 \pmod{16}$ for every integer x.
- 2. In fact, there is $\varepsilon > 0$ such that $|A_k \cap [n]| < (1 \varepsilon)n$ holds for every sufficiently large n.
- 3. Determine the largest power of 2 dividing $5^{2^m} 1$.