Infinite Eulerian graphs and strongly irreducible images of intervals

Max Pitz

University of Hamburg, Germany

Joint work with Paul Gartside

Birmingham, 14 March 2019

Overview

What is an Eulerian space?
Edge-wise Eulerian tours in infinite graphs
... vs ...
irreducible images of I and S¹

- 2 The Eulerianity conjecture
- In Affirmative results towards the Eulerianity conjecture
- Proof impressions

Overview

What is an Eulerian space? Edge-wise Eulerian tours in infinite graphs ... vs ... irreducible images of I and S¹

② The Eulerianity conjecture

In Affirmative results towards the Eulerianity conjecture

Proof impressions

The Koenigsberg Bridge Problem

Schematic drawings of the seven bridges of Koenigsberg, in:

Leonhard Euler (1736): "Solutio problematis ad geometriam situs pertinentis" (Solution of a problem about the geometry of position)

The Koenigsberg Bridge Problem

Schematic drawings of the seven bridges of Koenigsberg, in:

Leonhard Euler (1736): "Solutio problematis ad geometriam situs pertinentis" (Solution of a problem about the geometry of position)

Finite Eulerian graphs

Characterisations in terms of vertex degrees, decomposition results and edge-cuts

Theorem: For a finite connected multi-graph G, tfae:

- G is Eulerian,
- $\ensuremath{ 2 \ }$ all vertices of G have even degree,
- G can be decomposed into edge-disjoint cycles,
- 3 all edge-cuts of G are even.

An edge-cut of G is a set $E(A, B) \subseteq E(G)$ of edges crossing a bipartition (A, B) of V(G).

(Euler)

(Veblen)

(Nash-Williams)

Finite Eulerian graphs

Characterisations in terms of vertex degrees, decomposition results and edge-cuts

Theorem: For a finite connected multi-graph G, tfae:

- \bigcirc G is Eulerian,
- 2 all vertices of G have even degree,
- ${f 0}$ G can be decomposed into edge-disjoint cycles,
- 9 all edge-cuts of G are even.

Question: What about infinite (multi-)graphs?

- Erdős, Grünwald, Vàzsonyi (1938)
- Nash-Williams (1960, 1962)
- Sabidussi (1964)

- Rothschild (1965)
- Laviolette (1997)
- Diestel & Kühn (2004)

(Euler)

(Veblen)

(Nash-Williams)

The topological viewpoint

Combinatorial vs. topological Eulerian tours

Finite multi-graph G turns naturally into a topological space |G|.

A combinatorial Euler tour is a closed walk containing every edge of G precisely once.

An edge-wise Eulerian map is a continuous surjection $f: S^1 \twoheadrightarrow |G|$ which is injective for interior points on edges.

$$W = v e_1 w e_2 x e_3 w e_4 v$$

 $f = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}{$

Solution: Add the Ends, and Compactify

The Freudenthal compactification FG

R. Diestel, *Locally finite graphs with ends: a topological approach I-III*, Discrete Math (2010–11).

...turns into...

Solution: Add the Ends, and Compactify

The Freudenthal compactification FG

R. Diestel, *Locally finite graphs with ends: a topological approach I-III*, Discrete Math (2010–11).

...with edge-wise Eulerian map $f \colon S^1 \twoheadrightarrow FG$

Infinite Eulerian graphs

With this definition, the finite characterisation extends best possible

Definition (Diestel & Kühn): G Eulerian $\Leftrightarrow \exists$ edge-wise Eulerian surjection $f: S^1 \twoheadrightarrow FG$

Theorem: (DK '04) For a locally finite connected multi-graph G, tfae:

 \bigcirc G is Eulerian,

- \bigcirc G can be decomposed into edge-disjoint (finite) cycles
- \bigcirc all (finite) edge-cuts of G are even.

Euler's original even-degree condition is no longer sufficient:

Eulerian problem for infinite topological graphs

What about other naturally occurring compactifications of locally finite graphs?

Do these 'graphs' admit edge-wise Eulerian surjections?

[[]Credit: https://en.wikipedia.org/wiki/Wythoff_symbol]

Edge-wise Eulerian maps in topological spaces

A general definition of edges in topological spaces

Let X be a metrizable space.

- An edge (i.e. free arc) of X is an inclusion-maximal open subset of X homeomorphic to (0, 1). Let E(X) be the edge set of X. The ground space of X is $\mathcal{G}(X) = X - E(X)$
- X is edge-wise Eulerian if \exists edge-wise Eulerian $f: S^1 \twoheadrightarrow X$.

Strongly irreducible maps and Eulerian continua

Hahn-Mazurkiewicz: A space X is the continuous image of I or S^1 if and only if X is a Peano continuum.

Question: What about 'nice' space-filling curves?

- Hilbert (1891)
- Nöbling (1933)
- Harrold (1940, 1942)
- Ward (1977)
- Treybig & Ward (1981)
- Bula, Nikiel & Tymchatyn (1994)

Definition: A continuous surjection $f: S^1 \rightarrow X$ is strongly irreducible if for all closed proper subsets $A \subseteq S^1$, we have $f(A) \subseteq X$.

Problem (Treybig & Ward '81): Characterize the strongly irreducible images of S^1 .

Exercise: Every strongly irreducible $f: S^1 \rightarrow X$ is edge-wise Eulerian.

Definition: A space X is Eulerian if there exists a strongly irreducible surjection $f: S^1 \rightarrow X$. Call any such map an Eulerian map.

Understanding Eulerian maps

What makes a map strongly irreducible?

Observation (Harrold): If $E(X) = \emptyset$ and $f: S^1 \twoheadrightarrow X$ is Eulerian, then $f \upharpoonright J$ never traces out an arc for any time interval $J \subset S^1$.

Proof: Otherwise, $f(S^1 \setminus int(J))$ contains a dense subset of X, so – since compact – must be onto, contradicting strongly irreducible.

Jekyll-Hyde behaviour

Understanding Eulerian maps

What makes a map strongly irreducible?

Observation (Harrold): If $E(X) = \emptyset$ and $f: S^1 \twoheadrightarrow X$ is Eulerian, then $f \upharpoonright J$ never traces out an arc for any time interval $J \subset S^1$.

Lemma (GP 19⁺): If X has dense edges, then $f: S^1 \twoheadrightarrow X$ is Eulerian iff f is edge-wise Eulerian & $f^{-1}(\mathcal{G}(X))$ is zero-dimensional.

Admissible trace of an edge-wise Eulerian map on the left, and an Eulerian map on the right.

Overview

What is an Eulerian space? Edge-wise Eulerian tours in infinite graphs ... vs ... irreducible images of I and S¹

2 The Eulerianity conjecture

- In Affirmative results towards the Eulerianity conjecture
- Proof impressions

What is known about Eulerian continua?

Problem (Treybig & Ward, '81): Characterize the Eulerian continua!

Answer known in the following special cases:

- ✓ Peano continua without free arcs (Harrold '42) → always Eulerian
- ✓ Finite graphs (Euler) & Freudenthal compactification of locally finite graphs (Diestel, Kühn '04)
- ✓ Continua with zero-dimensional ground space (called completely regular continua or graph-like continua) (Bula, Nikiel, Tymchatyn '94) / (Espinoza, Gartside, Pitz '16)
- ✓ X with dense edges, $\mathcal{G}(X)$ Peano continuum (BNT '94) → always Eulerian
- But: So far, no structural condition describing the Eulerian continua was even conjectured.

The Eulerianity Conjecture

Edges and edge-cuts in Peano continua $X \neq S^1$

- Let E(X) be the set of edges of X. The ground space of X is $\mathcal{G}(X) = X E(X)$.
- E(X) is a zero-sequence of disjoint open sets.
- Every edge has at most two boundary points.

The Eulerianity Conjecture

Edges and edge-cuts in Peano continua $X \neq S^1$

- The ground space of X is $\mathcal{G}(X) = X E(X)$.
- An edge-cut of X is a set $E(A, B) \subset E(X)$ of edges crossing a clopen partition (A, B) of the ground space $\mathcal{G}(X)$.
- Edge-cuts in Peano continua are finite.

The Eulerianity Conjecture

Edges and edge-cuts in Peano continua $X \neq S^1$

- The ground space of X is $\mathcal{G}(X) = X E(X)$.
- An edge-cut of X is a set $E(A, B) \subset E(X)$ of edges crossing a clopen partition (A, B) of the ground space $\mathcal{G}(X)$.
- Edge-cuts in Peano continua are finite.

Observation: Edge-cuts of edge-wise Eulerian spaces are even.

Eulerianity Conjecture (Gartside & Pitz): A Peano continuum is Eulerian if and only if all its edge-cuts are even.

Overview

What is an Eulerian space?
Edge-wise Eulerian tours in infinite graphs
... vs ...
irreducible images of I and S¹

② The Eulerianity conjecture

- In Affirmative results towards the Eulerianity conjecture
- Proof impressions

Results and Evidence towards the Eulerianity Conjecture

Eulerianity Conjecture (Gartside & Pitz): A Peano continuum is Eulerian if and only if all its edge-cuts are even.

Theorem 1 (GP 19^+):

A space is Eulerian if and only if it is edge-wise Eulerian.

Theorem 2 (GP 19⁺): The Eulerianity Conjecture holds for every Peano continuum whose ground space

- consists of finitely many Peano continua, or
- (2) is homeomorphic to a product $V \times P$, where V is zero-dimensional and P a Peano continuum, or
- 3 is at most one-dimensional.

says the conjecture holds for all one-dimensional Peano continua.
(kind of) answers Problem 3 of Bula, Nikiel, Tymchatyn ('94).

Overview

What is an Eulerian space?
Edge-wise Eulerian tours in infinite graphs
... vs ...
irreducible images of I and S¹

- The Eulerianity conjecture
- In Affirmative results towards the Eulerianity conjecture
- Proof impressions

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

 Partition into almost Eulerian tiles. (This step uses Bing's and Andersen's Brick Partition Theorem and the combinatorial theory for Freudenthal compactifications by Diestel et al...).

2 Let G_1 be graph on the tiles with edge set all uncovered edges.

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

 \bigcirc Carefully add dummy edges to G_1 in order to make it Eulerian, drawing a dummy loop in X for each new dummy edge at the intersection of corresponding tiles.

4 Repeat!

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

1

Partition each tile into (smaller) almost Eulerian tiles.

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

 ${f 2}$ Obtain a "finer" graph G_2 on the new tiles.

3 Add dummy edges to G_2 in order to make it Eulerian-inside the old tiles!-and add dummy loop for each new dummy edge at the intersection of corresponding tiles.

Repeat!

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

 \Rightarrow Obtain a sequence of finite Eulerian graphs G_1, G_2, G_3, \ldots such that every G_i is an edge-quotient of G_{i+1} .

 \Rightarrow Then $\lim_{i \to \infty} G_i$ is Eulerian projecting 'nicely' onto X.

 \Rightarrow Every Eulerian map for $\varprojlim G_i$ projects to an edge-wise Eulerian map for X.

Outlook

Eulerianity Conjecture: A Peano continuum is Eulerian if and only if all its edge-cuts are even.

Open problems / next steps:

- Prove the conjecture for all hyperbolic graphs with boundary S^n for $n \ge 2$.
- Can one extend this to deal with *n*-dimensional spaces?
- Resolve the full conjecture!

