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§0: T-graphs: Definition and examples

Let’s agree on the following notation regarding order trees:

e Order tree: A partially ordered set (T, <) with unique minimal element (called the root) and all subsets of the form
[t] = [t]r ={t' € T:t <t} are well-ordered. Write |t| ={t' e T: t <t'}.

e Branch: A maximal chain in T" (well-ordered).

e Height: The height of T is the supremum of the order types of its branches. The height of a point ¢ € T" is the order
type of [t] := [t] \ {¢}.

e Level: The set T of all points at height 7 is the ith level of T, and write T<" := U {Tj: j < 7,}

e Successors and limits: If t < ¢/, we write [t,t'] = {z:t <x < t'} ete. If t < ' but there is no point between ¢
and t', we call t' a successor of t and t the predecessor of t'; if t is not a successor of any point it is called a limit.

Rooted graph-theoretic trees (connected, acyclic graphs) correspond to the order trees of height at most w. Are there useful
graphs on order trees? Well, the comparability graph; but the following concept is much more versatile:

Definition (Brochet & Diestel). For an order tree (T, <), a graph G = (V, F) is a T-graph if V' = T, the ends of any
edge e = tt' are comparable in T, and the neighbours of any ¢t € T are cofinal in [t] :={t' € T: ¢/ < t}.

Example. (1) Rado ('78): Generalised path <> T-graph for T an ordinal.

e Frdds & Rado ('78): Any countable complete graph K, where the edges have been coloured with » € N many
colours can be partitioned into 7 monochromatic paths / rays.

e D. Soukup ('16): Any complete graph K, where the edges have been coloured with
r € N colours can be partitioned into r monochromatic generalised paths.

e Biirger & Pitz ('18): Any complete bipartite graph K ,, where the edges have been
coloured with r € N colours can be partitioned into 2 — 1 monochromatic gen. paths.
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graphs on order trees? Well, the comparability graph; but the following concept is much more versatile:

Definition (Brochet & Diestel). For an order tree (T, <), a graph G = (V, F) is a T-graph if V' = T, the ends of any
edge e = tt' are comparable in T, and the neighbours of any ¢t € T are cofinal in [t] :={t' € T: ¢/ < t}.

Example. (1) Rado ('78): Generalised path <> T-graph for T an ordinal.
(2) Fun fact: every wy-graph has a K, subdivision.
(3) Thomas (’88): Used T-graphs for certain binary trees of height w + 1 to construct examples that uncountable graphs
are not well-quasi-ordered (more about that later).



§1: T-graphs, colouring number and forbidden minors

Definition (Brochet & Diestel). For an order tree (T, <), a graph G = (V, F) is a T-graph if V' = T, the ends of any
edge e = tt' are comparable in T, and the neighbours of any ¢t € T are cofinal in [t] .= {t' € T: ¢ < t}.

If a graph G is (isomorphic to) a T-graph for some order tree (T, <), we say that (T, <) is a normal tree order for G.
When T has height at most w, we say T' is a normal spanning tree for G.

Open Problem. Which connected graphs admit a normal tree order?

e Not all graphs do: consider an uncountable clique where every edge has been subdivided once.

e Jung (’69): Every countable graph contains a normal spanning tree with any arbitrarily chosen vertex as the root.

e Brochet & Diestel (95): Every connected graph G “almost” has a normal tree order: There is a contraction G’ with
normal tree order (T, <) and branch sets (V;)ier in G such that |V;| < cf (height(t)) for all t € T'.

Can we say more about which graphs have a normal spanning tree?

Definition (Erdos & Hajnal). The colouring number col(G) is the least cardinal p such that V(G) has a well-order <
such that every vertex has < p neighbours preceding it in <.

e Observation: If G has a normal spanning tree, then col(G) < Ny.
e Converse: No (again: an uncountable clique where every edge has been subdivided once)
e BUT: Having an NST is a minor-closed property!

Conjecture (Halin, '98). A connected graph G has a normal spanning tree if and only if
every minor of G has countable colouring number.

Theorem (Pitz, '20"). Halin’s conjecture is true.

Consequence: As there is a forbidden subgraph characterisation for having colouring number
< p (Bowler, Carmesin, Komjath, Reiher, 15), this yields a forbidden minor characterisation
for the property of having a normal spanning tree!



§2: T-graphs and wqo of infinite graphs

e Minor H is a minor of G if there are disjoint connected vertex sets {Vj,: h € H} in G such that G has a V}, — Vi
edge whenever hh' is an edge in H. Write G < H if GG is a minor of H.

e Wqo: A binary relation < on a set X is a well-quasi-order if it is reflexive and transitive, and for every sequence
x1,T2,... € X there is some ¢ < j such that x; <x;.

Theorem (Roberton & Seymour, '80s). Finite graphs are well-quasi ordered under the minor relation <.
Open Problem. Are countable graphs well-quasi ordered by <7

Theorem (Thomas '88). Graphs of size 2% are not well-quasi ordered by <: There is a sequence G1, G, . .. of binary
trees with tops such that G; X G; whenever i < j.

Theorem (Komjath '95). For every uncountable cardinal K there is a family {G;: i < 25} of k-sized graphs such that
Gi A G; whenever i # j.

Downside: Komjath’s graphs are hard to define. Better:

Theorem (Pitz '20"). For every uncountable reqular k there is a family {G;: i < k} of T, with k many tops such
that Gy A G; whenever i # j.

Remark: Implies Komjath (take disjoint unions over subsets of indices C k).



§2: T-graphs and wqo of infinite graphs
Theorem (Thomas '88). There are binary trees with 2% many tops Gy, Ga, ... such that G; 4 G; whenever i < j.

Theorem (Pitz '20"). For every uncountable reqular k there is a family {G;: i < k} of T, with k many tops such
that G; # G; whenever 1 # j.

Idea for the construction: Let A C k denote the set of limit ordinals of countable cofinality. For every ¢ € A pick an
increasing cofinal sequence f;: N — £, which we may interpret as a rooted ray in T, = k=,
For S C A let T'(S) be the tree order where we add for every ¢ € S a top above every ray fy in Ty, and G(S) any

T(S)-graph.
Proof: Show that if S, R C A are disjoint stationary subsets of k, then G(S) £ G(R). O




§2: T-graphs and wqo of infinite graphs
Theorem (Thomas '88). There are binary trees with 2% many tops Gy, Go, ... such that G; % G whenever i < j.

Theorem (Pitz '20"). For every uncountable reqular k there is a family {G;: i < k} of T, with k many tops such
that Gy A G whenever i # j.

Idea for the construction: Let A C k denote the set of limit ordinals of countable cofinality. For every ¢ € A pick an
increasing cofinal sequence f;: N — £, which we may interpret as a rooted ray in T, = k=,

For S C A let T'(S) be the tree order where we add for every ¢ € S a top above every ray fy in Ty, and G(S) any
T(S)-graph.

What is so interesting about F'(S) = {f,: £ € S} for S = A or S C A stationary?
e Topological interpretation: The rays in 7}, naturally form a topological space &, the Baire space of weight . Stone
(’63 & '72) has shown that F'(S) is not Borel in x", but each separable subspace of F'(S) is countable.
e Surprising connection to normal spanning trees: G = G(.5) doesn’t have a normal spanning tree.

What makes the proofs work?
e The rays bunch up in a strange way:
e For n € N arbitrary, by the pressing down-lemma,
stationary many tops S’ C S agree on their first n
coordinates.




§3: Halin’s end degree conjecture
Definition. e An end e of a graph GG is an equivalence class of rays in G, where two rays R; ~ Ry are equivalent if

there are infinitely many disjoint /1 — Rs paths in G.
e The degree of an end € is the maximal size of a collection of disjoint rays in € (well-defined by a theorem of Halin).

Example. o The {1,... ,n}0N grid: deg(e) = n.
e The NOIN grid: deg(e) = Ny.
e The star of rays S;[IN with deg(e) = k.
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§3: Halin’s end degree conjecture

Definition. e An end e of a graph GG is an equivalence class of rays in G, where two rays R; ~ Ry are equivalent if
there are infinitely many disjoint /1 — Rs paths in G.
e The degree of an end € is the maximal size of a collection of disjoint rays in € (well-defined by a theorem of Halin).

Example. o The {1,... ,n}0N grid: deg(e) = n.
e The NOIN grid: deg(e) = Ny.
e The star of rays S;[IN with deg(e) = k.

How typical are these examples?

Definition. Let R be a set of pairwise disjoint rays in an arbitrary end € of GG, and let P be a set of pairwise independent
finite G such that each P € P connects vertices from distinct rays in R and has no internal vertex in common with any ray
from R. The ray graph G(R,P) is the graph with vertex set R where two rays are adjacent if there are infinitely many
disjoint Ry — Ry paths in P.

Conjecture (Halin). For any end € there are R C € and P as above with |R| = deg(€) such that G(R, P) is connected.

Remark. e For deg(e) = N, this holds by Halin’s grid theorem.
e For deg(e) = k regular, one would find in G(R, P) a vertex of degree k. To this vertex and its neighbours there would
correspond a “central” ray R and k neighbouring rays (R;: i < k), all disjoint from each other, such that each R; with
R and the connecting paths from P forms a subdivision of the one-way infinite ladder — i.e. a subdivided S,.[LIN with
some edges missing.

Theorem (Geschke, Kurkofka, Melcher, Pitz 20"). Halin’s conjecture fails for end degrees
deg(e) = Wy, holds for all end degrees No, N3, ... N, fails again for deg(e) = N1 1, and is
undecidable for the next N,,, forn € N, n > 2.



§3: Halin’s end degree conjecture

Theorem (Geschke, Kurkofka, Melcher, Pitz 207). Halin’s conjecture fails for end degrees deg(e) = Ry, holds for all
end degrees Vo, W3, ... N, fails again for deg(e) = V11, and is undecidable for the next V., forn € N, n > 2.

“Think” of Halin’s conjecture: The ‘only’ way to build an end of degree x is TON for some tree T with |T'| = k.
For our counterexamples at 8y and 8, 1: A new idea to construct ends with prescribed degree based on T-graphs.

Definition. Let G be a T-graph where T' be an order tree of height at most w; where for every limit ¢, N(¢) N [t] has
order type w. The ray-inflation G § N of GG is the graph with vertex set T' X N, and the following edges:

(1) For every t € T and n € N we add the edge (t,n)(t,n + 1) (such that R; := {t} x N induces a ray).
(2) If t € T is a successor with predecessor t', we add all edges (¢t,n)(t',n) for all n € N,
(3) If t € T is a limit with down-neighbours tg <p t; <p ts <p --- in G we add the edges (t,n)(t,,n) for all n € N.

Example. The ray inflation of an (w+ 1)-graph: Lemma. The ray inflation GEN has one end, which has degree |T).

Theorem (GKMP 20%). Let T' be an Aronszajn tree and G a T-
graph with property (x). Then G 4N contains no subdivided Xi-star

of rays; i.e. Halin’s conjecture fails at N;.
0 Theorem (GKMP 20"). From an Y} -scale on 11,-, N,, one can ob-
A - - Rf: tain a tree T with |T<¥| = N, plus X many tops, such that T § N
\ et >Re, contains no subdivided N -star of rays;
"AI/M [ R i.e. Halin’s conjecture fails at N, 1.
Lo ; Ry



§3: Halin’s end degree conjecture

Theorem (GKMP 20"). Let T' be an Aronszajn tree and G a T-graph with property (x). Then G # N contains no
subdivided Nyi-star of rays, i.e. Halin’s conjecture fails at N;.

e Aronzsajn tree: |T'| = Ny, but all levels and branches countable.

e Property (x) relies on an idea of Diestel, Leader and Todorcevic: Pick a (special) Aronzsajn tree T with antichain
partition (U,)nen. Given a limit t € T, pick down-neighbours ty <p t; <p to <p --- <p t with ¢; € U, recursively
such that each n;; is smallest possible.

e The resulting T-graph G has the following property (x): For each ¢ there is a finite set S; C M such that every

s > t satisfies N(s) N (ﬂ C S




§3: Halin’s end degree conjecture

Theorem (GKMP 20"). Let T' be an Aronszajn tree and G a T-graph with property (x). Then G # N contains no
subdivided Nyi-star of rays, i.e. Halin’s conjecture fails at N;.

e Aronzsajn tree: |T'| = Ny, but all levels and branches countable.

e Property (x) relies on an idea of Diestel, Leader and Todorcevic: Pick a (special) Aronzsajn tree T with antichain
partition (U,)nen. Given a limit t € T, pick down-neighbours ty <p t; <p to <p --- <p t with ¢; € U, recursively
such that each n;; is smallest possible.

e The resulting T-graph G has the following property (x): For each ¢ there is a finite set S; C M such that every
s > t satisfies N(s) N (ﬂ C S

e Suppose there is a star of rays S in G#N “central” ray R and X; neighbouring rays (R;: ¢ < Ny). Since R is countable,
there is a < wy such that R C T<% x N, and wlog all R; C (T'\ T=%) x N. Components of the last graph are of the
form [t] x N for ¢t € T But now a component of S — R that avoids T=% x N yields a contradiction.
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§3: Halin’s end degree conjecture
Let HC(k) be the statement that Halin’s conjecture holds for all ends of degree k.

Theorem (Geschke, Kurkofka, Melcher, Pitz 207). The following assertions about HC (k) are true:
(1) HC(Xy) fails, HC(X,) holds for all2 <n < w, and HC(X,1) fails again.
(2) More generally, HC(k) fails for all k with cf (k) € {u™: cf (u) = w}.
(3) Under GCH, HC(k) holds for all cardinals not excluded by (2).
(4) However, HC' (R q12) is also consistent false for every a < wy. Furthermore, HC(k) consistently fails for all
k with cf (k) greater than the least fized point of the X function.

Question. Is HC(X,,.,) consistently wrong?

End of talk — Thanks!



