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§0: T -graphs: Definition and examples

Let’s agree on the following notation regarding order trees:
• Order tree: A partially ordered set (T,≤) with unique minimal element (called the root) and all subsets of the form
dte = dteT := {t′ ∈ T : t′ ≤ t} are well-ordered. Write btc := {t′ ∈ T : t ≤ t′}.
• Branch: A maximal chain in T (well-ordered).
• Height: The height of T is the supremum of the order types of its branches. The height of a point t ∈ T is the order

type of d̊te := dte \ {t}.
• Level: The set T i of all points at height i is the ith level of T , and write T<i := ⋃ {

T j : j < i
}
.

• Successors and limits: If t < t′, we write [t, t′] = {x : t ≤ x ≤ t′} etc. If t < t′ but there is no point between t
and t′, we call t′ a successor of t and t the predecessor of t′; if t is not a successor of any point it is called a limit.

Rooted graph-theoretic trees (connected, acyclic graphs) correspond to the order trees of height at most ω. Are there useful
graphs on order trees? Well, the comparability graph; but the following concept is much more versatile:

Definition (Brochet & Diestel). For an order tree (T,≤), a graph G = (V,E) is a T -graph if V = T , the ends of any
edge e = tt′ are comparable in T , and the neighbours of any t ∈ T are cofinal in d̊te := {t′ ∈ T : t′ < t}.

Example. (1) Rado (’78): Generalised path ↔ T -graph for T an ordinal.

• Erdős & Rado (’78): Any countable complete graph Kω where the edges have been coloured with r ∈ N many
colours can be partitioned into r monochromatic paths / rays.
• D. Soukup (’16): Any complete graph Kκ where the edges have been coloured with
r ∈ N colours can be partitioned into r monochromatic generalised paths.
• Bürger & Pitz (’18): Any complete bipartite graph Kκ,κ where the edges have been

coloured with r ∈ N colours can be partitioned into 2r − 1 monochromatic gen. paths.
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graphs on order trees? Well, the comparability graph; but the following concept is much more versatile:

Definition (Brochet & Diestel). For an order tree (T,≤), a graph G = (V,E) is a T -graph if V = T , the ends of any
edge e = tt′ are comparable in T , and the neighbours of any t ∈ T are cofinal in d̊te := {t′ ∈ T : t′ < t}.

Example. (1) Rado (’78): Generalised path ↔ T -graph for T an ordinal.
(2) Fun fact: every ω1-graph has a Kω1 subdivision.
(3) Thomas (’88): Used T -graphs for certain binary trees of height ω + 1 to construct examples that uncountable graphs

are not well-quasi-ordered (more about that later).



§1: T -graphs, colouring number and forbidden minors

Definition (Brochet & Diestel). For an order tree (T,≤), a graph G = (V,E) is a T -graph if V = T , the ends of any
edge e = tt′ are comparable in T , and the neighbours of any t ∈ T are cofinal in d̊te := {t′ ∈ T : t′ < t}.
If a graph G is (isomorphic to) a T -graph for some order tree (T,≤), we say that (T,≤) is a normal tree order for G.
When T has height at most ω, we say T is a normal spanning tree for G.

Open Problem. Which connected graphs admit a normal tree order?

• Not all graphs do: consider an uncountable clique where every edge has been subdivided once.
• Jung (’69): Every countable graph contains a normal spanning tree with any arbitrarily chosen vertex as the root.
• Brochet & Diestel (’95): Every connected graph G “almost” has a normal tree order: There is a contraction G′ with

normal tree order (T,≤) and branch sets (Vt)t∈T in G such that |Vt| ≤ cf (height(t)) for all t ∈ T .
Can we say more about which graphs have a normal spanning tree?

Definition (Erdős & Hajnal). The colouring number col(G) is the least cardinal µ such that V (G) has a well-order �
such that every vertex has < µ neighbours preceding it in �.

• Observation: If G has a normal spanning tree, then col(G) ≤ ℵ0.
• Converse: No (again: an uncountable clique where every edge has been subdivided once)
• BUT: Having an NST is a minor-closed property!

Conjecture (Halin, ’98). A connected graph G has a normal spanning tree if and only if
every minor of G has countable colouring number.

Theorem (Pitz, ’20+). Halin’s conjecture is true.

Consequence: As there is a forbidden subgraph characterisation for having colouring number
≤ µ (Bowler, Carmesin, Komjath, Reiher, ’15), this yields a forbidden minor characterisation
for the property of having a normal spanning tree!



§2: T -graphs and wqo of infinite graphs
•Minor H is a minor of G if there are disjoint connected vertex sets {Vh : h ∈ H} in G such that G has a Vh − Vh′

edge whenever hh′ is an edge in H . Write G 4 H if G is a minor of H .
•Wqo: A binary relation / on a set X is a well-quasi-order if it is reflexive and transitive, and for every sequence
x1, x2, . . . ∈ X there is some i < j such that xi / xj.

Theorem (Roberton & Seymour, ’80s). Finite graphs are well-quasi ordered under the minor relation 4.

Open Problem. Are countable graphs well-quasi ordered by 4?

Theorem (Thomas ’88). Graphs of size 2ℵ0 are not well-quasi ordered by 4: There is a sequence G1, G2, . . . of binary
trees with tops such that Gi 64 Gj whenever i < j.

Theorem (Komjath ’95). For every uncountable cardinal κ there is a family {Gi : i < 2κ} of κ-sized graphs such that
Gi 64 Gj whenever i 6= j.

Downside: Komjath’s graphs are hard to define. Better:

Theorem (Pitz ’20+). For every uncountable regular κ there is a family {Gi : i < κ} of Tκ with κ many tops such
that Gi 64 Gj whenever i 6= j.

Remark: Implies Komjath (take disjoint unions over subsets of indices ⊆ κ).



§2: T -graphs and wqo of infinite graphs

Theorem (Thomas ’88). There are binary trees with 2ℵ0 many tops G1, G2, . . . such that Gi 64 Gj whenever i < j.

Theorem (Pitz ’20+). For every uncountable regular κ there is a family {Gi : i < κ} of Tκ with κ many tops such
that Gi 64 Gj whenever i 6= j.

Idea for the construction: Let Λ ⊆ κ denote the set of limit ordinals of countable cofinality. For every ` ∈ Λ pick an
increasing cofinal sequence f` : N→ `, which we may interpret as a rooted ray in Tκ = κ<ω.
For S ⊆ Λ let T (S) be the tree order where we add for every ` ∈ S a top above every ray f` in Tκ, and G(S) any
T (S)-graph.

Proof: Show that if S,R ⊆ Λ are disjoint stationary subsets of κ, then G(S) 64 G(R). �



§2: T -graphs and wqo of infinite graphs

Theorem (Thomas ’88). There are binary trees with 2ℵ0 many tops G1, G2, . . . such that Gi 64 Gj whenever i < j.

Theorem (Pitz ’20+). For every uncountable regular κ there is a family {Gi : i < κ} of Tκ with κ many tops such
that Gi 64 Gj whenever i 6= j.

Idea for the construction: Let Λ ⊆ κ denote the set of limit ordinals of countable cofinality. For every ` ∈ Λ pick an
increasing cofinal sequence f` : N→ `, which we may interpret as a rooted ray in Tκ = κ<ω.
For S ⊆ Λ let T (S) be the tree order where we add for every ` ∈ S a top above every ray f` in Tκ, and G(S) any
T (S)-graph.

What is so interesting about F (S) = {f` : ` ∈ S} for S = Λ or S ⊆ Λ stationary?
• Topological interpretation: The rays in Tκ naturally form a topological space κN, the Baire space of weight κ. Stone

(’63 & ’72) has shown that F (S) is not Borel in κN, but each separable subspace of F (S) is countable.
• Surprising connection to normal spanning trees: G = G(S) doesn’t have a normal spanning tree.

What makes the proofs work?
• The rays bunch up in a strange way:
• For n ∈ N arbitrary, by the pressing down-lemma,

stationary many tops S ′ ⊆ S agree on their first n
coordinates.



§3: Halin’s end degree conjecture

Definition. • An end ε of a graph G is an equivalence class of rays in G, where two rays R1 ∼ R2 are equivalent if
there are infinitely many disjoint R1 −R2 paths in G.
• The degree of an end ε is the maximal size of a collection of disjoint rays in ε (well-defined by a theorem of Halin).

Example. • The {1, . . . , n}�N grid: deg(ε) = n.
• The N�N grid: deg(ε) = ℵ0.
• The star of rays Sκ�N with deg(ε) = κ.

The {1, . . . , n}�N grid The N�N grid Sκ�N



§3: Halin’s end degree conjecture

Definition. • An end ε of a graph G is an equivalence class of rays in G, where two rays R1 ∼ R2 are equivalent if
there are infinitely many disjoint R1 −R2 paths in G.
• The degree of an end ε is the maximal size of a collection of disjoint rays in ε (well-defined by a theorem of Halin).

Example. • The {1, . . . , n}�N grid: deg(ε) = n.
• The N�N grid: deg(ε) = ℵ0.
• The star of rays Sκ�N with deg(ε) = κ.

How typical are these examples?

Definition. Let R be a set of pairwise disjoint rays in an arbitrary end ε of G, and let P be a set of pairwise independent
finite G such that each P ∈ P connects vertices from distinct rays in R and has no internal vertex in common with any ray
from R. The ray graph G(R,P) is the graph with vertex set R where two rays are adjacent if there are infinitely many
disjoint R1 −R2 paths in P .

Conjecture (Halin). For any end ε there are R ⊆ ε and P as above with |R| = deg(ε) such that G(R,P) is connected.

Remark. • For deg(ε) = ℵ0, this holds by Halin’s grid theorem.
• For deg(ε) = κ regular, one would find in G(R,P) a vertex of degree κ. To this vertex and its neighbours there would

correspond a “central” ray R and κ neighbouring rays (Ri : i < κ), all disjoint from each other, such that each Ri with
R and the connecting paths from P forms a subdivision of the one-way infinite ladder – i.e. a subdivided Sκ�N with
some edges missing.

Theorem (Geschke, Kurkofka, Melcher, Pitz 20+). Halin’s conjecture fails for end degrees
deg(ε) = ℵ1, holds for all end degrees ℵ2,ℵ3, . . . ,ℵω, fails again for deg(ε) = ℵω+1, and is
undecidable for the next ℵω+n for n ∈ N, n ≥ 2.



§3: Halin’s end degree conjecture

Theorem (Geschke, Kurkofka, Melcher, Pitz 20+). Halin’s conjecture fails for end degrees deg(ε) = ℵ1, holds for all
end degrees ℵ2,ℵ3, . . . ,ℵω, fails again for deg(ε) = ℵω+1, and is undecidable for the next ℵω+n for n ∈ N, n ≥ 2.

“Think” of Halin’s conjecture: The ‘only’ way to build an end of degree κ is T�N for some tree T with |T | = κ.
For our counterexamples at ℵ1 and ℵω+1: A new idea to construct ends with prescribed degree based on T -graphs.

Definition. Let G be a T -graph where T be an order tree of height at most ω1 where for every limit t, N(t) ∩ dte has
order type ω. The ray-inflation G ] N of G is the graph with vertex set T × N, and the following edges:

(1) For every t ∈ T and n ∈ N we add the edge (t, n)(t, n + 1) (such that Rt := {t} × N induces a ray).
(2) If t ∈ T is a successor with predecessor t′, we add all edges (t, n)(t′, n) for all n ∈ N.
(3) If t ∈ T is a limit with down-neighbours t0 <T t1 <T t2 <T · · · in G we add the edges (t, n)(tn, n) for all n ∈ N.

Example. The ray inflation of an (ω+ 1)-graph: Lemma. The ray inflation G]N has one end, which has degree |T |.

Theorem (GKMP 20+). Let T be an Aronszajn tree and G a T -
graph with property (?). Then G ]N contains no subdivided ℵ1-star
of rays; i.e. Halin’s conjecture fails at ℵ1.

Theorem (GKMP 20+). From an ℵ+
ω -scale on ∏

n<ω ℵn one can ob-
tain a tree T with |T<ω| = ℵω plus ℵ+

ω many tops, such that T ] N
contains no subdivided ℵ+

ω -star of rays;
i.e. Halin’s conjecture fails at ℵω+1.
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Theorem (GKMP 20+). Let T be an Aronszajn tree and G a T -graph with property (?). Then G ] N contains no
subdivided ℵ1-star of rays; i.e. Halin’s conjecture fails at ℵ1.

• Aronzsajn tree: |T | = ℵ1, but all levels and branches countable.
• Property (?) relies on an idea of Diestel, Leader and Todorcevic: Pick a (special) Aronzsajn tree T with antichain

partition (Un)n∈N. Given a limit t ∈ T , pick down-neighbours t0 <T t1 <T t2 <T · · · <T t with ti ∈ Uni
recursively

such that each ni+1 is smallest possible.
• The resulting T -graph G has the following property (?): For each t there is a finite set St ⊆ d̊te such that every
s >T t satisfies N(s) ∩ d̊te ⊆ St.
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Theorem (GKMP 20+). Let T be an Aronszajn tree and G a T -graph with property (?). Then G ] N contains no
subdivided ℵ1-star of rays; i.e. Halin’s conjecture fails at ℵ1.

• Aronzsajn tree: |T | = ℵ1, but all levels and branches countable.
• Property (?) relies on an idea of Diestel, Leader and Todorcevic: Pick a (special) Aronzsajn tree T with antichain

partition (Un)n∈N. Given a limit t ∈ T , pick down-neighbours t0 <T t1 <T t2 <T · · · <T t with ti ∈ Uni
recursively

such that each ni+1 is smallest possible.
• The resulting T -graph G has the following property (?): For each t there is a finite set St ⊆ d̊te such that every
s >T t satisfies N(s) ∩ d̊te ⊆ St.
• Suppose there is a star of rays S in G]N “central” ray R and ℵ1 neighbouring rays (Ri : i < ℵ1). Since R is countable,

there is α < ω1 such that R ⊆ T<α ×N, and wlog all Ri ⊆ (T \ T<α)×N. Components of the last graph are of the
form btc × N for t ∈ T α. But now a component of S −R that avoids T≤α × N yields a contradiction.



§3: Halin’s end degree conjecture

Let HC(κ) be the statement that Halin’s conjecture holds for all ends of degree κ.

Theorem (Geschke, Kurkofka, Melcher, Pitz 20+). The following assertions about HC(κ) are true:
(1) HC(ℵ1) fails, HC(ℵn) holds for all 2 ≤ n ≤ ω, and HC(ℵω+1) fails again.
(2) More generally, HC(κ) fails for all κ with cf (κ) ∈ {µ+ : cf (µ) = ω}.
(3) Under GCH, HC(κ) holds for all cardinals not excluded by (2).
(4) However, HC(ℵω+α+2) is also consistent false for every α < ω1. Furthermore, HC(κ) consistently fails for all

κ with cf (κ) greater than the least fixed point of the ℵ function.

Question. Is HC(ℵω+ω) consistently wrong?

End of talk – Thanks!


