
THE CLIQUE DENSITY THEOREM

CHRISTIAN REIHER

Abstract. Turán’s theorem is a cornerstone of extremal graph theory. It asserts that
for any integer r ě 2 every graph on n vertices with more than r´2

2pr´1q ¨ n
2 edges contains

a clique of size r, i.e., r mutually adjacent vertices. The corresponding extremal graphs
are balanced pr ´ 1q-partite graphs.

The question as to how many such r-cliques appear at least in any n-vertex graph
with γn2 edges has been intensively studied in the literature. In particular, Lovász and
Simonovits conjectured in the 1970s that asymptotically the best possible lower bound
is given by the complete multipartite graph with γn2 edges in which all but one vertex
class is of the same size while the remaining one may be smaller.

Their conjecture was recently resolved for r “ 3 by Razborov and for r “ 4 by
Nikiforov. In this article, we prove the conjecture for all values of r.

§1. Introduction

Extremal graph theory was initiated as a separate subarea of combinatorics by P. Turán
in 1941. In his famous article [16] the following problem is solved: Given integers n ě r ě 3,
what is the maximum number of edges that an n-vertex graph may have without contain-
ing a clique of size r, i.e., r vertices any two of which are connected by an edge. It turns
out that there is a unique extremal graph for this problem, which is the complete pr´ 1q-
partite graph with the property that the sizes of any two of its vertex classes differ by at
most one. In particular if a graph with n vertices has more than r´2

2pr´1q ¨ n
2 edges, then it

needs to contain an r-clique, and for fixed r the constant r´2
2pr´1q appearing in this statement

is sharp.
Given this result, one may ask how many r-cliques are guaranteed to exist in graphs

having more edges. That is, given an integer r ě 3 and a real number number γ ą r´2
2pr´1q

we want to know: what the minimum number of r-cliques appearing in an n-vertex graph
with at least γn2 edges? Following the work [6], [9], [11], and [7], a general conjecture was
formulated by Lovász and Simonovits in [8]. The guiding idea behind their conjecture is
that, up to some “rounding errors”, there should be for each such case an extremal graph
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2 CHRISTIAN REIHER

that is again complete and multipartite. Moreover, all its vertex classes should be of the
same size, except for one that may be smaller.

Now consider such an ps`1q-partite graph, s of whose vertex classes have size np1`αq
s`1 , so

that the remaining class contains just np1´sαq
s`1 vertices, where α P

“

0, 1
s

‰

. A short calculation
discloses that for γ “ s

2ps`1qp1 ´ α2q this graph has γn2 edges and that the number of its
r-cliques is

1
ps` 1qr

ˆ

s` 1
r

˙

p1` αqr´1`1´ pr ´ 1qα
˘

¨ nr .

We thus arrive at the following clique density conjecture due to Lovász and Simonovits.

Conjecture 1.1. If r ě 3 and γ P
“

0, 1
2

˘

, then every graph on n vertices with at least γn2

edges contains at least
1

ps` 1qr

ˆ

s` 1
r

˙

p1` αqr´1`1´ pr ´ 1qα
˘

¨ nr

cliques of size r, where s ě 1 is an integer with γ P
“

s´1
2s ,

s
2ps`1q

‰

and α P
“

0, 1
s

‰

is implicitly
defined by γ “ s

2ps`1qp1´ α
2q.

The aim of this article is to prove this conjecture.

Remark 1.2. (1) If s ď r ´ 2, then the binomial coefficient
`

s`1
r

˘

vanishes, which means
that, in accordance with Turán’s construction, the clique density conjecture does not
predict the existence of any r-cliques for γ ď r´2

2pr´1q .
(2) If r ě 3 and γ ą r´2

2pr´1q are fixed while n tends to infinity, the clique density
conjecture guarantees in particular Ωγpn

rq many r-cliques. This phenomenon is known as
“supersaturation” in the literature. Due to the above discussion it should be clear that
the precise factor occurring in the clique density conjecture is optimal for fixed r and γ.

(3) If γ P
“

0, 1
2

˘

is not of the form γ “ t
2pt`1q for some positive integer t, then there is a

unique way of choosing the pair ps, αq as above. On the other hand, if γ “ t
2pt`1q has this

form, there are two legitimate choices for this pair, namely pt, 0q and pt` 1, 1
t`1q. Yet it is

not hard to verify that both of them lead to the same lower bound of
1

pt` 1qr

ˆ

t` 1
r

˙

¨ nr

on the number of r-cliques.

We would like to conclude this introduction with some historical comments: Let G be
any n-vertex graph with at least γn2 edges. Goodman [6] proved that G contains at least
1
3γp4γ ´ 1qn3 triangles. This fact was also obtained by Nordhaus and Stewart [11]. Moon
and Moser [9] proved that if γ ě 1

3 , then G also contains at least
1
12γp4γ ´ 1qp6γ ´ 2qn4
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cliques of size four and stated without proof that similarly, if γ ě r´2
2pr´1q , then G contains

at least
1
r! ¨ 2γp4γ ´ 1qp6γ ´ 2q ¨ . . . ¨

`

2pr ´ 1qγ ´ pr ´ 2q
˘

¨ nr (1.1)

cliques of size r. This was subsequently shown by Kadžiivanov and Nikiforov [7]. It may
be observed that the factor appearing in front of nr in (1.1) is a convex function of γ for
γ ě r´2

2pr´1q . We will return to this “convex bound” in Section 3. It is not hard to check
that if γ “ t

2pt`1q with t ě r ´ 2 is one of the “critical” values from Remark 1.2(3) then
the convex bound is optimal and yields the same prediction on the number of r-cliques
in G as the clique density conjecture does. Between these critical values, however, the
optimal bound is piecewise concave (we will check this in Section 4). Thus the piecewise
linear function interpolating between these critical values should also be a lower bound
on the number of r-cliques in G and this has in fact been shown by Bollobás [1]. For an
alternative proof of a more general result we refer to [15].

The case r “ 3 and γ P
“1

4 ,
1
3

‰

of the clique density conjecture was studied by Fisher [4]
(see also [5] and [3, Remark 3.3]). An altogether different approach to this case has later
been given by Razborov in the fifth section of [13]. The proof described there is based
on what one might call the “differential calculus of flag algebra homomorphisms”, which
in turn constitutes an important part of Razborov’s flag algebraic investigations. Shortly
afterwards, Razborov [14] used this calculus for resolving the case r “ 3 of Conjecture 1.1
for all γ.

The next important step is due to Nikiforov [10] who found an independent proof for
the case r “ 3 and settled the case r “ 4 as well. In [10] Nikiforov suggests to study the
clique density problem in the setting of “weighted graphs” and we will follow this idea in
the sequel. The problem thus translates into a question about polynomial forms and we
follow Nikiforov in applying differential techniques to these forms. Moreover, we use some
of Razborov’s ideas in this framework.

§2. Weighted Graphs

Given a set X and a positive integer r, we use Xprq to denote the collection of all
r-element subsets of X. Also, if n refers to a positive integer, then rns is, by definition,
shorthand for t1, 2, . . . , nu. By a weighted graph of order n, we mean a pair consisting of
a sequence px1, x2, . . . , xnq of n nonnegative real numbers the sum of which is equal to 1
and a function a : rnsp2q ÝÑ r0, 1s. In such situations, if e “ ti, ju P rnsp2q, we will often
write ae or aij in place of apeq.
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Whenever G is such a weighted graph of order n and r is a positive integer, we define
the r-clique density of G to be

GpKrq “
ÿ

MPrnsprq

ź

ePMp2q

ae
ź

iPM

xi .

Notice for instance that

GpK1q “ x1 ` x2 ` . . .` xn “ 1 .

The following weighted variant of Conjecture 1.1 is, as we are soon going to see, equiva-
lent to it. To the best of our knowledge, it has for the first time been formulated explicitly
by Nikiforov [10].

Claim 2.1. Let r ě 3 denote an integer and let G be a weighted graph. Suppose that a
positive integer s and a real number α P

“

0, 1
s

‰

are chosen in such a way that

GpK2q “
s

2ps`1qp1´ α
2
q .

Then
GpKrq ě

1
ps` 1qr

ˆ

s` 1
r

˙

p1` αqr´1`1´ pr ´ 1qα
˘

.

To see that this indeed entails Conjecture 1.1, take a graph G and an integer r ě 3,
label the vertices of G arbitrarily as tv1, v2, . . . , vnu, and construct a weighted graph G of
order n by the stipulations x1 “ x2 “ . . . “ xn “

1
n
and

aij “

$

&

%

1 if vi and vj are joined by an edge of G,

0 otherwise

for all ti, ju P rnsp2q. Plainly G has exactly GpK2q ¨n
2 edges and GpKrq ¨n

r cliques of size r,
which proves the desired estimate.

As we shall not need the converse direction, we only give a sketch of its proof. Let a
weighted graph G of order n specified by the sequence px1, x2, . . . , xnq of n real numbers and
by the function a : rnsp2q ÝÑ r0, 1s be given. Consider a large integer k and form a graph H
whose vertices fall into n independent classes V1, V2, . . . , Vn whose sizes are approximately
kx1, kx2, . . . , kxn respectively, and in which for each unordered pair ti, ju P rnsp2q roughly a
proportion of aij among all possible edges from Vi to Vj is present in a sufficiently random
way. Such a graph H can in particular be arranged to have k vertices, GpK2q ¨ k

2 ˘Opkq

edges and GpKrq ¨ k
r ˘ Opkr´1q cliques of size r, so letting k tend to infinity we may in

fact derive Claim 2.1 from Conjecture 1.1.
Throughout the rest of this article, we follow Nikiforov’s suggestion [10] to think about

the clique density problem in terms of weighted graphs.
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§3. The convex lower bound

In this section we discuss an analogue of the convex bound (1.1) adapted to the setting
of weighted graphs. The proof we describe is essentially the same as that given by Kadži-
ivanov and Nikiforov in [7]. Nevertheless it might be helpful to include full details here,
because the second step of the proof of the clique density theorem to be given in Section 5
will involve some similar calculations.

Moreover, our proof of the clique density theorem uses the convex bound in two quite
different ways. First, it implies that the clique density theorem holds for the critical values
γ “ t

2pt`1q , where t is some positive integer, while our approach to Claim 2.1 cannot deal
with these values due to non-differentiability issues. Second, it is going to be helpful later
on to have some “approximate version” of the clique density theorem available.

Proposition 3.1. Given a weighted graph G and an integer r ě 2 such that the quantity
γ “ GpK2q is not smaller than r´2

2pr´1q , we have

GpKrq ě
1
r! ¨ 2γp4γ ´ 1qp6γ ´ 2q ¨ . . . ¨

`

2pr ´ 1qγ ´ pr ´ 2q
˘

.

Proof. Clearly this follows by means of an easy induction on r from the following statement:

p˚q If a weighted graph G satisfies γ “ GpK2q ě
r´2

2pr´1q for some r ě 2, then

GpKrq ě
2pr ´ 1qγ ´ pr ´ 2q

r
¨ GpKr´1q and GpKr´1q ą 0 .

Thus it suffices to verify p˚q instead and this will again be done by induction on r. The
base case r “ 2 is obvious in view of GpK1q “ 1. So suppose now that G is a weighted
graph satisfying γ “ GpK2q ě

r´1
2r ą

r´2
2pr´1q for some r ě 2 and that

r ¨ GpKrq ě
`

2pr ´ 1qγ ´ pr ´ 2q
˘

¨ GpKr´1q as well as GpKr´1q ą 0

hold. For the induction step, we remark that these assumptions trivially entail GpKrq ą 0,
so that it only remains to estimate GpKr`1q from below. Let n denote the order of G and
suppose that G is given by the sequence px1, x2, . . . , xnq of n reals numbers and by the
function a : rnsp2q ÝÑ r0, 1s.

For each M Ď rns we write

AM “
ź

ePMp2q

ae and XM “
ź

iPM

xi .

Now consider any M P rnspr`1q and define

BM “
ÿ

ePMp2q

ź

fPMp2q´teu

af
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as well as
CM “

ÿ

NPMprq

AN .

We claim that these expressions satisfy

2BM ´ CM ď pr2
´ 1qAM . (3.1)

To see this, we note that this inequality is linear in each of its variables ae with e PM p2q,
which entails that we only need to look at the case where ae P t0, 1u holds for all e PM p2q.
Now if additionally the number

K “ #
 

e PM p2q ˇ
ˇ ae “ 0

(

is at least 2, then AM “ BM “ 0, and CM ě 0; if K “ 1, then AM “ 0, BM “ 1, CM “ 2;
and finally if K “ 0, then AM “ 1, BM “ 1

2rpr` 1q, and CM “ r` 1. This completes the
proof of (3.1).

Multiplying this estimate by XM and summing over all possibilities for M , we infer
ÿ

MPrnspr`1q

p2BM ´ CMqXM ď pr2
´ 1qGpKr`1q . (3.2)

Setting
ηL “

ÿ

iPrns´L

xi
ź

`PL

ai`

for all L P rnspr´1q, we shall now investigate the sum

Ω “
ÿ

LPrnspr´1q

ALXLη
2
L .

Expanding the squares, we get several “quadratic terms” in which some x2
i appears as a

factor and some “mixed terms” for which this is not the case. Let Ωsq and Ωmix denote
the corresponding sums. In view of the inequality a2

e ď ae, that is valid for all e P rnsp2q,
we may estimate

Ωsq ď
ÿ

LPrnspr´1q

ALXL

ÿ

iPrns´L

x2
i

ź

`PL

ai` “
ÿ

QPrnsprq

AQXQ

ÿ

iPQ

xi

“
ÿ

QPrnsprq

AQXQ

´

1´
ÿ

iPrns´Q

xi

¯

“ GpKrq ´
ÿ

MPrnspr`1q

CMXM .

Moreover, we have
Ωmix “ 2

ÿ

MPrnspr`1q

BMXM ,

whence
Ω “ Ωsq ` Ωmix ď GpKrq `

ÿ

MPrnspr`1q

p2BM ´ CMqXM .
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In combination with (3.2) this yields

Ω ď GpKrq ` pr
2
´ 1qGpKr`1q .

On the other hand, we get a lower bound on Ω from the Cauchy-Schwarz inequality,
˜

ÿ

LPrnspr´1q

ALXLηL

¸2

ď
ÿ

LPrnspr´1q

ALXL ¨
ÿ

LPrnspr´1q

ALXLη
2
L ,

where
ÿ

LPrnspr´1q

ALXLηL “ r
ÿ

QPrnsprq

AQXQ “ r ¨ GpKrq

and
ÿ

LPrnspr´1q

ALXL “ GpKr´1q .

So altogether we have

r2GpKrq
2
ď GpKr´1q

`

GpKrq ` pr
2
´ 1qGpKr`1q

˘

.

Invoking now the induction hypothesis, we obtain, after a permissible cancelation of
GpKr´1q, that

`

2pr ´ 1qrγ ´ rpr ´ 2q
˘

GpKrq ď GpKrq ` pr
2
´ 1qGpKr`1q ,

and hence indeed
`

2rγ ´ pr ´ 1q
˘

GpKrq ď pr ` 1qGpKr`1q ,

which completes the induction step. This finally proves p˚q and thus the proposition. �

We would now like to make those consequences of Proposition 3.1 explicit that we shall
really utilise in the sequel. The following corollary is a slight modification of inequality (25)
from [7].

Corollary 3.2. Suppose that r and s are integers satisfying r ě 2 and s ě r ´ 1. Then
for every weighted graph G satisfying γ “ GpK2q ą

s´1
2s one has

GpKrq ą
1
s
¨

ˆ

s

r

˙

¨

ˆ

2γ
s´ 1

˙r´1

.

Proof. Clearly s´1
2s ě

r´2
2pr´1q , wherefore Proposition 3.1 tells us

GpKrq ě
1
r! ¨ 2γp4γ ´ 1qp6γ ´ 2q ¨ . . . ¨

`

2pr ´ 1qγ ´ pr ´ 2q
˘

.

Now for each i P t1, 2, . . . , r ´ 1u we have

2iγ ´ pi´ 1q ą 2γ
ˆ

i´
spi´ 1q
s´ 1

˙

“
2γps´ iq
s´ 1 ě 0
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and hence

GpKrq ą

ˆ

2γ
s´ 1

˙r´1

¨
ps´ 1q ¨ . . . ¨ ps´ r ` 1q

r! “
1
s
¨

ˆ

s

r

˙

¨

ˆ

2γ
s´ 1

˙r´1

. �

Corollary 3.3. Under the additional assumption α P
 

0, 1
s

(

, Claim 2.1 holds.

Proof. We have already seen in the introduction that we have γ “ t
2pt`1q for some nonneg-

ative integer t in these cases. If t ď r´2 our claim is obvious, so we may suppose t ě r´1
from now on. Now γ is large enough for Proposition 3.1 to be applicable and the desired
result follows. �

§4. Some analytical preparations

This section provides a thorough analysis of the function occurring in Claim 2.1. It also
includes some further technical results that we will need in the next section for the proof
of the clique density theorem.

Throughout the present section, we fix two integers r ě 3 and s ě r ´ 1 as well as a
real number M ě 1 satisfying

ˆ

s´ 1
s

˙r´2

ą
s´ r ` 1
s´ 1 ¨M r´2 . (4.1)

Define the function Fr :
“

0, 1
2

˘

ÝÑ
“

0, 1
r!

˘

as follows: given γ P
“

0, 1
2

˘

, choose the unique
positive integer t for which γ P

“

t´1
2t ,

t
2pt`1q

˘

is true, determine the real number α P
`

0, 1
t

‰

solving the equation γ “ t
2pt`1qp1´ α

2q, and set

Frpγq “
1

pt` 1qr

ˆ

t` 1
r

˙

p1` αqr´1`1´ pr ´ 1qα
˘

.

In particular, we have

Fr

ˆ

t´ 1
2t

˙

“
1
tr

ˆ

t

r

˙

(4.2)

for every positive integer t.
In terms of this function, the statement of Claim 2.1 can be shortened to the inequality
GpKrq ě FrpGpK2qq, that is allegedly valid for all weighted graphs G. We have more or
less already seen earlier that Fr is continuous and clearly it is piecewise differentiable as
well. Moreover, Fr vanishes identically on the interval

“

0, r´2
2pr´1q

‰

. If γ P
`

t´1
2t ,

t
2pt`1q

˘

holds
for some integer t ě r ´ 1, then differentiating the equation locally defining Frpγq with
respect to α, we infer

´
tα

t` 1 ¨ F
1
rpγq “ ´

pr ´ 1qr
pt` 1qr

ˆ

t` 1
r

˙

αp1` αqr´2 .
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As α ą 0, it follows that

F 1rpγq “
pr ´ 1qr
tpt` 1qr´1

ˆ

t` 1
r

˙

p1` αqr´2
ą 0 . (4.3)

Thus Fr is strictly increasing on the interval
“

r´2
2pr´1q ,

1
2

˘

and, as

lim
γÝÑ1{2

Frpγq “ lim
tÝÑ8

1
pt` 1qr

ˆ

t` 1
r

˙

“
1
r! ,

it possesses an inverse

F´1
r :

“

0, 1
r!

˘

ÝÑ
“

r´2
2pr´1q ,

1
2

˘

.

Moreover, the above expression for F 1rpγq decreases as α decreases, whence Fr is in an
obvious sense piecewise concave. Notice that the identity function F2 on

“

0, 1
2

˘

has essen-
tially the same properties as Fr. This concludes our discussion of the most elementary
properties of these functions.

Next we propose to look at the function

H :
“

r´2
r´1 ¨M,M

‰

ÝÑ R`0

given by

η ÞÝÑ
1
sr´1

ˆ

s

r ´ 1

˙

¨
pr ´ 1qη ´ pr ´ 2qM

ηr´1 .

Claim 4.1. The function H is strictly increasing and satisfies

Fr´1

ˆ

s´ 2
2ps´ 1q

˙

ă HpMq ď Fr´1

ˆ

s´ 1
2s

˙

.

Proof. If η P
“

r´2
r´1 ¨M,M

˘

, then

H 1
pηq “

pr ´ 2qpr ´ 1q
sr´1

ˆ

s

r ´ 1

˙

¨
M ´ η

ηr
ą 0 ,

which entails the first part of our claim. Furthermore, by (4.1) we have

HpMq “
1
sr´1

ˆ

s

r ´ 1

˙

¨
1

M r´2 ą
s´ r ` 1
sps´ 1qr´1

ˆ

s

r ´ 1

˙

“
1

ps´ 1qr´1

ˆ

s´ 1
r ´ 1

˙

,

i.e.,

HpMq ą Fr´1

ˆ

s´ 2
2ps´ 1q

˙

.

Finally, using M ě 1, we get

HpMq “
1
sr´1

ˆ

s

r ´ 1

˙

¨
1

M r´2 ď
1
sr´1

ˆ

s

r ´ 1

˙

“ Fr´1

ˆ

s´ 1
2s

˙

. �
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Notice in particular that the composition F´1
r´1 ˝H is defined everywhere on the interval

“

r´2
r´1 ¨M,M

‰

and that its range is contained in
“

r´3
2pr´2q ,

s´1
2s

‰

, which in turn is included in
“

0, 1
2

˘

. For t P tr´ 2, r´ 1, . . . , s´ 1u there exists a unique real number ϑt P
“

r´2
r´1 ¨M,M

‰

satisfying Hpϑtq “ Fr´1
`

t´1
2t

˘

. The number ϑs´1 will play a special rôle later and some-
times it will just be denoted by ϑ. Evidently one has

r´2
r´1 ¨M “ ϑr´2 ă ϑr´1 ă . . . ă ϑs´1 “ ϑ ăM .

Furthermore (4.2) leads to

Hpϑtq “
1
tr´1

ˆ

t

r ´ 1

˙

(4.4)

for any t P tr ´ 2, r ´ 1, . . . , s´ 1u. In particular, for t “ s´ 1 we get

ϑr´1
“

ˆ

s´ 1
s

˙r´1

¨
s

s´ r ` 1 ¨
`

pr ´ 1qϑ´ pr ´ 2qM
˘

(4.5)

due to the definition of H.
Later on we shall need some estimates concerning these numbers ϑt.

Claim 4.2. If the integer t belongs to the interval rr ´ 2, s ´ 2s, then ϑt ď
t
t`1 ¨M . In

addition, we have ϑ ě s´1
s
¨M .

Proof. Whenever t P rr´2, s´2s is an integer, we have Hpϑt`1q ď HpMq. Owing to (4.4)
and the definiton of H this yields

1
pt` 1qr´1

ˆ

t` 1
r ´ 1

˙

ď
1
sr´1

ˆ

s

r ´ 1

˙

1
M r´2 .

Multiplying this by pt ´ r ` 2qpt ` 1qr´2{tr´1 we infer Hpϑtq ď Hp t
t`1 ¨Mq, thus proving

the first part of our claim. Similarly but slightly easier we deduce from M ě 1 that
Hp s´1

s
¨Mq ď Hpϑq, which leads to the second part of the claim. �

Claim 4.3. If η P
“

r´2
r´1 ¨M,M

‰

and ν “ pF´1
r´1 ˝Hqpηq, then the function

Q : r0, νs ÝÑ R

defined by

δ ÞÝÑ pr ´ 1q
ˆ

s

r ´ 1

˙

δ ´ sr´1ηr´2Frpδq

attains its global maximum at δ “ ν.

Proof. Choose an integer t P rr ´ 2, s ´ 1s as well as a real number β P
“

0, 1
t

‰

such that
ν “ t

2pt`1qp1 ´ β2q. Since Q is piecewise convex and convex functions attain their global
maxima at boundary values, it suffices to establish the following two statements:
pAq The function Q is increasing on

“

t´1
2t , ν

‰

.
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pBq If d P rt´ 1s, then Qpd´1
2d q ď Qp t´1

2t q.
For the proofs of both of these subclaims, we use
pCq M r´2 ¨ 1

tr´1

`

t
r´1

˘

ď 1
sr´1

`

s
r´1

˘

,
which is an obvious consequence of Hpϑtq ď HpMq.

Now, to verify pAq, take any δ P
`

t´1
2t , ν

˘

and write δ “ t
2pt`1qp1´α

2q, where α P
`

β, 1
t

˘

.
Multiplying pCq by pr ´ 1qsr´1 one obtains

sr´1M r´2 pr ´ 1qr
tpt` 1qr´1

ˆ

t` 1
r

˙ˆ

t` 1
t

˙r´2

ď pr ´ 1q
ˆ

s

r ´ 1

˙

.

In view of η ďM and α ď 1
t
this implies

sr´1ηr´2F 1rpδq ď pr ´ 1q
ˆ

s

r ´ 1

˙

,

whence Q1pδq ě 0. Thereby we have proved assertion pAq.
Let us now turn our attention to pBq. If t ď r ´ 1, then Fr vanishes at all relevant

numbers and our claim is obvious. So henceforth we may suppose t ě r and for similar
reasons d ě r ´ 1 as well. The function

Φ:
“1
t
, 1
r´1

‰

ÝÑ r0, 1s

defined by
x ÞÝÑ p1´ xqp1´ 2xq ¨ . . . ¨

`

1´ pr ´ 1qx
˘

is obviously convex, wherefore
Φ
`1
t

˘

´ Φ
`1
d

˘

1
d
´ 1

t

ď ´Φ1
`1
t

˘

.

Since

´Φ1
`1
t

˘

“

"

t

t´ 1 `
2t
t´ 2 ` . . .`

pr ´ 1qt
t´ r ` 1

*

Φ
`1
t

˘

ď
pr ´ 1qrt

2pt´ r ` 1qΦ
`1
t

˘

,

it follows that
1
tr

ˆ

t

r

˙

´
1
dr

ˆ

d

r

˙

ď

ˆ

1
d
´

1
t

˙

pr ´ 1qr
2pt´ r ` 1q ¨

1
tr´1

ˆ

t

r

˙

“ pr ´ 1q
ˆ

t´ 1
2t ´

d´ 1
2d

˙

¨
1
tr´1

ˆ

t

r ´ 1

˙

.

Multiplying this by

sr´1ηr´2
¨

1
tr´1

ˆ

t

r ´ 1

˙

ď

ˆ

s

r ´ 1

˙

,

which in view of η ďM is a consequence of pCq, we deduce

sr´1ηr´2
"

1
tr

ˆ

t

r

˙

´
1
dr

ˆ

d

r

˙*

ď pr ´ 1q
ˆ

s

r ´ 1

˙ˆ

t´ 1
2t ´

d´ 1
2d

˙

,
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which is easily seen to be equivalent to pBq. �

The following result will only be used for k “ 2 and k “ r, but the general case is not
really harder.

Claim 4.4. For each integer k ě 2 the function

Jk :
“

r´2
r´1 ¨M,M

‰

ÝÑ R

defined by
η ÞÝÑ ηkpFk ˝ F

´1
r´1 ˝Hqpηq

is concave or convex on the intervals rϑt, ϑt`1s, where t P tr ´ 2, r ´ 1, . . . , s ´ 2u, and
rϑ,M s, depending on whether k ě r ´ 1 or k ď r ´ 1.

Proof. Treating both cases for k at the same time, we select any t P tr´2, r´1, . . . , s´1u
and intend to verify that the second derivative of Jk has the expected sign on pϑt, ϑt`1q,
where for convenience ϑs “M . Utilising that x ÞÝÑ 2x´1

x2 is strictly increasing on p0, 1q we
may define a function

S : pϑt, ϑt`1q ÝÑ
`

t
t`1 , 1

˘

such that
pF´1

r´1 ˝Hqpηq “
t

2pt` 1q ¨
2Spηq ´ 1
Spηq2

holds for all η P pϑt, ϑt`1q. Since the right hand side may be rewritten as

t

2pt` 1q ˆ
#

1´
ˆ

1
Spηq

´ 1
˙2

+

,

we have
1
sr´1

ˆ

s

r ´ 1

˙

pr ´ 1qη ´ pr ´ 2qM
ηr´1 “

1
pt` 1qr´1

ˆ

t` 1
r ´ 1

˙

pr ´ 1qSpηq ´ pr ´ 2q
Spηqr´1 .

Differentiating with respect to η and dividing by pr ´ 2qpr ´ 1q, we find
1
sr´1

ˆ

s

r ´ 1

˙

¨
M ´ η

ηr
“

1
pt` 1qr´1

ˆ

t` 1
r ´ 1

˙

¨
1´ Spηq
Spηqr

¨ S 1pηq ,

and the combination of both equations yields

S 1pηq “
SpηqpM ´ ηq rpr ´ 1qSpηq ´ pr ´ 2qs
ηp1´ Spηqq rpr ´ 1qη ´ pr ´ 2qM s .

Furthermore
Jkpηq “

1
pt` 1qk

ˆ

t` 1
k

˙

¨
kSpηq ´ pk ´ 1q

Spηqk
¨ ηk .

Differentiating and using the above formula for S 1pηq, we get

J 1kpηq “
1

pt` 1qk

ˆ

t` 1
k

˙

kηk´1 rpr ´ 1qSpηqη ´ pk ´ 1qη ` pk ´ r ` 1qSpηqM s
Spηqk rpr ´ 1qη ´ pr ´ 2qM s .
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A repetition of this argument leads to

J2k pηq “
1

pt` 1qk

ˆ

t` 1
k

˙

¨
kpk ´ 1qpr ´ k ´ 1qηk´2 rSpηqM ´ ηs2

Spηqk p1´ Spηqq rpr ´ 1qη ´ pr ´ 2qM s2
,

which entails the desired conclusion in view of the presence of the factor r ´ k ´ 1 in the
numerator. �

Claim 4.5. For each η P
“

r´2
r´1 ¨M,M

‰

the difference

pr ´ 1q
ˆ

s

r ´ 1

˙

η2ν ´ sr´1ηrFrpνq

is at most
r ´ 2

ps´ 1qps` 1q

ˆ

s` 1
r

˙

¨
`1

2pr ´ 1qsϑ2
´ pr ´ 1qsϑM ` rps´ 1qMη

˘

,

where ν “ pF´1
r´1 ˝Hqpηq.

Proof. The difference under consideration, which we shall denote by T pηq in the sequel,
rewrites in the notation of Claim 4.4 as

T pηq “ pr ´ 1q
ˆ

s

r ´ 1

˙

J2pηq ´ s
r´1Jkpηq .

In the special case η “ ϑ we have ν “ s´2
2ps´1q due to the definition of η and using (4.5)

and (4.2) it is not hard to check that we have equality in the inequality we seek to establish.
Moreover, Claim 4.4 shows that T is piecewise convex as a function of η.

For these reasons it suffices to prove the statements
pAq If r ´ 2 ď t ď s´ 2, then lim

ηÝÑϑ`t

T 1pηq ě pr ´ 2q
`

s
r´1

˘

M

pBq and lim
ηÝÑM´

T 1pηq ď pr ´ 2q
`

s
r´1

˘

M ,

where the superscripted plus or minus signs below the limit are intended to signify that η
is supposed to approach the boundary value in question from the right or from the left,
respectively. Throughout the computations that follow we use the function S as well as
the formulae for J 1pηq corresponding to k “ 2 and k “ r from the foregoing proof.

To verify pAq, we distinguish two cases.

First Case: t “ r ´ 2
Note that the hypothesis of pAq yields s ě r, wherefore Hpϑr´1q ď HpMq, i.e.,

1
pr ´ 1qr´1 ď

1
sr´1

ˆ

s

r ´ 1

˙

¨
1

M r´2 .

Now let η P pϑr´2, ϑr´1q be arbitrary. Then
pr ´ 1qSpηq ´ pr ´ 2q
pr ´ 1qr´1 ¨ Spηqr´1 ď

1
sr´1

ˆ

s

r ´ 1

˙

pr ´ 1qSpηq ´ pr ´ 2q
Spηqr´1 ¨M r´2 ,
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which by the definition of S and H yields Hpηq ď HpSpηqMq, and thus η ď SpηqM . Also,
η P

`

r´2
r´1 ¨M,M

˘

gives
η ě pr ´ 1qη ´ pr ´ 2qM ą 0 ,

which by Spηq ď 1 may be weakened to

η ě Spηq
`

pr ´ 1qη ´ pr ´ 2qM
˘

.

Consequently

η
`

SpηqM ´ η
˘

ě Spηq
`

SpηqM ´ η
˘`

pr ´ 1qη ´ pr ´ 2qM
˘

,

i.e.,
η rpr ´ 1qSpηqη ´ η ´ pr ´ 3qSpηqM s ěMSpηq2 rpr ´ 1qη ´ pr ´ 2qM s .

Multiplying this by pr ´ 2q
`

s
r´1

˘

Spηq´2 rpr ´ 1qη ´ pr ´ 2qM s´1 we infer

T 1pηq ě pr ´ 2q
ˆ

s

r ´ 1

˙

M ,

as required.

Second Case: r ´ 1 ď t ď s´ 2.
Notice that Claim 4.2 entails

pr ´ 2qpM ´ ϑtqpM ´ t`1
t
ϑtq ě 0 ,

whence

ϑt
“

pr ´ 2´ 1
t
qϑt ´ pr ´ 3qM

‰

ě
`

M ´ 1
t
ϑt
˘“

pr ´ 1qϑt ´ pr ´ 2qM
‰

.

By t ą r ´ 2 the second factor on the right-hand side is positive, wherefore

ϑt ¨
pr ´ 2´ 1

t
qϑt ´ pr ´ 3qM

pr ´ 1qϑt ´ pr ´ 2qM ěM ´ 1
t
ϑt .

Multiplying by pr ´ 1q and subtracting M ´ r´1
t
ϑt we obtain

pr ´ 1qϑt ¨
`

r ´ 2´ 1
t

˘

ϑt ´ pr ´ 3qM
pr ´ 1qϑt ´ pr ´ 2qM ´

`

M ´ r´1
t
ϑt
˘

ě pr ´ 2qM .

If we now multiply by
`

s
r´1

˘

and use

lim
ηÝÑϑ`t

Spηq “
t

t` 1

as well as the definition of ϑt, we get indeed

lim
ηÝÑϑ`t

T 1pηq ě pr ´ 2q
ˆ

s

r ´ 1

˙

M.

This completes the verification of pAq.



THE CLIQUE DENSITY THEOREM 15

So let us now continue with pBq. From HpMq ą Fr´1

´

s´2
2ps´1q

¯

one deduces easily

SpMq ą
s´ 1
s

ě
r ´ 2
r ´ 1 ,

where we have made the obvious definition

SpMq “ lim
ηÝÑM´

Spηq .

This entails
ps´ r ` 1qSpMq

pr ´ 1qSpMq ´ pr ´ 2q ď s´ 1 ,

which in turn implies

pr ´ 1q
"

ps´ r ` 1qSpMq
pr ´ 1qSpMq ´ pr ´ 2q ´ ps´ 1q

*ˆ

1´ SpMq
SpMq

˙2

ď 0 .

Adding pr ´ 2qs and rearranging our terms, we infer

pr ´ 1qps´ 1q2SpMq ´ 1
SpMq2

´
ps´ r ` 1q prSpMq ´ pr ´ 1qq
SpMq ppr ´ 1qSpMq ´ pr ´ 2qq ď pr ´ 2qs .

Multiplying this by M
s
¨
`

s
r´1

˘

and exploiting the equation

1
M r´2 “

pr ´ 1qSpMq ´ pr ´ 2q
SpMqr´1 ,

that follows easily from the definition of S, one gets assertion pBq, whereby Claim 4.5 has
finally been proved. �

§5. Clique densities

We now come to the central section of this article, in which we are going to provide a
proof of Claim 2.1, thus solving the clique density problem.

Theorem 5.1. If G is a weighted graph and r ě 2 is an integer, then we have

GpKrq ě FrpGpK2qq .

In other words, the estimate

GpKrq ě
1

ps` 1qr ¨
ˆ

s` 1
r

˙

¨ p1` αqr´1`1´ pr ´ 1qα
˘

holds, where s refers to a positive integer for which γ “ GpK2q belongs to the interval
“

s´1
2s ,

s
2ps`1q

‰

and α P
“

0, 1
s

‰

is required to satisfy γ “ s
2ps`1qp1´ α

2q.
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Before we proceed to the proof itself, we give an informal outline of the strategy we use:
the proof will be by induction on r and for fixed r by induction on the order n of G. Once r
and n are fixed we will, rather than considering all possible G, restrict our attention to
a hypothetical “extremal” counterexample, where “extremal” means that the difference
FrpGpK2qq ´ GpKrq is as large as possible. Then we already know from Corollary 3.3
that α ‰ 0 and α ‰ 1

s
. From now on, r, s, and α will be the main “global variables”

describing G so that we regard a quantity appearing in the proof as being “known” when
we can express it in terms of them. For instance, γ, Frpγq, and the derivative λ “ F 1rpγq

that will appear shortly are “known”.
Now what remains to be done is to establish an inequality in n`

`

n
2

˘

variables, where n
of the variables, x1, . . . , xn, are the “weights of the vertices” of G and the remaining ones,
denoted by aij, are the “weights of the edges” of G. So Lagrange’s theorem on multivariate
functions is applicable and yields some information per variable.

For the “vertex with number i” we get essentially that the density GipKr´1q of r-cliques
it belongs to depends linearly on its weighted degree GipK1q. These terms are defined
precisely below. For now it may suffice to say that the slope of this linear function is the
known number λ “ F 1rpγq mentioned above, while its constant term is an unknown new
parameter µ.

Similarly we could get an equation for each “edge variable” aij P p0, 1q but if aij P t0, 1u
we just get an inequality because we can vary aij in one direction only. The precise
estimate we thus obtain is called (5.5) below.

There is actually a quite interesting argument due to Nikiforov [10], that would allow
us to assume aij P t0, 1u for all i ‰ j here.

To gain additional information on the unknown number µ, we multiply the equation
gotten for the ith vertex above by the weighted degree of that vertex and sum over i. The
equation thus obtained may then be weakened by a calculation inspired by Razborov’s
work [13,14] to the main inequality

pr ´ 1qGpKrq ` pr ` 1qGpKr`1q ď λ
`

γ ` 3GpK3q
˘

´ 2γµ .

What is a bit confusing about this estimate is that when we want to use it for learning
something about r-cliques, it seems as if we should already know something about triangles
and pr ` 1q-cliques. The way out of this difficulty is that in the graph case these are just
edges and r-cliques in the neighbourhoods of vertices. This idea works in our weighted
setting as well and thus allows to bring the induction hypothesis applied to “weighted
neighbourhoods” into the argument. The inequality that results relates the xi and aij in
a quite involved way but by the results of Section 4 we can make it more well-behaved
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with respect to them at the cost of introducing a further constant ϑ that depends on the
unknown number µ. This leads to an inequality that besides r, s, and α involves only µ
and ϑ, but the original variables xi and aij will be gone. Finally it will turn out that this
inequality is wrong. Now we proceed with the details.

Proof of Theorem 5.1. Since F2 is the identity function confined to
“

0, 1
2

˘

, the result is
clear for r “ 2. Arguing indirectly, let r ě 3 denote the least integer for which the
clique density theorem can fail∗ and take n to be the least order that counterexamples can
possibly have. As we have already mentioned earlier, the function

Fr :
“

0, 1
2

˘

ÝÑ
“

0, 1
r!

˘

is continuous. Now the collection of all weighted graphs of order n may in an obvious
fashion be regarded as a compact topological space, which implies that the continuous
function defined on it by

G ÞÝÑ GpKrq ´ FrpGpK2qq

attains an absolute minimum. Now fix a weighted graph G of order n for which this
minimal value occurs. This property of G will be referred to as “extremality”. Choose an
integer s ě 1 as well as a real number α P

“

0, 1
s

‰

such that the number γ “ GpK2q can be
written as

γ “ s
2ps`1qp1´ α

2
q . (5.1)

By the hypothesized failure of our theorem, we have

GpKrq ă
1

ps` 1qr ¨
ˆ

s` 1
r

˙

¨ p1` αqr´1
p1´ pr ´ 1qαq ,

which clearly can only happen if s ě r´1. Also, Corollary 3.3 tells us that α P
`

0, 1
s

˘

, and
so the function Fr is differentiable at γ. As we have seen in (4.3), its derivative λ “ F 1rpγq

is given by

λ “
pr ´ 1qr
sps` 1qr´1

ˆ

s` 1
r

˙

p1` αqr´2 . (5.2)

Let G as usual be presented by the sequence px1, x2, . . . , xnq of nonnegative reals summing
up to 1 and by the function a : rnsp2q ÝÑ r0, 1s. The remainder of the proof proceeds in
five steps.

First Step: Exploiting extremality.
Clearly each of the numbers x1, x2, . . . , xn has to be positive, for if one of them would
vanish we could simply omit it, thus obtaining another counterexample whose order would
∗By the results of Razborov and Nikiforov ([14], [10]) we could assume r ě 5 here, but actually there

is no need for doing so.
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be smaller than n. Given a sequence i1, i2, . . . , im of distinct integers from rns as well as
another integer % ě 1, we set

Gi1,i2,...,impK%q “
ÿ

MPIp%q

ź

pk,jqPrmsˆM

aikj
ź

ePMp2q

ae
ź

jPM

xj ,

where I “ rns ´ ti1, i2, . . . , imu. Note that for m “ 0 this coincides with our earlier
notation, so no confusion can arise.

As an example, we mention that for every i P rns we have

GipK1q “
ÿ

jPrns´tiu

aijxj ,

which may be thought of as the weighted degree of the “vertex with index i”. These
weighted degrees satisfy

ÿ

iPrns

xiGipK1q “ 2
ÿ

ti,juPrnsp2q

xixjaij “ 2GpK2q ,

whence
ÿ

iPrns

xiGipK1q “ 2γ . (5.3)

Similarly GipKr´1q may be regarded as the relative density of r-cliques containing “the
vertex i”. It is soon going to be important for us that this quantity is also the partial
derivative of GpKrq with respect to xi.

Since px1, x2, . . . , xnq is an interior point of the simplex
 

pξ1, ξ2, . . . , ξnq P r0, 1sn
ˇ

ˇ ξ1 ` ξ2 ` . . .` ξn “ 1
(

,

Lagrange’s theorem concerning the extremal values of multivariate functions reveals, that
due to the extremality of G there exists a certain real constant µ such that

GipKr´1q “ λGipK1q ´ µ (5.4)

holds for all i P rns.
As we are now going to see, the extremality of G also implies:

For each ti, ju P rnsp2q one has aij
`

λ´ GijpKr´2q
˘

ě 0 . (5.5)

This is obvious whenever aij vanishes, so let us suppose now that this number is positive.
If η denotes any sufficiently small positive real number, we may construct a weighted
graph Gη agreeing entirely with G except for having aηij “ aij ´ η. Clearly one has
GηpK2q “ γ ´ ηxixj and GηpKrq “ GpKrq ´ ηxixjGijpKr´2q, wherefore

GηpKrq ´ FrpGηpK2qq “ GpKrq ´ Frpγq ` ηxixj
`

λ´ GijpKr´2q
˘

˘Opη2
q ,

which in view of the assumed extremality of G entails λ ě GijpKr´2q and hence (5.5).
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Second Step: An estimate about triangles, r-cliques, and pr ` 1q-cliques.
As in the proof of Proposition 3.1, we set

AM “
ź

ePMp2q

ae and XM “
ź

iPM

xi

for all M Ď rns. This time, however, we need the further stipulations

BM “
ÿ

iPM

´

ÿ

jPM´tiu

aij

¯

AM´tiu ,

CM “
ÿ

QPMprq

AQ ,

and
DM “

ÿ

iPM

ÿ

tj,kuPpM´tiuqp2q

p1´ aijqp1´ aikqAM´tiu

for all M P rnspr`1q. What we shall need to know about these expressions is:

If M P rnspr`1q, then BM ´ pr ´ 1qCM `DM ě pr ` 1qAM . (5.6)

To see this, we note again that our inequality is linear in each of its variables, for which
reason we may suppose ae P t0, 1u for all e P M p2q. Form a graph H with vertex set M
by putting an edge between i, j PM exactly if aij “ 1. If H is free from cliques of size r,
then AM “ BM “ CM “ DM “ 0. If H contains a unique such clique and i further edges,
where 0 ď i ď r ´ 2, then AM “ 0, BM “ i, CM “ 1, and DM “

`

r´i
2

˘

, wherefore indeed
BM ´ pr ´ 1qCM ` DM “

`

r´i´1
2

˘

ě pr ` 1qAM . If the graph H possesses exactly two
cliques of size r, then it misses precisely one edge and AM “ 0, BM “ 2pr ´ 1q, CM “ 2
as well as DM “ 0. Finally, if H happens to be a clique, then AM “ 1, BM “ rpr ` 1q,
CM “ r ` 1 and DM “ 0. This analysis proves (5.6) in all possible cases.

Multiplying the inequality just obtained by XM and summing over M , we deduce
ÿ

MPrnspr`1q

`

BM ´ pr ´ 1qCM `DM

˘

XM ě pr ` 1qGpKr`1q . (5.7)

Next, we consider the sum

Ω “
ÿ

iPrns

xiGipK1qGipKr´1q .

Expanding the product, we get several terms involving one of the variables x1, x2, . . . , xn

quadratically and certain other “linear” terms. We are thus led to a decomposition

Ω “ Ωsq ` Ωmix ,

where
Ωsq “

ÿ

ti,juPrnsp2q

px2
ixj ` xix

2
jqa

2
ijGijpKr´2q
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and

Ωmix “
ÿ

MPrnspr`1q

BMXM .

Owing to (5.5) we have

Ωsq ě
ÿ

ti,juPrnsp2q

px2
ixj ` xix

2
jqaijGijpKr´2q ´ λΦ , (5.8)

where

Φ “
ÿ

ti,juPrnsp2q

px2
ixj ` xix

2
jqpaij ´ a

2
ijq .

The sum on the right-hand side of (5.8) rewrites as

pr ´ 1q
ÿ

QPrnsprq

AQXQ

´

1´
ÿ

qPrns´Q

xq

¯

“ pr ´ 1qGpKrq ´ pr ´ 1q
ÿ

MPrnspr`1q

CMXM .

So altogether he have

Ω ě pr ´ 1qGpKrq `
ÿ

MPrnspr`1q

`

BM ´ pr ´ 1qCM
˘

XM ´ λΦ ,

which due to (5.7) may be weakened to

Ω ě pr ´ 1qGpKrq ` pr ` 1qGpKr`1q ´ λΦ´
ÿ

MPrnspr`1q

DMXM .

Now notice that trivially
ÿ

MPrnspr`1q

DMXM ď
ÿ

iPrns

ÿ

tj,kuPprns´tiuqp2q

ajkp1´ aijqp1´ aikqxixjxkGjkpKr´2q .

Hence, writing

Vti,j,ku “ ajkp1´ aijqp1´ aikq ` aikp1´ aijqp1´ ajkq ` aijp1´ aikqp1´ ajkq

for all ti, j, ku P rnsp3q and applying (5.5) again, we obtain

pr ´ 1qGpKrq ` pr ` 1qGpKr`1q ´ λΦ´ λ
ÿ

TPrnsp3q

VTXT ď Ω . (5.9)

On the other hand (5.4) and (5.3) allow us to write

Ω “ λ
ÿ

iPrns

xiGipK1q
2
´ 2γµ .
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So in view of the calculation
ÿ

iPrns

xiGipK1q
2
“

ÿ

ti,juPrnsp2q

px2
ixj ` xix

2
jqa

2
ij

` 2
ÿ

ti,j,kuPrnsp3q

paijajk ` ajkaki ` akiaijqXti,j,ku

“ ´Φ`
ÿ

ti,juPrnsp2q

xixjaij

´

1´
ÿ

kPrns´ti,ju

xk

¯

`
ÿ

ti,j,kuPrnsp3q

paij ` ajk ` akiqXti,j,ku

´
ÿ

TPrnsp3q

VTXT ` 3GpK3q

“ ´Φ´
ÿ

TPrnsp3q

VTXT ` γ ` 3GpK3q

we have
Ω “ λ

`

γ ` 3GpK3q
˘

´ 2γµ´ λΦ´ λ
ÿ

TPrnsp3q

VTXT .

Comparing this with (5.9) we finally arrive at the main estimate of this step, namely

pr ´ 1qGpKrq ` pr ` 1qGpKr`1q ď λ
`

γ ` 3GpK3q
˘

´ 2γµ . (5.10)

Third Step: Introducing and estimating M .
Let us now define a real number M such that

µ “
pr ´ 2qr
ps` 1qr

ˆ

s` 1
r

˙

p1` αqr´1M . (5.11)

Since (5.4) yields

r ¨ GpKrq “
ÿ

iPrns

xiGipKr´1q “
ÿ

iPrns

xi
`

λGipK1q ´ µ
˘

“ 2γλ´ µ ,

we have

GpKrq “
1

ps` 1qr

ˆ

s` 1
r

˙

p1` αqr´1
r1´ pr ´ 1qα ´ pr ´ 2qpM ´ 1qs (5.12)

owing to (5.2) and (5.11). In view of the presumed smallness of the left-hand side, this gives
M ą 1. Eventually we shall prove M ď 1 as well, thereby reaching a final contradiction.
Before doing that, however, we need to provide a much weaker upper bound onM , so that
the results from our fourth section become available. This is our next immediate task. To
achieve it, we find it convenient to introduce the abbreviations

A “
r

sps` 1qr´1

ˆ

s` 1
r

˙

,
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B “
pr ´ 2qr
ps` 1qr

ˆ

s` 1
r

˙

,

and

C “ r´2

d

p2γAqr´1

r ¨ GpKrq
.

Notice that the last of these stipulations is permissible, as Proposition 3.1 entails GpKrq ą0
in view of γ ą s´1

2s ě
r´2

2pr´1q . Applying the inequality between the arithmetic and geometric
mean of r ´ 1 positive real numbers, one of which is equal to r ¨ GpKrq while each of the
remaining r ´ 2 numbers equals Cp1` αqr´1, we get

r ¨ GpKrq ` pr ´ 2qCp1` αqr´1
ě 2pr ´ 1qAγp1` αqr´2

“ 2γλ “ r ¨ GpKrq ` µ

and hence pr´ 2qC ě BM . Rising both sides to their pr´ 2qnd powers we infer after some
easy simplifications

ˆ

2γ
s

˙r´1

¨

ˆ

s` 1
r

˙

ě ps` 1qGpKrqM
r´2 .

Using now Corollary 3.2, we obtain
ˆ

s´ 1
s

˙r´2

ą
s´ r ` 1
s´ 1 ¨M r´2 .

As this estimate coincides with (4.1), we now have the results from Section 4 at our
disposal.

Fourth Step: Induction on n.
Due to (5.5) we have for each i P rns the inequality

pr ´ 1qGipKr´1q “
ÿ

jPrns´tiu

xjaijGijpKr´2q ď
ÿ

jPrns´tiu

λxjaij “ λGipK1q .

Hence (5.4) yields

pr ´ 1q pλGipK1q ´ µq ď λGipK1q ,

i.e.,

GipK1q ď
pr´1qµ
pr´2qλ “

s
s`1p1` αqM .

Thus if we define the real number ηi to obey GipK1q “
s
s`1p1`αqηi, then ηi ďM . Similarly

but easier we have

0 ď GipKr´1q “ λGipK1q ´ µ ,

whence GipK1q ě
µ
λ
, so that altogether we get ηi P

“

r´2
r´1 ¨M,M

‰

.
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The main objective of this step is to verify that for each i P rns one has

λGipK2q´GipKrq ď
pr ´ 2qsp1` αqr
ps´ 1qps` 1qr`1

ˆ

s` 1
r

˙

(5.13)

ˆ
`1

2pr ´ 1qsϑ2
´ pr ´ 1qsϑM ` rps´ 1qηiM

˘

.

Plainly it suffices to show this for i “ n and for brevity we are henceforth going to write η
instead of ηn. As GnpK1q is positive, we may construct a weighted graph G˚ of order n´ 1
specified by the numbers x˚i “ ainxi

GnpK1q
for i P rn´1s and by the restriction of a to rn´1sp2q.

Our minimal choices of r and n entail G˚pKr´1q ě Fr´1pδq and G˚pKrq ě Frpδq, where
δ “ G˚pK2q. By our construction of G˚ and the case i “ n of (5.4), we have

G˚pKr´1q “
GnpKr´1q

GnpK1qr´1 “
λGnpK1q ´ µ

GnpK1qr´1 .

Expressing the right-hand side in terms of r, s, M , and η, we are led to G˚pKr´1q “ Hpηq,
where H refers to the function defined just before Claim 4.1. Stipulating therefore
ν “ F´1

r´1pHpηqq, as in the hypothesis of Claim 4.3, we have δ ď ν. Now in view of

G˚pK2q “
GnpK2q

GnpK1q2
and G˚pKrq “

GnpKrq

GnpK1qr
,

we get

λGnpK2q ´ GnpKrq “
sp1` αqrη2

ps` 1qr ˆ

"

pr ´ 1q
ˆ

s

r ´ 1

˙

δ ´ sr´1ηr´2G˚pKrq

*

.

By our bound on G˚pKrq, the difference in curly braces is at most Qpδq, where Q signifies
the function introduced in Claim 4.3, and by that claim itself this is in turn at most Qpνq.
Estimating now the product η2Qpνq by means of Claim 4.5 we finish proving (5.13).

Fifth Step: Concluding the argument.
Notice that (5.3) and (5.1) yield

s

s` 1p1` αq
ÿ

iPrns

xiηi “
ÿ

iPrns

xiGipK1q “ 2γ “ s

s` 1p1´ α
2
q ,

wherefore
ÿ

iPrns

xiηi “ 1´ α .

Thus multiplying (5.13) by xi and adding up the n resulting inequalities we conclude

3λGpK3q ´ pr ` 1qGpKr`1q ď
pr ´ 2qsp1` αqr
ps´ 1qps` 1qr`1

ˆ

s` 1
r

˙

ˆ

`1
2pr ´ 1qsϑ2

´ pr ´ 1qsϑM ` rps´ 1qp1´ αqM
˘

.
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Combining this with (5.10) and plugging in the formulae (5.1), (5.2), (5.11), and (5.12)
expressing γ, λ, µ, and GpKrq in terms of r, s, α, and M we get an estimate that on first
sight looks rather lengthy. After massive cancelations, however, it just reads

p1´ αq ´ 2M ď
p1` αqs2

s2 ´ 1 pϑ2
´ 2Mϑq .

Since ϑ P
“

s´1
s
M,M

‰

holds by Claim 4.2, we have

ϑ2
´ 2Mϑ “ pM ´ ϑq2 ´M2

ď ´ s2´1
s2 ¨M2 ,

whence
p1´ αq ´ 2M ď ´p1` αqM2 ,

i.e.,
p1´Mqpp1´ αq ´ p1` αqMq ď 0 .

But if M really was greater than 1, as suggested by our third step, then both factors of
the left hand side had to be negative. This contradiction finally proves Theorem 5.1. �
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