Updates on the Ubiquity Conjecture

Max Pitz

With N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer and M. Teegen

University of Hamburg, Germany

9 June 2018

The ubiquity question

Potential infinity vs. actual infinity

The Ubiquity Question:

- Fix your favourite connected graph G.
- Suppose have a host graph Γ which contains arbitrarily many disjoint copies of G
- Can you find infinitely many disjoint copies of G in Γ ?

If yes for all possible host graphs Γ , we say G is ubiquitous.

Small detour: What do we mean by 'copies of G in Γ '?

Embeddings as subgraph, topological minor and minor

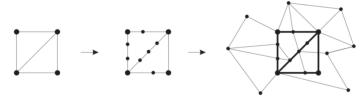
When saying 'a copy of G in Γ ', written $G \lhd \Gamma$, we could mean:

• G embeds as subgraph $(G \subseteq \Gamma)$

Small detour: What do we mean by 'copies of G in Γ '? Embeddings as subgraph, topological minor and minor

When saying 'a copy of G in Γ ', written $G \lhd \Gamma$, we could mean:

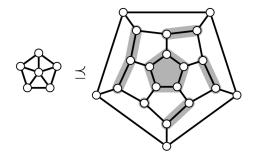
- G embeds as subgraph ($G \subseteq \Gamma$)
- G embeds as topological minor $(G \leq \Gamma)$



Small detour: What do we mean by 'copies of G in Γ '? Embeddings as subgraph, topological minor and minor

When saying 'a copy of G in Γ ', written $G \lhd \Gamma$, we could mean:

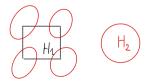
- G embeds as subgraph ($G \subseteq \Gamma$)
- G embeds as topological minor $(G \leq \Gamma)$
- G embeds as a minor $(G \preccurlyeq \Gamma)$



We simply pick copies greedily.

1 Pick first copy $H_1 \subset \Gamma$ of G.

We simply pick copies greedily.

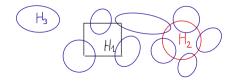


- Pick first copy $H_1 \subset \Gamma$ of G.
- Show that Γ contains |H₁| + 1 disjoint copies of G. Pick second copy H₂ ⊂ Γ of G disjoint from H₁.

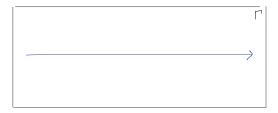
We simply pick copies greedily.

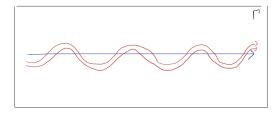
- Pick first copy $H_1 \subset \Gamma$ of G.
- Show that Γ contains |H₁| + 1 disjoint copies of G. Pick second copy H₂ ⊂ Γ of G disjoint from H₁.

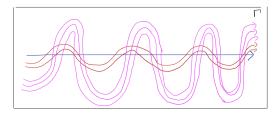
We simply pick copies greedily.

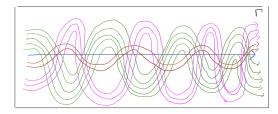


- Pick first copy $H_1 \subset \Gamma$ of G.
- **2** Know that Γ contains $|H_1| + 1$ disjoint copies of G. Pick second copy $H_2 \subset \Gamma$ of G disjoint from H_1 .
- **③** Know that Γ contains $|H_1| + |H_2| + 1$ disjoint copies of G....
- Continue...

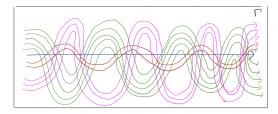




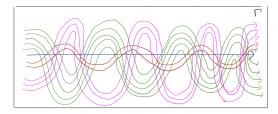




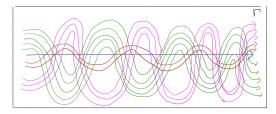
Non-trivial, as we can no longer pick copies greedily.

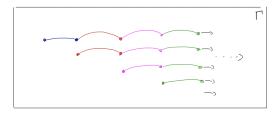


• Any ray from a given *layer* might intersect all rays from all other *layers*.

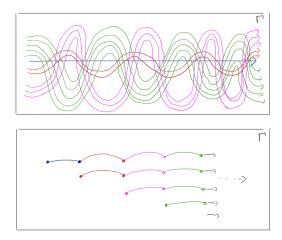


- Any ray from a given *layer* might intersect all rays from all other *layers*.
- Halin's idea:
 - If rays don't intersect \longrightarrow pick greedily.
 - If rays do intersect \longrightarrow re-route onto the next layer.





Non-trivial, as we can no longer pick copies greedily.



• Our infinitely many rays use finite subpaths from the layers, but otherwise have little in common with our original rays!

Bad news for subgraph and topological minor relation Counterexamples due to Andreae, Lake and Woodall.

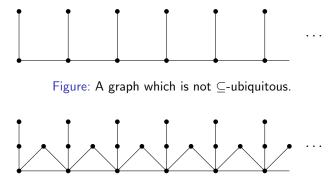
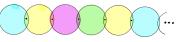


Figure: A graph which is not \leq -ubiquitous.

- \subset -Ubiquity: \checkmark Finite graphs \checkmark Ray / Double ray (Halin, '65/'70) X Infinite comb
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Trees with $\Delta \leq 3$ (Halin, '75) \checkmark Locally finite trees (Andreae, '79) X Infinite comb with triangles
- \prec -Ubiquity: \checkmark Finite graphs \checkmark Countable trees (Halin, '75) \checkmark Locally finite graphs with bounded sized blocks (Andreae, '13)

- \subset -Ubiquity: \checkmark Finite graphs \checkmark Ray / Double ray (Halin, '65/'70) X Infinite comb
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Trees with $\Delta < 3$ (Halin, '75) \checkmark Locally finite trees (Andreae, '79) X Infinite comb with triangles

 \prec -Ubiquity: \checkmark Finite graphs \checkmark Countable trees (Halin, '75) \checkmark Locally finite graphs with bounded sized blocks (Andreae, '13)



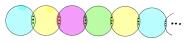
- \subset -Ubiquity: \checkmark Finite graphs \checkmark Ray / Double ray (Halin, '65/'70) X Infinite comb
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Trees with $\Delta \leq 3$ (Halin, '75) \checkmark Locally finite trees (Andreae, '79) X Infinite comb with triangles
- \prec -Ubiquity: \checkmark Finite graphs \checkmark Countable trees (Halin, '75) \checkmark Locally finite graphs with bounded sized blocks (Andreae, '13) \times Uncountable graph (uses non-wgo of inf. graphs) (Andreae, '01)

- \subset -Ubiquity: \checkmark Finite graphs \checkmark Ray / Double ray (Halin, '65/'70) X Infinite comb
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Trees with $\Delta \leq 3$ (Halin, '75) \checkmark Locally finite trees (Andreae, '79) X Infinite comb with triangles
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Countable trees (Halin, '75) \checkmark Locally finite graphs with bounded sized blocks (Andreae, '13) \times Uncountable graph (uses non-wgo of inf. graphs) (Andreae, '01)

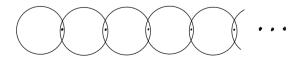
- \subset -Ubiquity: \checkmark Finite graphs \checkmark Ray / Double ray (Halin, '65/'70) X Infinite comb
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Trees with $\Delta < 3$ (Halin, '75) \checkmark Locally finite trees (Andreae, '79) X Infinite comb with triangles \square All trees, all cardinalities (BEEGHPT '18⁺)
- \prec -Ubiquity: \checkmark Finite graphs \checkmark Countable trees (Halin, '75) \checkmark Locally finite graphs with bounded sized blocks (Andreae, '13) \checkmark Uncountable graph (uses non-wqo of inf. graphs) (Andreae, '01)

- \subset -Ubiquity: \checkmark Finite graphs \checkmark Ray / Double ray (Halin, '65/'70) X Infinite comb
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Trees with $\Delta \leq 3$ (Halin, '75) \checkmark Locally finite trees (Andreae, '79) X Infinite comb with triangles \square All trees, all cardinalities (BEEGHPT '18⁺)
- \prec -Ubiquity: \checkmark Finite graphs \checkmark Countable trees (Halin, '75) \checkmark Locally finite graphs with bounded sized blocks (Andreae, '13) \checkmark Uncountable graph (uses non-wqo of inf. graphs) (Andreae, '01) \square All graphs of bounded treewidth (BEEGHPT '18⁺)

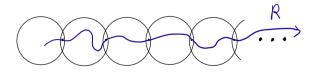
- \subset -Ubiquity: \checkmark Finite graphs \checkmark Ray / Double ray (Halin, '65/'70) X Infinite comb
- \leq -Ubiquity: \checkmark Finite graphs \checkmark Trees with $\Delta \leq 3$ (Halin, '75) \checkmark Locally finite trees (Andreae, '79) X Infinite comb with triangles \square All trees, all cardinalities (BEEGHPT '18⁺)
- \preccurlyeq -Ubiquity: \checkmark Finite graphs \checkmark Countable trees (Halin, '75) \checkmark Locally finite graphs with bounded sized blocks (Andreae, '13) \times Uncountable graph (uses non-wqo of inf. graphs) (Andreae, '01) \square All graphs of bounded treewidth (BEEGHPT '18⁺)



Plan: Show ubiquity ideas in a simple class of examples

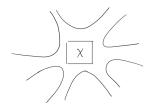


 Let's take an infinite graph G which is glued together from a sequence of finite connected graphs (G_n)_{n∈N} along 1-separators. Plan: Show ubiquity ideas in a simple class of examples

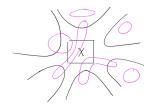


- Let's take an infinite graph G which is glued together from a sequence of finite connected graphs (G_n)_{n∈N} along 1-separators.
- We may also fix a representative ray $R \subset G$ for later use. Note that R passes through each 1-separator precisely once.

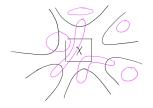
- \bullet Your task is to hide copies of G in Γ such that
 - $n \cdot G \lhd \Gamma$ for all $n \in \mathbb{N}$, and such that
 - not easy for me to find infinitely many copies of G in Γ .



- \bullet Your task is to hide copies of G in Γ such that
 - $n \cdot G \lhd \Gamma$ for all $n \in \mathbb{N}$, and such that
 - not easy for me to find infinitely many copies of G in $\Gamma.$

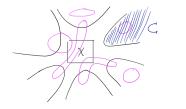


- \bullet Your task is to hide copies of G in Γ such that
 - $n \cdot G \lhd \Gamma$ for all $n \in \mathbb{N}$, and such that
 - not easy for me to find infinitely many copies of G in Γ .



- For every finite vertex set $X \subseteq V(\Gamma)$, at most |X| graphs from each layer can meet X.
- Still $n \cdot G \lhd \Gamma X$ for all $n \in \mathbb{N}$.
- If \exists_{∞} components C of ΓX with $G \lhd C$ then gameover.
- Ow/, \exists component C of ΓX with $n \cdot G \lhd C$ for all $n \in \mathbb{N}$ (pigeon hole).

- \bullet Your task is to hide copies of G in Γ such that
 - $n \cdot G \lhd \Gamma$ for all $n \in \mathbb{N}$, and such that
 - not easy for me to find infinitely many copies of G in Γ .



- For every finite vertex set $X \subseteq V(\Gamma)$, at most |X| graphs from each layer can meet X.
- Still $n \cdot G \lhd \Gamma X$ for all $n \in \mathbb{N}$.
- If \exists_{∞} components C of ΓX with $G \lhd C$ then gameover.
- Ow/, \exists component C of ΓX with $n \cdot G \lhd C$ for all $n \in \mathbb{N}$ (pigeon hole).

A simple yet crucial new idea:

۵

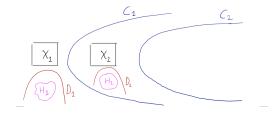
- I now apply the following strategy:
 - If possible, pick finite $X_1 \subset \Gamma$ s.t. in ΓX_1 there exist components $C_1 \neq D_1$ with
 - $n \cdot G \lhd C_1$ for all $n \in \mathbb{N}$,
 - D_1 contains a copy H_1 of G.

- I now apply the following strategy:
 - If possible, pick finite $X_1 \subset \Gamma$ s.t. in ΓX_1 there exist components $C_1 \neq D_1$ with
 - $n \cdot G \lhd C_1$ for all $n \in \mathbb{N}$,
 - D_1 contains a copy H_1 of G.
 - If possible, pick finite $X_2 \subset C_1$ s.t. in $C_1 X_1...$

A simple yet crucial new idea:

I now apply the following strategy:

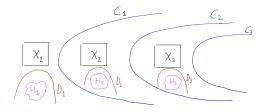
- If possible, pick finite $X_1 \subset \Gamma$ s.t. in ΓX_1 there exist components $C_1 \neq D_1$ with
 - $n \cdot G \lhd C_1$ for all $n \in \mathbb{N}$,
 - D_1 contains a copy H_1 of G.
- If possible, pick finite $X_2 \subset C_1$ s.t. in $C_1 X_1...$



A simple yet crucial new idea:

I now apply the following strategy:

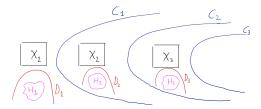
- If possible, pick finite $X_1 \subset \Gamma$ s.t. in ΓX_1 there exist components $C_1 \neq D_1$ with
 - $n \cdot G \lhd C_1$ for all $n \in \mathbb{N}$,
 - D_1 contains a copy H_1 of G.
- If possible, pick finite $X_2 \subset C_1$ s.t. in $C_1 X_1...$



A simple yet crucial new idea:

I now apply the following strategy:

- If possible, pick finite $X_1 \subset \Gamma$ s.t. in ΓX_1 there exist components $C_1 \neq D_1$ with
 - $n \cdot G \lhd C_1$ for all $n \in \mathbb{N}$,
 - D_1 contains a copy H_1 of G.
- If possible, pick finite $X_2 \subset C_1$ s.t. in $C_1 X_1...$



• If this process doesn't stop, then $\{H_n \colon n \in \mathbb{N}\} \longrightarrow$ gameover.

A simple yet crucial new idea:

Lesson: Place G-copies in Γ s.t. $\forall X \subseteq V(\Gamma)$ finite, $\exists !$ component C_X of $\Gamma - X$ such that 'almost all' copies of G are contained in C_X .

A simple yet crucial new idea:

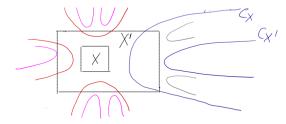
Lesson: Place G-copies in Γ s.t. $\forall X \subseteq V(\Gamma)$ finite, $\exists !$ component C_X of $\Gamma - X$ such that 'almost all' copies of G are contained in C_X .

Observation: The family $(C_X)_X$ satisfies $X \subseteq X' \to C_X \supseteq C_{X'}.$

Such a choice of components $(C_X)_X$ is called a *direction in* Γ .

A simple yet crucial new idea:

Lesson: Place G-copies in Γ s.t. $\forall X \subseteq V(\Gamma)$ finite, $\exists !$ component C_X of $\Gamma - X$ such that 'almost all' copies of G are contained in C_X .



Observation: The family $(C_X)_X$ satisfies $X \subseteq X' \to C_X \supseteq C_{X'}.$

Such a choice of components $(C_X)_X$ is called a *direction in* Γ . (Diestel and Kühn have shown that *directions* and *ends* are the same thing.)

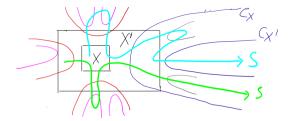
A simple yet crucial new idea:

Lesson: Place G-copies in Γ s.t. $\forall X \subseteq V(\Gamma)$ finite, $\exists !$ component C_X of $\Gamma - X$ such that 'almost all' copies of G are contained in C_X .

• A ray $S \subset \Gamma$ agrees with $(C_X)_X$ if S has a tail in every C_X .

A simple yet crucial new idea:

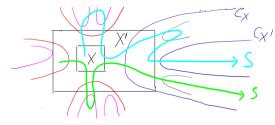
Lesson: Place G-copies in Γ s.t. $\forall X \subseteq V(\Gamma)$ finite, $\exists !$ component C_X of $\Gamma - X$ such that 'almost all' copies of G are contained in C_X .



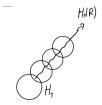
• A ray $S \subset \Gamma$ agrees with $(C_X)_X$ if S has a tail in every C_X .

A simple yet crucial new idea:

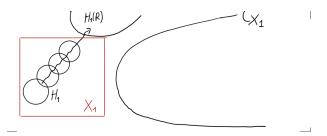
Lesson: Place G-copies in Γ s.t. $\forall X \subseteq V(\Gamma)$ finite, $\exists !$ component C_X of $\Gamma - X$ such that 'almost all' copies of G are contained in C_X .



- A ray $S \subset \Gamma$ agrees with $(C_X)_X$ if S has a tail in every C_X .
- Fix a ray R in our graph G.
- For every G-copy H in Γ , the lifted ray H(R) either agrees with $(C_X)_X$ or not.
- Pigeon hole: May assume that H(R) either agrees with $(C_X)_X$ always or never, uniformly for all *G*-copies *H* in Γ .

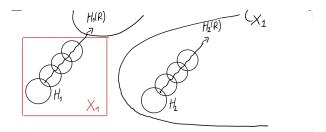


• Pick first copy $H_1 \subset \Gamma$ of G.

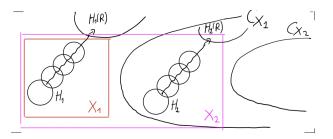


1 Pick first copy $H_1 \subset \Gamma$ of G.

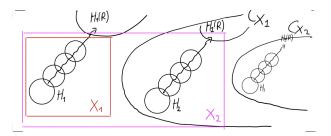
2 Find X_1 where $H_1(R)$ disagrees with C_{X_1} .



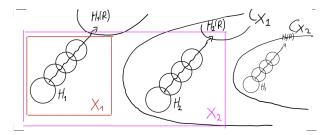
- **1** Pick first copy $H_1 \subset \Gamma$ of G.
- **2** Find X_1 where $H_1(R)$ disagrees with C_{X_1} .
- **③** Pick second copy $H_2 \subset C_{X_1}$ of G.



- Pick first copy $H_1 \subset \Gamma$ of G.
- **2** Find X_1 where $H_1(R)$ disagrees with C_{X_1} .
- **③** Pick second copy $H_2 \subset C_{X_1}$ of G.
- Find $X_2 \supset X_1$ where $H_2(R)$ disagrees with C_{X_2} .



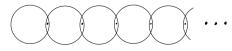
- Pick first copy $H_1 \subset \Gamma$ of G.
- **2** Find X_1 where $H_1(R)$ disagrees with C_{X_1} .
- **③** Pick second copy $H_2 \subset C_{X_1}$ of G.
- Find $X_2 \supset X_1$ where $H_2(R)$ disagrees with C_{X_2} .
- **9** Pick third copy $H_3 \subset C_{X_2}$ of G.



- **1** Pick first copy $H_1 \subset \Gamma$ of G.
- **2** Find X_1 where $H_1(R)$ disagrees with C_{X_1} .
- **③** Pick second copy $H_2 \subset C_{X_1}$ of G.
- Find $X_2 \supset X_1$ where $H_2(R)$ disagrees with C_{X_2} .
- **9** Pick third copy $H_3 \subset C_{X_2}$ of G.
- Ontinue....

In the always-agree case, use well-quasi-ordering theory Using the Robertson-Seymour result on wqo of finite graphs

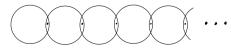
• Colour the left cut-vertex of each G_n with 1 and the right cut-vertex with 2.



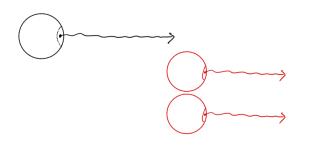
Labelled wqo of finite graphs (Robertson-Seymour): ∃N ∈ N
 s.t. every G_n for n > N embeds into infinitely many G_i.

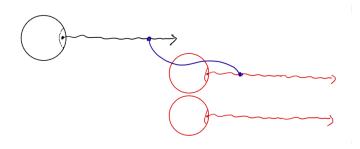
In the always-agree case, use well-quasi-ordering theory Using the Robertson-Seymour result on wqo of finite graphs

• Colour the left cut-vertex of each G_n with 1 and the right cut-vertex with 2.

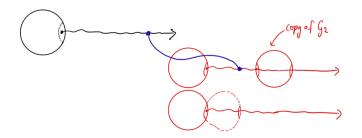


- Labelled wqo of finite graphs (Robertson-Seymour): ∃N ∈ N
 s.t. every G_n for n > N embeds into infinitely many G_i.
- May assume N = 1, i.e. can find every blob but the first again and again.

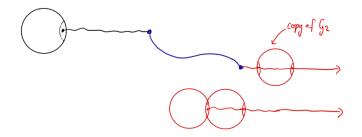


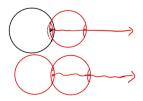


In the always-agree case, use well-quasi-ordering theory The construction – a picture proof for a one-ended example

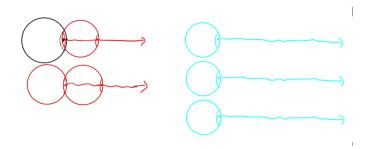


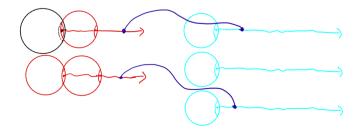
In the always-agree case, use well-quasi-ordering theory The construction – a picture proof for a one-ended example

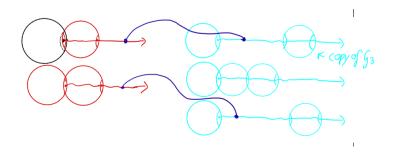


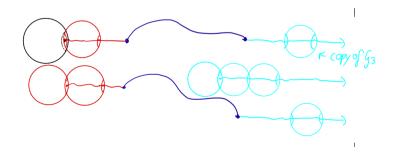


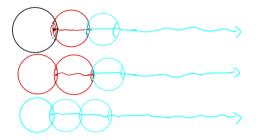
In the always-agree case, use well-quasi-ordering theory The construction – a picture proof for a one-ended example



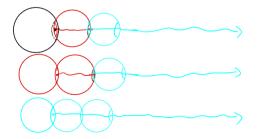






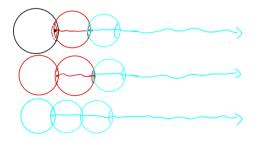


The construction – a picture proof for a one-ended example



Lesson 1: As with Halin's rays, our *G*-copies use finite blobs from the layers, but otherwise have little in common with original copies!

The construction – a picture proof for a one-ended example



Lesson 1: As with Halin's rays, our *G*-copies use finite blobs from the layers, but otherwise have little in common with original copies!

Lesson 2: If you place your *G*-copies all over the host graph Γ , then easy for me to win. And if you place them so that they are concentrated, you will inadvertently create lots of new *G*-copies due to wqo which I may exploit.

For the details see....

Bowler, Elbracht, Erde, Gollin, Heuer, Pitz, Teegen:

- Ubiquity in graphs I: Topological ubiquity of trees, submitted.
- Ubiquity in graphs II: Ubiquity of graphs with non-linear end structure, submitted.
- Ubiquity in graphs III: Ubiquity of a class of locally finite graphs, preprint available soon.
- Ubiquity in graphs IV: Ubiquity of graphs of bounded tree-width, at some point.