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The reconstruction conjecture in graph theory

Examples of decks and cards
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e A graph G is reconstructible if D(G) = D(H) only if G = H.

The Reconstruction Conjecture (Ulam, Kelly, 1941):
Every finite graph with at least 3 vertices is reconstructible.
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Why restricting the conjecture is necessary

Infinite graphs are in general not reconstructible

The Reconstruction Conjecture (Ulam, Kelly, 1941):
Every finite graph with at least 3 vertices is reconstructible.

Counterexample for infinite graphs: Countably branching tree T'.

We have D(Ts) = {00 Tro, 0 - Ty ...} = D(2- Tio).

15



Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams’ Problem (1991):
Is every locally finite connected infinite graph reconstructible?

# ends Locally finite trees Locally finite graphs

1
2
3,4,...
IN]
R|




Ends of trees and graphs

A small detour

-1 . . .
ends <— (infinite) rays starting
at the root.

R1 R,
1-1 .
ends <— equivalence classes of
rays: Ry ~ Ry :& 35 s.t.
‘S N Rzl = Q.
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Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

# ends Locally finite trees Locally finite graphs
1
2 v" Bondy/Hemminger '74

3,4,... v Bondy/Hemminger '74
IN|

R|
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Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

# ends Locally finite trees Locally finite graphs
1 v" Thomassen '78
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Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

Is every locally finite connected infinite graph reconstructible?

# ends Locally finite trees

Locally finite graphs

1 v" Thomassen '78

2 v" Bondy/Hemminger '74
3,4,... v Bondy/Hemminger '74

IN| v" Andreae '81

IR| X BEHLP '17

X BEHLP '18
v NW '91
v NW '87
X BEHLP '18
(X BEHLP '17)
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
G
f G
/ lfl
N H

Hl
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
o (G e

P ‘

L AV o [Hoe

Hl
Promise: @ Viewed from G and H: attach same graph behind red and
blue leaves respectively. Then old iso fi: G — H extends. 7
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
o (G e

P ‘

L AV o [Hoe

Hl
Promise: @ Viewed from G and N: attach same graph behind red and
blue leaves respectively. Then new iso fo: G — N extends. 7
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
o (G e

yar ‘

oN & o e

H/
To make H' connected, add an edge between N and H.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.

yar ‘

oN & o e

H/
To make f1 happy: Add copy N of N behind blue leaf of G.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.

P ‘

(O N (peooonsonnng o Ne ... o [H o

Hl
To make fo happy: Add copy N of N behind blue leaf of N, and copy
H of H behind red leaf of G. 7/15



@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.

! 3K SISy ' 3K SESSY ) (@& Cyeonnonoanont o ffe

P ‘

A ~

(O N (peooonsonnng o Ne ... o He .. ® 7o

Hl
To make f1 happy: Add copy H of H behind red leaf of H, and
another copy N of N upstairs. 7
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
SR 3.V SETTY 2K SESY ' IO TSN ? 395 2K SETY ® e

yar ‘

@ T @ o N & e e ® IO e

H/
At the end of time, both f; and fo are simultaneously happy.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.

Case n = 2.

!

N H

Promise leaves: @ Viewed from G and H: attach same graph behind

red promise leaves respectively. Then iso's fi, fo: G — H extend. |



@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
G s
|
N H/s

Promise leaves: @ Viewed from G and H: attach same graph behind
red promise leaves respectively. Then iso's fi, fo: G — H extend. |
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
G s

A

N

Promise leaves: @ Viewed from G and H: attach same graph behind

red promise leaves respectively. Then iso's fi, fo: G — H extend. |



@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
G s

y

N

Promise leaves: Either orbit closes a loop after finitely many
iterations...



@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.

A

Promise leaves: ... or the orbit forms an infinite double ray.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.

[ ]
GDN‘

e (5 ::
yflufz
b 0[—]::

Promise: Suppose have two distinct orbits of promise leaves coloured
blue and red.



@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

@ Disjoint graphs G, H, N,

@ isomorphisms f1,...

Want:
e G'>Gand H D NUH s.t.

,fn: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

N ¢

+G ]
‘f/flqu @
, ot

Hl

Promise: @ Viewed from G and H: attach same graph behind red and
blue leaves respectively. Then old iso's fi, fo: G — H extend. 9
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

@ Disjoint graphs G, H, N,

@ isomorphisms f1,...

Want:
e G'>Gand H D NUH s.t.

,fn: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

N ¢

+G ]
‘f/flqu @
, ot

Hl

Promise: @ Viewed from G and N: attach same graph behind red and
blue leaves respectively. Then new iso f3: G — N extends. 9
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.

Case n = 2.

‘f/flqu @

INJ (3econanoconn o

H/
To make H' connected, add an edge between N and H.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
® . ®
SN ¢ *G |

‘f/flqu @

H/

To make f1, fo happy: Add copy N of N behind blue leaf of G.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.

Case n = 2.

‘f/flqu @

Hl
To make f3 happy: Add copy N of N behind blue leaf of N, and copy
H of H behind correct red leaf of G. 9
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

‘f/flqu @

Hl
To make f1, fo happy: Add copy H of H behind red leaf of H, and
another copy N of N upstairs. 9
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
“““ i o
[e9Gc]
f3 G’
n||
_____ iy PR
IOV S *sH [

H/
To make f3 happy: ...
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
“““ i o
[e9Gc]
f3 G’
n||
----- * Nl et
® () cacaacs

H/
To make f3 happy: ...
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
Ve * { )aaseoas H
T
f3 G’
n||
Wb g 3
..... ® N ) SR * H ® ...

H/
To make f3 happy: ...
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

<<<<< T gt

® ® ...

f3 G’
/flqu

~ —

R S v B o SO

..... ® > ...

Hl
Now f3 is happy. Continue, by adding in turn copies of H behind red
promise leaves, and new copies of N behind blue promise leaves. o
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
“““ ° P et
° () aacana
f3 G’
n||
Wb g 3
_____ ® N ) G ° H > ...

H/

At the end of time, all of f1, fo and f3 are simultaneously happy.
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fi: G"—= H' fori <n+1.
Case n = 2.
<<<<< ° [P st
° ( Yeoanaos
f3 G
/flqu
R T S ey B oy S
..... ® N > ...

Hl
Note: Obtain global structure of k-regular tree (where k € N U oo the
number of promise leaves) and hence uncountably many ends. 9
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@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
<<<<< 'Y o . C () eeacans
° ( Yeoanaos
f3 G
/flqu
R T S ey B oy S
..... ® N > ...

Hl
Note as well: If G, H, N were (locally finite) trees to start with, then
so will be G’ and H'. 9
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@ Shifting single vertices

Constructing non-isomorphic trees sharing a common card

Shifting Lemma: Given a ‘nice’ tree T' and € T, may construct tree
N 22T and y € N such that cards satisfy T'—z = N — .

X s
ha

10/15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Znf
Tl
x2

Tn

flvf?a--'vfn

Yn,

Y2

At step n, have constructed trees T}, 2 S,, with n common cards,

S

witnessed by isomorphisms f;: T,, — x; — Sy — y;.

15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Znf
Tl

T2
Tn41*

Tn

flvf?a--'vfn

Yn,

Y2

Consider z,,41 € T, for which we want to find a corresponding card.

S

11/15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Znf
Tl

T2

Tn41*

Tn

Tn+1 Ji, fas- s fn

In
Yn+1 Y1

]V’ Y2

S

Shifting Lemma: Construct new tree N and y,4+1 € N so that

Th —Tni1 =N — ypia.

11/15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Pntl -2 Tn

Tn+1

fn+1

flvf?a--'vfn

N

Yn+1

Unj
v

»|g
n

Sn+1

Amalgamate. Obtain trees T},41 2 Sp+1 with n + 1 common cards,

witnessed by isomorphisms f!: T, 41 — 2; — Spt1 — ¥i.

11/15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Yn+1

v2

Sn—l—l

f1>f27"'>fn+1

Tn+1
T
T2

Tn+1

At step n.+ 1, have constructed trees 1,11 2% Sp4+1 with n+ 1 common
cards, witnessed by isomorphisms f;: Sp11 —y; — Thy1 — ;.

12 /15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Yn+1

Y2
Yn+2 °

Sn+1

f1>f27"'>fn+1

Tn+1
T
T2

Consider y,,42 € Sp+1, for which we want to find a corresponding card.

Tn+1

12/15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

fn+2

T 42

Yn+1

Y2
Yn+2 °

Sn—l—l

f1>f27"'>fn+1

Tn+1
T
T2

Tn+1

Shifting Lemma: Construct new tree N and z,49 € N, such that

Jn+2: Sngt — Yns2 N — py0.

12 /15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

'yn+1
v1
Yn+2 b2 Sn—i—l
Sn+2
fn+2 f1>f2>"'>fn+1
Zntl
Znt2 z1
€T
-2 Tn+1
Tn—|—2

Amalgamate. Obtain trees Sy,+9 % Ty42 with n 4+ 2 common cards,
witnessed by isomorphisms f!: Sy10 — yi = Thi2 — ;.

12 /15



A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.
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Question: Do their decks agree? Need to arrange
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such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

V(T) =N, V(T}) = ON_1
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A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

V(T)=N, V(1) = 2N — 1, V(T \ T1) = 4N — 2,
V(T3\Tz) =8N — 4, ...

)

Then T and S are non-isomorphic reconstructions of each other.
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The second counterexample
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given:
e Disjoint graphs G, H, N,

@ isomorphisms f1,...

s Jfn: G— H,

e (new) isomorphism f,41: G — N.

b 1\ ¢

b [V ¢

ex*

|4

b [ o

Want:

e G DG and H D NUH s.t.

@ all maps lift to isomorphisms
fl:G'— H' fori <n+1.

G/

Hl
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Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given: Want: One-ended graphs
e Disjoint graphs G, H, N, e G'D>Gand H' D NUH st.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,1: G — N. fi:G"—= H' fori<n+1.
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H/
To make the graphs one-ended, for finite G, H, N, glue on a big
half-grid ZON. Maps f1, fa still lift to maps f{ and f5. s
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The second counterexample
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given: Want: One-ended graphs
e Disjoint graphs G, H, N, e G'D>Gand H' D NUH st.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,1: G — N. fi:G"—= H' fori<n+1.

A~ ~ A~ ~

ool ) N (poeesasasas @3\ OSER oG e () JB (poecsasasass o e

P ‘

O NGS o0 /NGO e o0 e6ee0[060 990/

H/
For n > 2, under mild assumptions on promise leaves, glueing on a

tree-grid TN for some suitable locally finite tree 71" works. s



Open questions for reconstruction of infinite graphs

When restricting the end-degree, our counterexample techniques no longer work.

# ends Locally finite trees Locally finite graphs
1 v" Thomassen '78 X BEHLP '18
2 v Bondy/Hemminger '74 v NW '91
3,4,... v Bondy/Hemminger '74 v NW '87
IN| v" Andreae '81 X BEHLP '18
IR| X BEHLP '17 (X BEHLP '17)

Question A (Nash-Williams): Is every one-ended locally finite
connected graph with finite end-degree reconstructible?

Question B: Is every countably-ended connected graph with of finite
tree-width reconstructible?
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