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The ubiquity question
Potential infinity vs. actual infinity

The Ubiquity Question:

Fix your favourite connected graph G.

Suppose have a host graph Γ which contains arbitrarily many
disjoint copies of G

Can you find infinitely many disjoint copies of G in Γ?

If yes for all possible host graphs Γ, we say G is ubiquitous.

2 / 15



Small detour: What do we mean by ‘copies of G in Γ’?
Embeddings as subgraph, topological minor and minor

When saying ‘a copy of G in Γ’, written G C Γ, we could mean:

G embeds as subgraph (G ⊆ Γ)
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When saying ‘a copy of G in Γ’, written G C Γ, we could mean:

G embeds as subgraph (G ⊆ Γ)

G embeds as topological minor (G 6 Γ)

G embeds as a minor (G 4 Γ)
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Finite graphs are ubiquitous w.r.t. all relations
We simply pick copies greedily.

1 Pick first copy H1 ⊂ Γ of G.
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Finite graphs are ubiquitous w.r.t. all relations
We simply pick copies greedily.

1 Pick first copy H1 ⊂ Γ of G.

2 Know that Γ contains |H1|+ 1 disjoint copies of G. Pick
second copy H2 ⊂ Γ of G disjoint from H1.

3 Know that Γ contains |H1|+ |H2|+ 1 disjoint copies of G....

4 Continue...
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Halin (1965): The ray is subgraph-ubiquitous.
Non-trivial, as we can no longer pick copies greedily.
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Halin (1965): The ray is subgraph-ubiquitous.
Non-trivial, as we can no longer pick copies greedily.

Any ray from a given layer might intersect all rays from all
other layers.

Halin’s idea:
If rays don’t intersect −→ pick greedily.
If rays do intersect −→ re-route onto the next layer.
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Halin (1965): The ray is subgraph-ubiquitous.
Non-trivial, as we can no longer pick copies greedily.

Our infinitely many rays use finite subpaths from the layers,
but otherwise have little in common with our original rays!
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Bad news for subgraph and topological minor relation
Counterexamples due to Andreae, Lake and Woodall.

. . .

Figure: A graph which is not ⊆-ubiquitous.

. . .

Figure: A graph which is not 6-ubiquitous.
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Overview of known ubiquity results

⊆-Ubiquity: X Finite graphs X Ray / Double ray (Halin, ’65/’70)
7 Infinite comb

6-Ubiquity: X Finite graphs X Trees with ∆ ≤ 3 (Halin, ’75)
X Locally finite trees (Andreae, ’79)
7 Infinite comb with triangles

4-Ubiquity: X Finite graphs X Countable trees (Halin, ’75)
X Locally finite graphs with bounded sized blocks (Andreae, ’13)
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Plan: Show ubiquity ideas in a simple class of examples

Let’s take an infinite graph G which is glued together from a
sequence of finite connected graphs (Gn)n∈N along
1-separators.
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Plan: Show ubiquity ideas in a simple class of examples

Let’s take an infinite graph G which is glued together from a
sequence of finite connected graphs (Gn)n∈N along
1-separators.

We may also fix a representative ray R ⊂ G for later use.
Note that R passes through each 1-separator precisely once.
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Concentrated families
A simple yet crucial new idea:

Your task is to hide copies of G in Γ such that

n ·G C Γ for all n ∈ N, and such that
not easy for me to find infinitely many copies of G in Γ.

9 / 15



Concentrated families
A simple yet crucial new idea:

Your task is to hide copies of G in Γ such that

n ·G C Γ for all n ∈ N, and such that
not easy for me to find infinitely many copies of G in Γ.

9 / 15



Concentrated families
A simple yet crucial new idea:

Your task is to hide copies of G in Γ such that
n ·G C Γ for all n ∈ N, and such that
not easy for me to find infinitely many copies of G in Γ.

For every finite vertex set X ⊆ V (Γ), at most |X| graphs
from each layer can meet X.

Still n ·G C Γ−X for all n ∈ N.

If ∃∞ components C of Γ−X with G C C then gameover.

Ow/, ∃ component C of Γ−X with n ·G C C for all n ∈ N
(pigeon hole).
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Concentrated families
A simple yet crucial new idea:

I now apply the following strategy:

If possible, pick finite X1 ⊂ Γ s.t. in Γ−X1 there exist
components C1 6= D1 with

n ·G C C1 for all n ∈ N,
D1 contains a copy H1 of G.
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Concentrated families
A simple yet crucial new idea:

I now apply the following strategy:

If possible, pick finite X1 ⊂ Γ s.t. in Γ−X1 there exist
components C1 6= D1 with

n ·G C C1 for all n ∈ N,
D1 contains a copy H1 of G.

If possible, pick finite X2 ⊂ C1 s.t. in C1 −X1...

If this process doesn’t stop, then {Hn : n ∈ N} −→ gameover.
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Concentrated families
A simple yet crucial new idea:

Lesson: Place G-copies in Γ s.t. ∀X ⊆ V (Γ) finite, ∃! component CX

of Γ−X such that ‘almost all’ copies of G are contained in CX .
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Lesson: Place G-copies in Γ s.t. ∀X ⊆ V (Γ) finite, ∃! component CX

of Γ−X such that ‘almost all’ copies of G are contained in CX .

Observation: The family (CX)X satisfies
X ⊆ X ′ → CX ⊇ CX′ .

Such a choice of components (CX)X is called a direction in Γ.
(Diestel and Kühn have shown that directions and ends are the
same thing.)
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Concentrated families
A simple yet crucial new idea:

Lesson: Place G-copies in Γ s.t. ∀X ⊆ V (Γ) finite, ∃! component CX

of Γ−X such that ‘almost all’ copies of G are contained in CX .

A ray S ⊂ Γ agrees with (CX)X if S has a tail in every CX .
Fix a ray R in our graph G.
For every G-copy H in Γ, the lifted ray H(R) either agrees
with (CX)X or not.
Pigeon hole: May assume that H(R) either agrees with
(CX)X always or never, uniformly for all G-copies H in Γ.
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In the never-agree case, can again pick copies greedily

1 Pick first copy H1 ⊂ Γ of G.
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In the never-agree case, can again pick copies greedily

1 Pick first copy H1 ⊂ Γ of G.
2 Find X1 where H1(R) disagrees with CX1 .
3 Pick second copy H2 ⊂ CX1 of G.
4 Find X2 ⊃ X1 where H2(R) disagrees with CX2 .
5 Pick third copy H3 ⊂ CX2 of G.
6 Continue....

12 / 15



In the always-agree case, use well-quasi-ordering theory
Using the Robertson-Seymour result on wqo of finite graphs

Colour the left cut-vertex of each Gn with 1 and the right
cut-vertex with 2.

Labelled wqo of finite graphs (Robertson-Seymour): ∃N ∈ N
s.t. every Gn for n > N embeds into infinitely many Gi.
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Using the Robertson-Seymour result on wqo of finite graphs

Colour the left cut-vertex of each Gn with 1 and the right
cut-vertex with 2.

Labelled wqo of finite graphs (Robertson-Seymour): ∃N ∈ N
s.t. every Gn for n > N embeds into infinitely many Gi.

May assume N = 1, i.e. can find every blob but the first again
and again.
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In the always-agree case, use well-quasi-ordering theory
The construction – a picture proof for a one-ended example

Lesson 1: As with Halin’s rays, our G-copies use finite blobs from the
layers, but otherwise have little in common with original copies!

Lesson 2: If you place your G-copies all over the host graph Γ, then
easy for me to win. And if you place them so that they are
concentrated, you will inadvertently create lots of new G-copies
due to wqo which I may exploit.
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For the details see....

Bowler, Elbracht, Erde, Gollin, Heuer, Pitz, Teegen:

Ubiquity in graphs I: Topological ubiquity of trees, submitted.

Ubiquity in graphs II: Ubiquity of graphs with non-linear end
structure, submitted.

Ubiquity in graphs III: Ubiquity of a class of locally finite
graphs, preprint available soon.

Ubiquity in graphs IV: Ubiquity of graphs of bounded
tree-width, at some point.
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