Max Pitz:

Applications of order trees in infinite graphs

27. August 2020, ALGOS
2020 $\,$

Slides available under https://www.math.uni-hamburg.de/home/pitz/

- 0: T-graphs: Definition and examples
- $\S1:$ $T\text{-}\mathrm{graphs},$ colouring number and forbidden minors
- $\S2$: *T*-graphs and woo of infinite graphs
- §3: Halin's end degree conjecture

0: T-graphs: Definition and examples

Let's agree on the following notation regarding order trees:

- Order tree: A partially ordered set (T, \leq) with unique minimal element (called the *root*) and all subsets of the form $\lceil t \rceil = \lceil t \rceil_T := \{t' \in T : t' \leq t\}$ are well-ordered. Write $\lfloor t \rfloor := \{t' \in T : t \leq t'\}$.
- **Branch**: A maximal chain in T (well-ordered).
- **Height**: The *height* of T is the supremum of the order types of its branches. The *height* of a point $t \in T$ is the order type of $\lceil t \rceil := \lceil t \rceil \setminus \{t\}$.
- Level: The set T^i of all points at height *i* is the *i*th *level* of *T*, and write $T^{<i} := \bigcup \{T^j : j < i\}$.
- Successors and limits: If t < t', we write $[t, t'] = \{x : t \le x \le t'\}$ etc. If t < t' but there is no point between t and t', we call t' a successor of t and t the predecessor of t'; if t is not a successor of any point it is called a *limit*.

Rooted graph-theoretic trees (connected, acyclic graphs) correspond to the order trees of height at most ω . Are there useful graphs on order trees? Well, the comparability graph; but the following concept is much more versatile:

Definition (Brochet & Diestel). For an order tree (T, \leq) , a graph G = (V, E) is a *T*-graph if V = T, the ends of any edge e = tt' are comparable in T, and the neighbours of any $t \in T$ are cofinal in $\lceil t \rceil := \{t' \in T : t' < t\}$.

Example. (1) Rado ('78): Generalised path \leftrightarrow *T*-graph for *T* an ordinal.

- Erdős & Rado ('78): Any countable complete graph K_{ω} where the edges have been coloured with $r \in \mathbb{N}$ many colours can be partitioned into r monochromatic paths / rays.
- D. Soukup ('16): Any complete graph K_{κ} where the edges have been coloured with $r \in \mathbb{N}$ colours can be partitioned into r monochromatic generalised paths.
- Bürger & Pitz ('18): Any complete bipartite graph $K_{\kappa,\kappa}$ where the edges have been coloured with $r \in \mathbb{N}$ colours can be partitioned into 2r 1 monochromatic gen. paths.

0: T-graphs: Definition and examples

Let's agree on the following notation regarding order trees:

- Order tree: A partially ordered set (T, \leq) with unique minimal element (called the *root*) and all subsets of the form $\lceil t \rceil = \lceil t \rceil_T := \{t' \in T : t' \leq t\}$ are well-ordered. Write $\lfloor t \rfloor := \{t' \in T : t \leq t'\}$.
- **Branch**: A maximal chain in T (well-ordered).
- **Height**: The *height* of T is the supremum of the order types of its branches. The *height* of a point $t \in T$ is the order type of $\lceil t \rceil := \lceil t \rceil \setminus \{t\}$.
- Level: The set T^i of all points at height *i* is the *i*th *level* of *T*, and write $T^{<i} := \bigcup \{T^j : j < i\}$.
- Successors and limits: If t < t', we write $[t, t'] = \{x : t \le x \le t'\}$ etc. If t < t' but there is no point between t and t', we call t' a successor of t and t the predecessor of t'; if t is not a successor of any point it is called a *limit*.

Rooted graph-theoretic trees (connected, acyclic graphs) correspond to the order trees of height at most ω . Are there useful graphs on order trees? Well, the comparability graph; but the following concept is much more versatile:

Definition (Brochet & Diestel). For an order tree (T, \leq) , a graph G = (V, E) is a *T*-graph if V = T, the ends of any edge e = tt' are comparable in T, and the neighbours of any $t \in T$ are cofinal in $\lceil t \rceil := \{t' \in T : t' < t\}$.

Example. (1) Rado ('78): Generalised path \leftrightarrow *T*-graph for *T* an ordinal.

- (2) Fun fact: every ω_1 -graph has a K_{ω_1} subdivision.
- (3) Thomas ('88): Used T-graphs for certain binary trees of height $\omega + 1$ to construct examples that uncountable graphs are not well-quasi-ordered (more about that later).

§1: *T*-graphs, colouring number and forbidden minors

Definition (Brochet & Diestel). For an order tree (T, \leq) , a graph G = (V, E) is a *T*-graph if V = T, the ends of any edge e = tt' are comparable in T, and the neighbours of any $t \in T$ are cofinal in $\lceil t \rceil := \{t' \in T : t' < t\}$.

If a graph G is (isomorphic to) a T-graph for some order tree (T, \leq) , we say that (T, \leq) is a normal tree order for G. When T has height at most ω , we say T is a normal spanning tree for G.

Open Problem. Which connected graphs admit a normal tree order?

- Not all graphs do: consider an uncountable clique where every edge has been subdivided once.
- Jung ('69): Every countable graph contains a normal spanning tree with any arbitrarily chosen vertex as the root.
- Brochet & Diestel ('95): Every connected graph G "almost" has a normal tree order: There is a contraction G' with normal tree order (T, \leq) and branch sets $(V_t)_{t \in T}$ in G such that $|V_t| \leq cf$ (height(t)) for all $t \in T$.

Can we say more about which graphs have a normal spanning tree?

Definition (Erdős & Hajnal). The *colouring number* col(G) is the least cardinal μ such that V(G) has a well-order \leq such that every vertex has $< \mu$ neighbours preceding it in \leq .

- Observation: If G has a normal spanning tree, then $\operatorname{col}(G) \leq \aleph_0$.
- Converse: No (again: an uncountable clique where every edge has been subdivided once)
- BUT: Having an NST is a minor-closed property!

Conjecture (Halin, '98). A connected graph G has a normal spanning tree if and only if every minor of G has countable colouring number.

Theorem (Pitz, '20⁺). *Halin's conjecture is true.*

Consequence: As there is a forbidden subgraph characterisation for having colouring number $\leq \mu$ (Bowler, Carmesin, Komjath, Reiher, '15), this yields a forbidden minor characterisation for the property of having a normal spanning tree!

- $\S2: T$ -graphs and woo of infinite graphs
 - Minor H is a minor of G if there are disjoint connected vertex sets $\{V_h : h \in H\}$ in G such that G has a $V_h V_{h'}$ edge whenever hh' is an edge in H. Write $G \preccurlyeq H$ if G is a minor of H.
 - Wqo: A binary relation \triangleleft on a set X is a *well-quasi-order* if it is reflexive and transitive, and for every sequence $x_1, x_2, \ldots \in X$ there is some i < j such that $x_i \triangleleft x_j$.

Theorem (Roberton & Seymour, '80s). Finite graphs are well-quasi ordered under the minor relation \preccurlyeq .

Open Problem. Are countable graphs well-quasi ordered by \preccurlyeq ?

Theorem (Thomas '88). Graphs of size 2^{\aleph_0} are not well-quasi ordered by \preccurlyeq : There is a sequence G_1, G_2, \ldots of binary trees with tops such that $G_i \not\preccurlyeq G_j$ whenever i < j.

Theorem (Komjath '95). For every uncountable cardinal κ there is a family $\{G_i : i < 2^{\kappa}\}$ of κ -sized graphs such that $G_i \not\preccurlyeq G_j$ whenever $i \neq j$.

Downside: Komjath's graphs are hard to define. Better:

Theorem (Pitz '20⁺). For every uncountable regular κ there is a family $\{G_i : i < \kappa\}$ of T_{κ} with κ many tops such that $G_i \not\preccurlyeq G_j$ whenever $i \neq j$.

Remark: Implies Komjath (take disjoint unions over subsets of indices $\subseteq \kappa$).

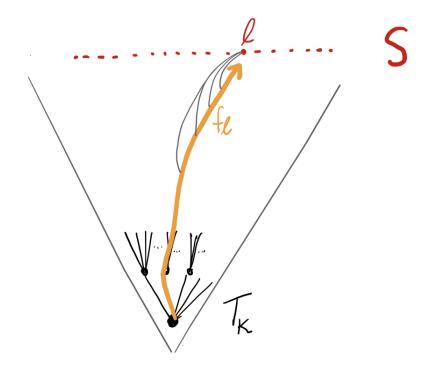
 $\S2$: *T*-graphs and woo of infinite graphs

Theorem (Thomas '88). There are binary trees with 2^{\aleph_0} many tops G_1, G_2, \ldots such that $G_i \not\preccurlyeq G_j$ whenever i < j.

Theorem (Pitz '20⁺). For every uncountable regular κ there is a family $\{G_i : i < \kappa\}$ of T_{κ} with κ many tops such that $G_i \not\preccurlyeq G_j$ whenever $i \neq j$.

Idea for the construction: Let $\Lambda \subseteq \kappa$ denote the set of limit ordinals of countable cofinality. For every $\ell \in \Lambda$ pick an increasing cofinal sequence $f_{\ell} \colon \mathbb{N} \to \ell$, which we may interpret as a rooted ray in $T_{\kappa} = \kappa^{<\omega}$. For $S \subseteq \Lambda$ let T(S) be the tree order where we add for every $\ell \in S$ a top above every ray f_{ℓ} in T_{κ} , and G(S) any T(S)-graph.

Proof: Show that if $S, R \subseteq \Lambda$ are disjoint stationary subsets of κ , then $G(S) \not\preccurlyeq G(R)$.



 $\S2$: *T*-graphs and woo of infinite graphs

Theorem (Thomas '88). There are binary trees with 2^{\aleph_0} many tops G_1, G_2, \ldots such that $G_i \not\preccurlyeq G_j$ whenever i < j.

Theorem (Pitz '20⁺). For every uncountable regular κ there is a family $\{G_i : i < \kappa\}$ of T_{κ} with κ many tops such that $G_i \not\preccurlyeq G_j$ whenever $i \neq j$.

Idea for the construction: Let $\Lambda \subseteq \kappa$ denote the set of limit ordinals of countable cofinality. For every $\ell \in \Lambda$ pick an increasing cofinal sequence $f_{\ell} \colon \mathbb{N} \to \ell$, which we may interpret as a rooted ray in $T_{\kappa} = \kappa^{<\omega}$.

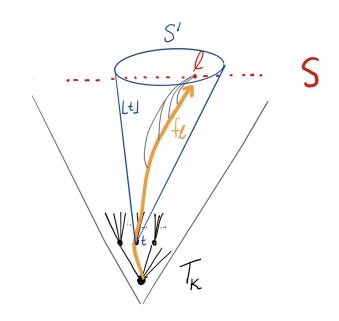
For $S \subseteq \Lambda$ let T(S) be the tree order where we add for every $\ell \in S$ a top above every ray f_{ℓ} in T_{κ} , and G(S) any T(S)-graph.

What is so interesting about $F(S) = \{f_{\ell} \colon \ell \in S\}$ for $S = \Lambda$ or $S \subseteq \Lambda$ stationary?

- Topological interpretation: The rays in T_{κ} naturally form a topological space $\kappa^{\mathbb{N}}$, the *Baire space of weight* κ . Stone ('63 & '72) has shown that F(S) is not Borel in $\kappa^{\mathbb{N}}$, but each separable subspace of F(S) is countable.
- Surprising connection to normal spanning trees: G = G(S) doesn't have a normal spanning tree.

What makes the proofs work?

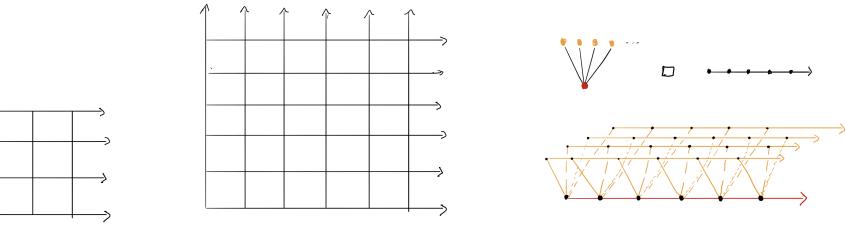
- The rays bunch up in a strange way:
- For $n \in \mathbb{N}$ arbitrary, by the pressing down-lemma, stationary many tops $S' \subseteq S$ agree on their first n coordinates.



- **Definition.** An end ϵ of a graph G is an equivalence class of rays in G, where two rays $R_1 \sim R_2$ are equivalent if there are infinitely many disjoint $R_1 R_2$ paths in G.
 - The degree of an end ϵ is the maximal size of a collection of disjoint rays in ϵ (well-defined by a theorem of Halin).

Example. • The $\{1, \ldots, n\} \square \mathbb{N}$ grid: deg $(\epsilon) = n$.

- The $\mathbb{N} \square \mathbb{N}$ grid: deg $(\epsilon) = \aleph_0$.
- The star of rays $S_{\kappa} \square \mathbb{N}$ with $\deg(\epsilon) = \kappa$.



The $\{1, \ldots, n\} \square \mathbb{N}$ grid

The \mathbb{NDN} grid

 $S_{\kappa} \Box \mathbb{N}$

- **Definition.** An end ϵ of a graph G is an equivalence class of rays in G, where two rays $R_1 \sim R_2$ are equivalent if there are infinitely many disjoint $R_1 R_2$ paths in G.
 - The degree of an end ϵ is the maximal size of a collection of disjoint rays in ϵ (well-defined by a theorem of Halin).

Example. • The $\{1, \ldots, n\} \square \mathbb{N}$ grid: deg $(\epsilon) = n$.

- The $\mathbb{N} \square \mathbb{N}$ grid: deg $(\epsilon) = \aleph_0$.
- The star of rays $S_{\kappa} \square \mathbb{N}$ with $\deg(\epsilon) = \kappa$.

How typical are these examples?

Definition. Let \mathcal{R} be a set of pairwise disjoint rays in an arbitrary end ϵ of G, and let \mathcal{P} be a set of pairwise independent finite G such that each $P \in \mathcal{P}$ connects vertices from distinct rays in \mathcal{R} and has no internal vertex in common with any ray from \mathcal{R} . The ray graph $G(\mathcal{R}, \mathcal{P})$ is the graph with vertex set \mathcal{R} where two rays are adjacent if there are infinitely many disjoint $R_1 - R_2$ paths in \mathcal{P} .

Conjecture (Halin). For any end ϵ there are $\mathcal{R} \subseteq \epsilon$ and \mathcal{P} as above with $|\mathcal{R}| = \deg(\epsilon)$ such that $G(\mathcal{R}, \mathcal{P})$ is connected.

Remark. • For $\deg(\epsilon) = \aleph_0$, this holds by Halin's grid theorem.

• For deg(ϵ) = κ regular, one would find in $G(\mathcal{R}, \mathcal{P})$ a vertex of degree κ . To this vertex and its neighbours there would correspond a "central" ray R and κ neighbouring rays (R_i : $i < \kappa$), all disjoint from each other, such that each R_i with R and the connecting paths from \mathcal{P} forms a subdivision of the one-way infinite ladder – i.e. a subdivided $S_{\kappa} \Box \mathbb{N}$ with some edges missing.

Theorem (Geschke, Kurkofka, Melcher, Pitz 20⁺). *Halin's conjecture fails for end degrees* $\deg(\epsilon) = \aleph_1$, holds for all end degrees $\aleph_2, \aleph_3, \ldots, \aleph_{\omega}$, fails again for $\deg(\epsilon) = \aleph_{\omega+1}$, and is undecidable for the next $\aleph_{\omega+n}$ for $n \in \mathbb{N}$, $n \geq 2$.

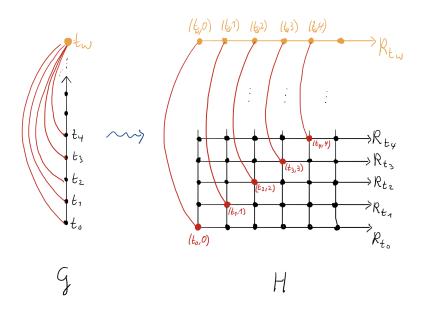
Theorem (Geschke, Kurkofka, Melcher, Pitz 20⁺). *Halin's conjecture fails for end degrees* $\deg(\epsilon) = \aleph_1$, *holds for all end degrees* $\aleph_2, \aleph_3, \ldots, \aleph_{\omega}$, *fails again for* $\deg(\epsilon) = \aleph_{\omega+1}$, *and is undecidable for the next* $\aleph_{\omega+n}$ *for* $n \in \mathbb{N}$, $n \geq 2$.

"Think" of Halin's conjecture: The 'only' way to build an end of degree κ is $T \Box \mathbb{N}$ for some tree T with $|T| = \kappa$. For our counterexamples at \aleph_1 and $\aleph_{\omega+1}$: A new idea to construct ends with prescribed degree based on T-graphs.

Definition. Let G be a T-graph where T be an order tree of height at most ω_1 where for every limit $t, N(t) \cap \lceil t \rceil$ has order type ω . The ray-inflation $G \notin \mathbb{N}$ of G is the graph with vertex set $T \times \mathbb{N}$, and the following edges:

- (1) For every $t \in T$ and $n \in \mathbb{N}$ we add the edge (t, n)(t, n+1) (such that $R_t := \{t\} \times \mathbb{N}$ induces a ray).
- (2) If $t \in T$ is a successor with predecessor t', we add all edges (t, n)(t', n) for all $n \in \mathbb{N}$.
- (3) If $t \in T$ is a limit with down-neighbours $t_0 <_T t_1 <_T t_2 <_T \cdots$ in G we add the edges $(t, n)(t_n, n)$ for all $n \in \mathbb{N}$.

Example. The ray inflation of an $(\omega + 1)$ -graph: Lemma. The ray inflation $G \sharp \mathbb{N}$ has one end, which has degree |T|.

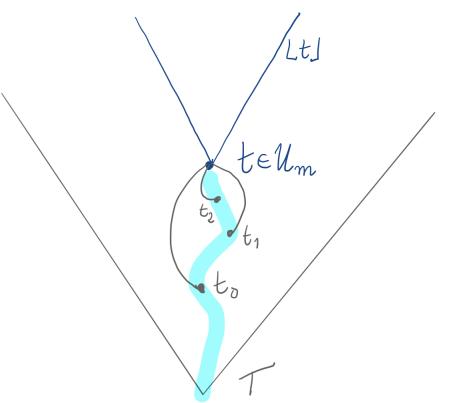


Theorem (GKMP 20⁺). Let T be an Aronszajn tree and G a Tgraph with property (\star). Then $G \notin \mathbb{N}$ contains no subdivided \aleph_1 -star of rays; i.e. Halin's conjecture fails at \aleph_1 .

Theorem (GKMP 20⁺). From an \aleph_{ω}^+ -scale on $\prod_{n < \omega} \aleph_n$ one can obtain a tree T with $|T^{<\omega}| = \aleph_{\omega}$ plus \aleph_{ω}^+ many tops, such that $T \notin \mathbb{N}$ contains no subdivided \aleph_{ω}^+ -star of rays; i.e. Halin's conjecture fails at $\aleph_{\omega+1}$.

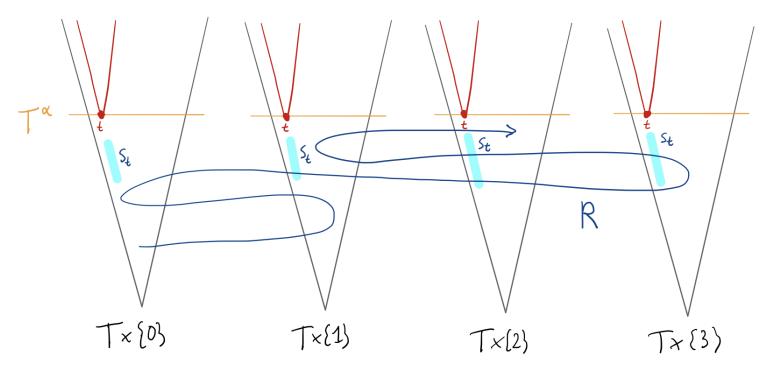
Theorem (GKMP 20⁺). Let T be an Aronszajn tree and G a T-graph with property (\star). Then $G \notin \mathbb{N}$ contains no subdivided \aleph_1 -star of rays; i.e. Halin's conjecture fails at \aleph_1 .

- Aronzsajn tree: $|T| = \aleph_1$, but all levels and branches countable.
- Property (*) relies on an idea of Diestel, Leader and Todorcevic: Pick a (special) Aronzsajn tree T with antichain partition $(U_n)_{n \in \mathbb{N}}$. Given a limit $t \in T$, pick down-neighbours $t_0 <_T t_1 <_T t_2 <_T \cdots <_T t$ with $t_i \in U_{n_i}$ recursively such that each n_{i+1} is smallest possible.
- The resulting T-graph G has the following property (*): For each t there is a finite set $S_t \subseteq [\mathring{t}]$ such that every $s >_T t$ satisfies $N(s) \cap [\mathring{t}] \subseteq S_t$.



Theorem (GKMP 20⁺). Let T be an Aronszajn tree and G a T-graph with property (\star). Then $G \notin \mathbb{N}$ contains no subdivided \aleph_1 -star of rays; i.e. Halin's conjecture fails at \aleph_1 .

- Aronzsajn tree: $|T| = \aleph_1$, but all levels and branches countable.
- Property (*) relies on an idea of Diestel, Leader and Todorcevic: Pick a (special) Aronzsajn tree T with antichain partition $(U_n)_{n \in \mathbb{N}}$. Given a limit $t \in T$, pick down-neighbours $t_0 <_T t_1 <_T t_2 <_T \cdots <_T t$ with $t_i \in U_{n_i}$ recursively such that each n_{i+1} is smallest possible.
- The resulting T-graph G has the following property (*): For each t there is a finite set $S_t \subseteq [\mathring{t}]$ such that every $s >_T t$ satisfies $N(s) \cap [\mathring{t}] \subseteq S_t$.
- Suppose there is a star of rays S in $G \not\equiv \mathbb{N}$ "central" ray R and \aleph_1 neighbouring rays $(R_i: i < \aleph_1)$. Since R is countable, there is $\alpha < \omega_1$ such that $R \subseteq T^{<\alpha} \times \mathbb{N}$, and wlog all $R_i \subseteq (T \setminus T^{<\alpha}) \times \mathbb{N}$. Components of the last graph are of the form $\lfloor t \rfloor \times \mathbb{N}$ for $t \in T^{\alpha}$. But now a component of S R that avoids $T^{\leq \alpha} \times \mathbb{N}$ yields a contradiction.



Let $HC(\kappa)$ be the statement that Halin's conjecture holds for all ends of degree κ .

Theorem (Geschke, Kurkofka, Melcher, Pitz 20⁺). The following assertions about $HC(\kappa)$ are true:

- (1) $HC(\aleph_1)$ fails, $HC(\aleph_n)$ holds for all $2 \le n \le \omega$, and $HC(\aleph_{\omega+1})$ fails again.
- (2) More generally, $HC(\kappa)$ fails for all κ with $cf(\kappa) \in \{\mu^+ : cf(\mu) = \omega\}$.
- (3) Under GCH, $HC(\kappa)$ holds for all cardinals not excluded by (2).
- (4) However, $HC(\aleph_{\omega+\alpha+2})$ is also consistent false for every $\alpha < \omega_1$. Furthermore, $HC(\kappa)$ consistently fails for all κ with cf (κ) greater than the least fixed point of the \aleph function.

Question. Is $HC(\aleph_{\omega+\omega})$ consistently wrong?

End of talk – Thanks!