Recent developments in reconstruction of infinite graphs

Max Pitz

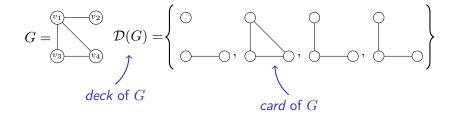
With N. Bowler, J. Erde, F. Lehner, P. Heinig

University of Hamburg, Germany

12 July 2018

The reconstruction conjecture in graph theory

Examples of decks and cards



The reconstruction conjecture in graph theory

Examples of decks and cards

$$G = \bigcup_{v_3} \mathcal{D}(G) = \left\{ \bigcup_{v_3} \bigcup_{v_4} \mathcal{D}(G) = \left\{ \bigcup_{v_3} \bigcup_{v_4} \bigcup_{v_4$$

• A graph G is reconstructible if $\mathcal{D}(G) = \mathcal{D}(H)$ only if $G \cong H$.

The reconstruction conjecture in graph theory

Examples of decks and cards

$$G = \bigcup_{v_3} \mathcal{D}(G) = \left\{ \bigcup_{v_3} \bigcup_{v_4} \mathcal{D}(G) = \left\{ \bigcup_{v_3} \bigcup_{v_4} \bigcup_{v_4$$

• A graph G is reconstructible if $\mathcal{D}(G) = \mathcal{D}(H)$ only if $G \cong H$.

The Reconstruction Conjecture (Ulam, Kelly, 1941):

Every finite graph with at least 3 vertices is reconstructible.

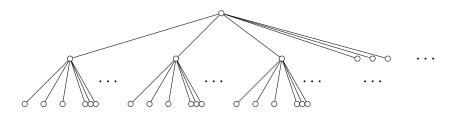
Why restricting the conjecture is necessary

Infinite graphs are in general not reconstructible

The Reconstruction Conjecture (Ulam, Kelly, 1941):

Every finite graph with at least 3 vertices is reconstructible.

Counterexample for infinite graphs: Countably branching tree T_{∞} .



We have
$$\mathcal{D}(T_{\infty}) = \{\infty \cdot T_{\infty}, \infty \cdot T_{\infty}, \ldots\} = \mathcal{D}(2 \cdot T_{\infty}).$$

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

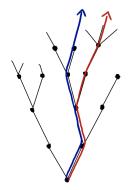
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

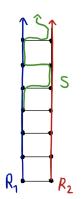
# ends	Locally finite trees	Locally finite graphs
1		
2		
$3, 4, \dots$		
$ \mathbb{N} $		
$ \mathbb{R} $		

Ends of trees and graphs

A small detour



ends $\stackrel{1-1}{\longleftrightarrow}$ (infinite) rays starting at the root.



ends $\stackrel{1-1}{\longleftrightarrow}$ equivalence classes of rays: $R_1 \sim R_2 : \Leftrightarrow \exists S \text{ s.t.}$ $|S \cap R_i| = \infty.$

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
1		
2		
$3, 4, \dots$		
$ \mathbb{N} $		
$ \mathbb{R} $		

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
$ \begin{array}{c} 1\\2\\3,4,\dots\\ \mathbb{N} \\ \mathbb{R} \end{array} $	✓ Bondy/Hemminger '74 ✓ Bondy/Hemminger '74	

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
$ \begin{array}{c} 1\\2\\3,4,\dots\\ \mathbb{N} \\ \mathbb{R} \end{array} $	✓ Thomassen '78✓ Bondy/Hemminger '74✓ Bondy/Hemminger '74	

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
$ \begin{array}{c} 1\\2\\3,4,\dots\\ \mathbb{N} \\ \mathbb{R} \end{array} $	✓ Thomassen '78 ✓ Bondy/Hemminger '74 ✓ Bondy/Hemminger '74 ✓ Andreae '81	

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
$ \begin{array}{c} 1\\2\\3,4,\dots\\ \mathbb{N} \\ \mathbb{R} \end{array} $	 ✓ Thomassen '78 ✓ Bondy/Hemminger '74 ✓ Bondy/Hemminger '74 ✓ Andreae '81 	✓ NW '87

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
$ \begin{array}{c} 1\\2\\3,4,\dots\\ \mathbb{N} \\ \mathbb{R} \end{array} $	 ✓ Thomassen '78 ✓ Bondy/Hemminger '74 ✓ Bondy/Hemminger '74 ✓ Andreae '81 	✓ NW '91 ✓ NW '87

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
$ \begin{array}{c} 1\\2\\3,4,\dots\\ \mathbb{N} \\ \mathbb{R} \end{array} $	 ✓ Thomassen '78 ✓ Bondy/Hemminger '74 ✓ Bondy/Hemminger '74 ✓ Andreae '81 ✗ BEHLP '17 	✓ NW '91 ✓ NW '87

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
1 2	✓ Thomassen '78✓ Bondy/Hemminger '74	√ NW '91
$3, 4, \dots$	✓ Bondy/Hemminger 74 ✓ Bondy/Hemminger 74	✓ NW '87
$ \mathbb{N} $	✓ Andreae '81 ✗ BEHLP '17	(X BEHLP '17)

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
1	✓ Thomassen '78	✗ BEHLP '18
2	✓ Bondy/Hemminger ' 74	✓ NW '91
$3, 4, \dots$	✓ Bondy/Hemminger ' 74	✓ NW '87
$ \mathbb{N} $	✓ Andreae ' 81	
	✗ BEHLP '17	(X BEHLP '17)

Due to non-reconstructible T_{∞} , should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):

Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

# ends	Locally finite trees	Locally finite graphs
1	✓ Thomassen '78	✗ BEHLP '18
2	✓ Bondy/Hemminger ' 74	✓ NW '91
$3, 4, \dots$	✓ Bondy/Hemminger ' 74	✓ NW '87
$ \mathbb{N} $	✓ Andreae '81	✗ BEHLP '18
$ \mathbb{R} $	X BEHLP '17	(X BEHLP '17)

A versatile proof technique to control isomorphisms of locally finite connected graphs

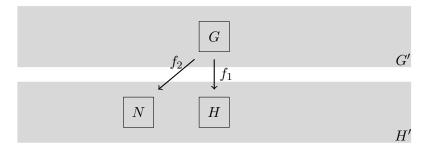
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=1.



A versatile proof technique to control isomorphisms of locally finite connected graphs

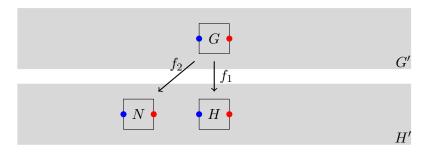
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=1.



A versatile proof technique to control isomorphisms of locally finite connected graphs

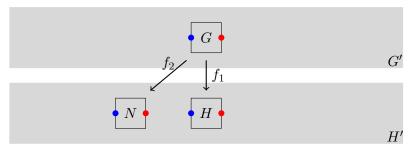
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i < n+1.$

Case n=1.



Promise: 1 Viewed from G and H: attach same graph behind red and blue leaves respectively. Then old iso $f_1 \colon G \to H$ extends.

A versatile proof technique to control isomorphisms of locally finite connected graphs

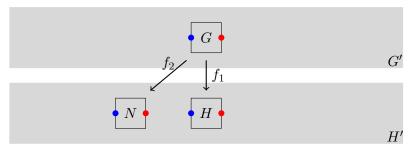
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i < n+1.$

Case n=1.



Promise: \bigcirc Viewed from G and N: attach same graph behind red and blue leaves respectively. Then new iso $f_2 \colon G \to N$ extends.

A versatile proof technique to control isomorphisms of locally finite connected graphs

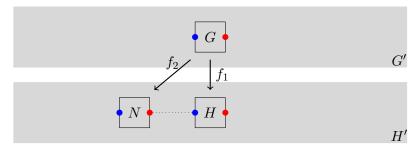
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=1.



To make H' connected, add an edge between N and H.

A versatile proof technique to control isomorphisms of locally finite connected graphs

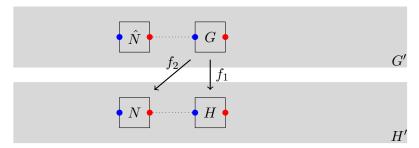
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=1.



To make f_1 happy: Add copy \hat{N} of N behind blue leaf of G.

A versatile proof technique to control isomorphisms of locally finite connected graphs

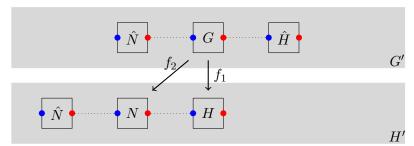
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=1.



To make f_2 happy: Add copy \hat{N} of N behind blue leaf of N, and copy \hat{H} of H behind red leaf of G.

A versatile proof technique to control isomorphisms of locally finite connected graphs

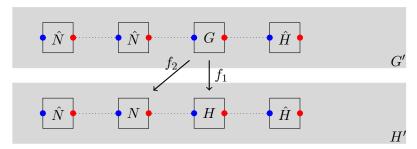
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=1.



To make f_1 happy: Add copy \hat{H} of H behind red leaf of H, and another copy \hat{N} of N upstairs.

A versatile proof technique to control isomorphisms of locally finite connected graphs

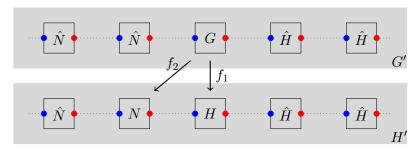
A general set-up. Given:

- ullet Disjoint graphs G,H,N,
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1} : G \to N$.

Want:

- ullet $G'\supset G$ and $H'\supset N\dot{\cup}H$ s.t.
- all maps lift to isomorphisms $f'_i : G' \to H'$ for $i \le n + 1$.

Case n=1.



At the end of time, both f_1 and f_2 are simultaneously happy.

A versatile proof technique to control isomorphisms of locally finite connected graphs

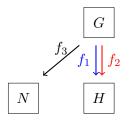
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



A versatile proof technique to control isomorphisms of locally finite connected graphs

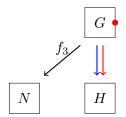
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \le n+1.$

Case n=2.



Promise leaves: \blacksquare Viewed from G and H: attach same graph behind red promise leaves respectively. Then iso's $f_1, f_2: G \to H$ extend.

A versatile proof technique to control isomorphisms of locally finite connected graphs

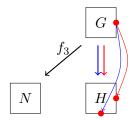
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



Promise leaves: \blacksquare Viewed from G and H: attach same graph behind red promise leaves respectively. Then iso's $f_1, f_2: G \to H$ extend.

A versatile proof technique to control isomorphisms of locally finite connected graphs

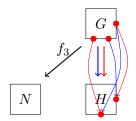
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



Promise leaves: \blacksquare Viewed from G and H: attach same graph behind red promise leaves respectively. Then iso's $f_1, f_2: G \to H$ extend.

A versatile proof technique to control isomorphisms of locally finite connected graphs

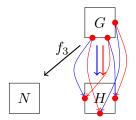
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



Promise leaves: Either orbit closes a loop after finitely many iterations...

A versatile proof technique to control isomorphisms of locally finite connected graphs

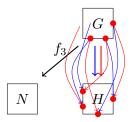
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



Promise leaves: ... or the orbit forms an infinite double ray.

A versatile proof technique to control isomorphisms of locally finite connected graphs

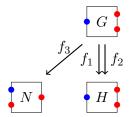
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$, all maps lift to isomorphisms
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



Promise: Suppose have two distinct orbits of promise leaves coloured blue and red.

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

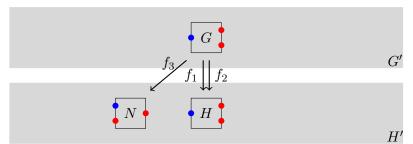
- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

9 / 15

Case n=2.



Promise: 1 Viewed from G and H: attach same graph behind red and blue leaves respectively. Then old iso's $f_1, f_2 \colon G \to H$ extend.

A versatile proof technique to control isomorphisms of locally finite connected graphs

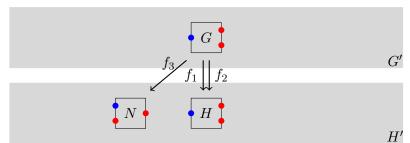
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



Promise: \bigcirc Viewed from G and N: attach same graph behind red and blue leaves respectively. Then new iso $f_3 \colon G \to N$ extends.

A versatile proof technique to control isomorphisms of locally finite connected graphs

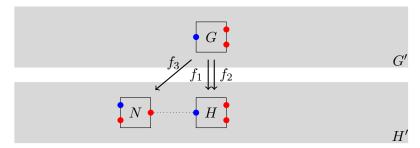
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



To make H' connected, add an edge between N and H.

A versatile proof technique to control isomorphisms of locally finite connected graphs

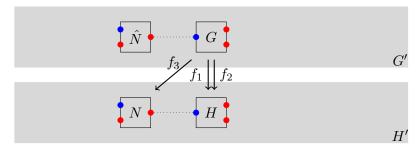
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



To make f_1 , f_2 happy: Add copy \hat{N} of N behind blue leaf of G.

A versatile proof technique to control isomorphisms of locally finite connected graphs

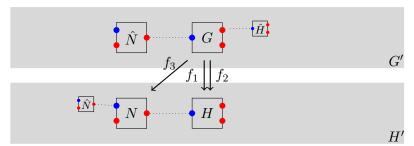
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



To make f_3 happy: Add copy \hat{N} of N behind blue leaf of N, and copy \hat{H} of H behind correct red leaf of G.

A versatile proof technique to control isomorphisms of locally finite connected graphs

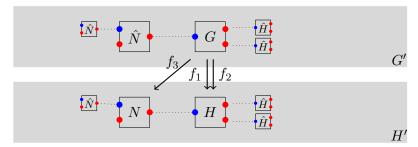
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



To make f_1 , f_2 happy: Add copy \hat{H} of H behind red leaf of H, and another copy \hat{N} of N upstairs.

A versatile proof technique to control isomorphisms of locally finite connected graphs

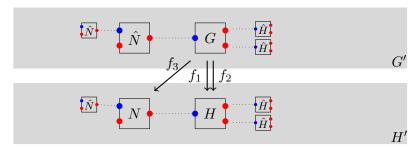
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



To make f_3 happy: ...

A versatile proof technique to control isomorphisms of locally finite connected graphs

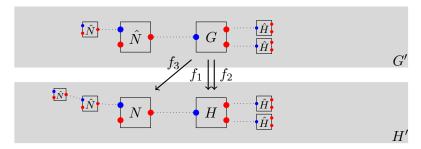
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



To make f_3 happy: ...

A versatile proof technique to control isomorphisms of locally finite connected graphs

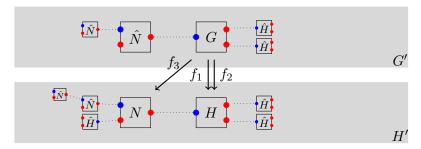
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



To make f_3 happy: ...

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

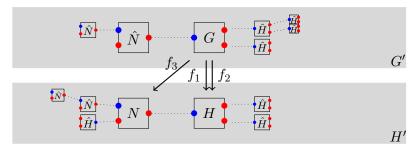
- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

9/15

Case n=2.



Now f_3 is happy. Continue, by adding in turn copies of H behind red promise leaves, and new copies of N behind blue promise leaves.

A versatile proof technique to control isomorphisms of locally finite connected graphs

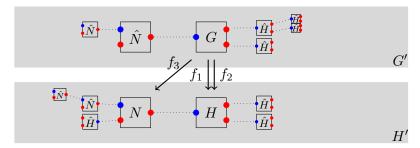
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



At the end of time, all of f_1, f_2 and f_3 are simultaneously happy.

A versatile proof technique to control isomorphisms of locally finite connected graphs

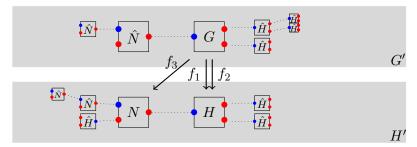
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.



Note: Obtain global structure of k-regular tree (where $k \in \mathbb{N} \cup \infty$ the number of promise leaves) and hence uncountably many ends.

A versatile proof technique to control isomorphisms of locally finite connected graphs

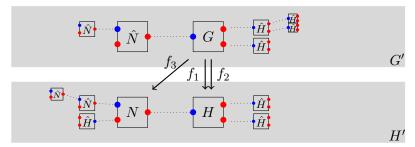
A general set-up. Given:

- Disjoint graphs G, H, N.
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$

Case n=2.

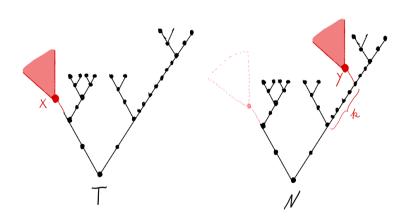


Note as well: If G, H, N were (locally finite) trees to start with, then so will be G' and H'.

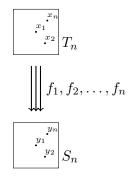
B Shifting single vertices

Constructing non-isomorphic trees sharing a common card

Shifting Lemma: Given a 'nice' tree T and $x \in T$, may construct tree $N \not\cong T$ and $y \in N$ such that cards satisfy $T - x \cong N - y$.

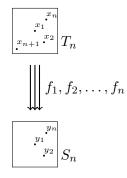


A back-and-forth construction using the amalgamation theorem.



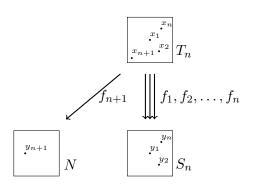
At step n, have constructed trees $T_n \not\cong S_n$ with n common cards, witnessed by isomorphisms $f_i \colon T_n - x_i \to S_n - y_i$.

A back-and-forth construction using the amalgamation theorem.



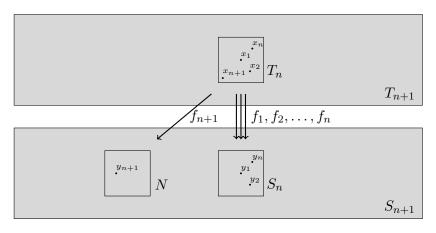
Consider $x_{n+1} \in T_n$, for which we want to find a corresponding card.

A back-and-forth construction using the amalgamation theorem.



Shifting Lemma: Construct new tree N and $y_{n+1} \in N$ so that $T_n - x_{n+1} \cong N - y_{n+1}$.

A back-and-forth construction using the amalgamation theorem.



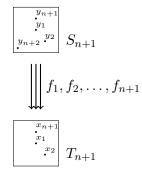
Amalgamate. Obtain trees $T_{n+1} \not\cong S_{n+1}$ with n+1 common cards, witnessed by isomorphisms $f_i' \colon T_{n+1} - x_i \to S_{n+1} - y_i$.

A back-and-forth construction using the amalgamation theorem.



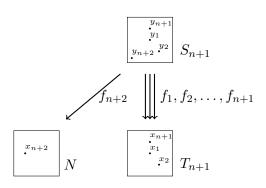
At step n+1, have constructed trees $T_{n+1} \not\cong S_{n+1}$ with n+1 common cards, witnessed by isomorphisms $f_i \colon S_{n+1} - y_i \to T_{n+1} - x_i$.

A back-and-forth construction using the amalgamation theorem.



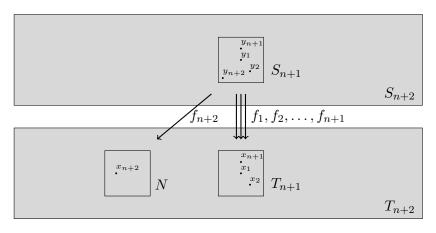
Consider $y_{n+2} \in S_{n+1}$, for which we want to find a corresponding card.

A back-and-forth construction using the amalgamation theorem.



Shifting Lemma: Construct new tree N and $x_{n+2} \in N$, such that $f_{n+2} \colon S_{n+1} - y_{n+2} \cong N - x_{n+2}$.

A back-and-forth construction using the amalgamation theorem.



Amalgamate. Obtain trees $S_{n+2} \not\cong T_{n+2}$ with n+2 common cards, witnessed by isomorphisms $f_i' \colon S_{n+2} - y_i \to T_{n+2} - x_i$.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

such that $T = \bigcup T_n$ and $S = \bigcup S_n$ satisfiy $T - x_i \cong S - y_i$.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

such that
$$T = \bigcup T_n$$
 and $S = \bigcup S_n$ satisfiy $T - x_i \cong S - y_i$.

Question: Do their decks agree? Need to arrange
$$V(T) = \{x_i : i \in \mathbb{N}\}$$
 and $V(S) = \{y_i : i \in \mathbb{N}\}$!

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

such that $T = \bigcup T_n$ and $S = \bigcup S_n$ satisfiy $T - x_i \cong S - y_i$.

Question: Do their decks agree? Need to arrange $V(T) = \{x_i : i \in \mathbb{N}\}$ and $V(S) = \{y_i : i \in \mathbb{N}\}!$

$$V(T) = \mathbb{N}$$

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

such that
$$T = \bigcup T_n$$
 and $S = \bigcup S_n$ satisfiy $T - x_i \cong S - y_i$.

Question: Do their decks agree? Need to arrange $V(T) = \{x_i : i \in \mathbb{N}\}\$ and $V(S) = \{y_i : i \in \mathbb{N}\}$!

$$V(T) = \mathbb{N}, \ V(T_1) = 2\mathbb{N} - 1$$

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

such that $T = \bigcup T_n$ and $S = \bigcup S_n$ satisfiy $T - x_i \cong S - y_i$.

Question: Do their decks agree? Need to arrange $V(T) = \{x_i \colon i \in \mathbb{N}\}$ and $V(S) = \{y_i \colon i \in \mathbb{N}\}!$

$$V(T) = \mathbb{N}, \ V(T_1) = 2\mathbb{N} - 1, \ V(T_2 \setminus T_1) = 4\mathbb{N} - 2$$

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

such that $T = \bigcup T_n$ and $S = \bigcup S_n$ satisfiy $T - x_i \cong S - y_i$.

Question: Do their decks agree? Need to arrange $V(T) = \{x_i : i \in \mathbb{N}\}$ and $V(S) = \{y_i : i \in \mathbb{N}\}!$

$$V(T) = \mathbb{N}, \ V(T_1) = 2\mathbb{N} - 1, \ V(T_2 \setminus T_1) = 4\mathbb{N} - 2, \ V(T_3 \setminus T_2) = 8\mathbb{N} - 4, \dots$$

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

such that $T = \bigcup T_n$ and $S = \bigcup S_n$ satisfyy $T - x_i \cong S - y_i$.

Question: Do their decks agree? Need to arrange $V(T) = \{x_i : i \in \mathbb{N}\}$ and $V(S) = \{y_i : i \in \mathbb{N}\}!$

$$V(T)=\mathbb{N}, \ V(T_1)=2\mathbb{N}-1, \ V(T_2\setminus T_1)=4\mathbb{N}-2, \ V(T_3\setminus T_2)=8\mathbb{N}-4, \ \dots$$

Then T and S are non-isomorphic reconstructions of each other.

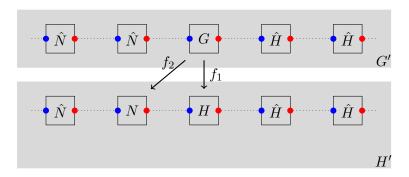
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient (A).

A general set-up. Given:

- Disjoint graphs G, H, N,
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want:

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$



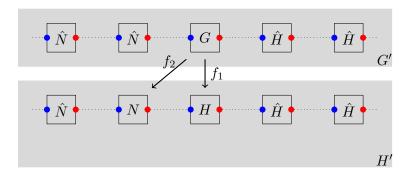
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient (A).

A general set-up. Given:

- Disjoint graphs G, H, N,
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want: One-ended graphs

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$



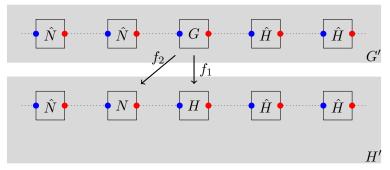
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient (A).

A general set-up. Given:

- Disjoint graphs G, H, N,
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want: One-ended graphs

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$



To make the graphs one-ended, for finite G, H, N, glue on a big half-grid $\mathbb{Z}\square\mathbb{N}$. Maps f_1, f_2 still lift to maps f_1' and f_2' .

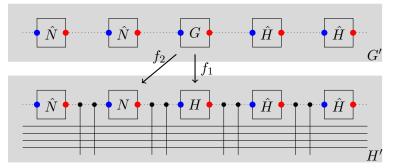
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient (A).

A general set-up. Given:

- Disjoint graphs G, H, N,
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want: One-ended graphs

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$



To make the graphs one-ended, for finite G, H, N, glue on a big half-grid $\mathbb{Z}\square\mathbb{N}$. Maps f_1, f_2 still lift to maps f_1' and f_2' .

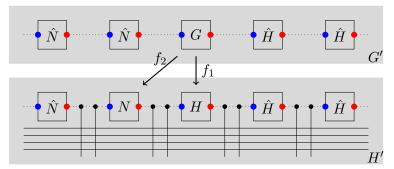
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient (A).

A general set-up. Given:

- Disjoint graphs G, H, N,
- isomorphisms $f_1, \ldots, f_n \colon G \to H$,
- (new) isomorphism $f_{n+1}: G \to N$.

Want: One-ended graphs

- $G' \supset G$ and $H' \supset N \dot{\cup} H$ s.t.
- all maps lift to isomorphisms $f_i' \colon G' \to H' \text{ for } i \leq n+1.$



For $n \geq 2$, under mild assumptions on promise leaves, glueing on a tree-grid $T\square \mathbb{N}$ for some suitable locally finite tree T works.

Open questions for reconstruction of infinite graphs

When restricting the end-degree, our counterexample techniques no longer work.

# ends	Locally finite trees	Locally finite graphs
1	✓ Thomassen '78	✗ BEHLP '18
2	✓ Bondy/Hemminger ' 74	✓ NW '91
$3, 4, \dots$	✓ Bondy/Hemminger '74	✓ NW '87
$ \mathbb{N} $	✓ Andreae '81	✗ BEHLP '18
$ \mathbb{R} $	X BEHLP '17	(X BEHLP '17)

Question A (Nash-Williams): Is every one-ended locally finite connected graph with finite end-degree reconstructible?

Question B: Is every countably-ended connected graph with of finite tree-width reconstructible?