Additive Combinatorics 2 - 1st problem set Summer 2021
 Christian Reiher

1. Prove that $G(4) \geqslant 16$, i.e., that there are arbitrarily large natural numbers which cannot be represented as a sum of 15 biquadrates.
2. Let $k \geqslant 2$. Prove $G(k) \geqslant k+1$, i.e., that there exist infinitely many natural numbers not belonging to the set

$$
A_{k}=\left\{x_{1}^{k}+\cdots+x_{k}^{k}: x_{1}, \ldots, x_{k} \in \mathbb{N}_{0}\right\} .
$$

3. Suppose that $t \geqslant 2$ is an integer and that n is odd. Prove that there exists an integer i such that $0 \leqslant i<2^{t-2}$ and either $n \equiv 5^{i}\left(\bmod 2^{t}\right)$ or $n \equiv-5^{i}\left(\bmod 2^{t}\right)$.
4. Hardy and Littlewood conjectured that for every $k \geqslant 2$ and every $\varepsilon>0$ there exists some $n_{0}=n_{0}(k, \varepsilon)$ such that for every $n \geqslant n_{0}$ there are at most n^{ε} solutions $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}_{0}^{k}$ of the equation $n=x_{1}^{k}+\cdots+x_{k}^{k}$. Prove that this is false for $k=3$.
Hint: $\left(1-9 x^{3}\right)^{3}+\left(3 x-9 x^{4}\right)^{3}+\left(9 x^{4}\right)^{3}=1$

Hints

1. Prove $x^{4} \equiv 0,1(\bmod 16)$ for every integer x.
2. In fact, there is $\varepsilon>0$ such that $\left|A_{k} \cap[n]\right|<(1-\varepsilon) n$ holds for every sufficiently large n.
3. Determine the largest power of 2 dividing $5^{2^{m}}-1$.
