Recent developments in
reconstruction of infinite graphs

Max Pitz
With N. Bowler, J. Erde, F. Lehner, P. Heinig

University of Hamburg, Germany

12 July 2018

The reconstruction conjecture in graph theory

Examples of decks and cards

deck of G \

card of G

/15

The reconstruction conjecture in graph theory

Examples of decks and cards

C— O
S
©3) Oo—=0» ’ O O

deck of G \

card of G

e A graph G is reconstructible if D(G) = D(H) only if G = H.

/15

The reconstruction conjecture in graph theory

Examples of decks and cards

C—) O
B N
©3) Oo—=0» ’ O O

&9
decki G \

card of G

e A graph G is reconstructible if D(G) = D(H) only if G = H.

The Reconstruction Conjecture (Ulam, Kelly, 1941):
Every finite graph with at least 3 vertices is reconstructible.

/15

Why restricting the conjecture is necessary

Infinite graphs are in general not reconstructible

The Reconstruction Conjecture (Ulam, Kelly, 1941):
Every finite graph with at least 3 vertices is reconstructible.

Counterexample for infinite graphs: Countably branching tree T'.

We have D(Ts) = {00 Tro, 0 - Ty ...} = D(2- Tio).

15

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams’ Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs

1
2
3,4,...
IN]
R|

Ends of trees and graphs

A small detour

-1 . . .
ends <— (infinite) rays starting
at the root.

R1 R,
1-1 .
ends <— equivalence classes of
rays: Ry ~ Ry :& 35 s.t.
‘S N Rzl = Q.

15

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams’ Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs

1
2
3,4,...
IN]
R|

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs
1
2 v" Bondy/Hemminger '74

3,4,... v Bondy/Hemminger '74
IN|

R|

15

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs
1 v" Thomassen '78
2 v" Bondy/Hemminger '74
3,4,... v Bondy/Hemminger '74
IN|
R|

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs
1 v" Thomassen '78
2 v" Bondy/Hemminger '74
3,4,... v Bondy/Hemminger '74
IN| v" Andreae '81
R|

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs

1 v Thomassen '78
2 v" Bondy/Hemminger '74

3,4,... v Bondy/Hemminger '74 v NW '87
IN| v" Andreae '81
IR|

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs

1 v Thomassen '78
2 v" Bondy/Hemminger '74 v NW '91

3,4,... v Bondy/Hemminger '74 v NW '87
IN| v" Andreae '81
IR|

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):
Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees Locally finite graphs

1 v" Thomassen '78

2 v" Bondy/Hemminger '74 v NW '91
3,4,... v Bondy/Hemminger '74 v NW '87

IN| v" Andreae '81

IR| X BEHLP '17

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees

Locally finite graphs

1 v" Thomassen '78

2 v" Bondy/Hemminger '74
3,4,... v Bondy/Hemminger '74

IN| v" Andreae '81

IR| X BEHLP '17

v NW '91
v NW '87

(X BEHLP '17)

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees

Locally finite graphs

1 v" Thomassen '78

2 v" Bondy/Hemminger '74
3,4,... v Bondy/Hemminger '74

IN| v" Andreae '81

IR| X BEHLP '17

X BEHLP 18
v NW '91
v NW '87

(X BEHLP '17)

Reconstruction results for infinite graphs

Due to non-reconstructible T, should restrict to locally finite conn'd graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams' Problem (1991):

Is every locally finite connected infinite graph reconstructible?

ends Locally finite trees

Locally finite graphs

1 v" Thomassen '78

2 v" Bondy/Hemminger '74
3,4,... v Bondy/Hemminger '74

IN| v" Andreae '81

IR| X BEHLP '17

X BEHLP '18
v NW '91
v NW '87
X BEHLP '18
(X BEHLP '17)

6

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
G
f G
/ lfl
N H

Hl

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
e (G o

P ‘

Hl

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
o (G e

P ‘

L AV o [Hoe

Hl
Promise: @ Viewed from G and H: attach same graph behind red and
blue leaves respectively. Then old iso fi: G — H extends. 7

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
o (G e

P ‘

L AV o [Hoe

Hl
Promise: @ Viewed from G and N: attach same graph behind red and
blue leaves respectively. Then new iso fo: G — N extends. 7

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
o (G e

yar ‘

oN & o e

H/
To make H' connected, add an edge between N and H.

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.

yar ‘

oN & o e

H/
To make f1 happy: Add copy N of N behind blue leaf of G.

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.

P ‘

(O N (peooonsonnng o Ne ... o [H o

Hl
To make fo happy: Add copy N of N behind blue leaf of N, and copy
H of H behind red leaf of G. 7/15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.

! 3K SISy ' 3K SESSY) (@& Cyeonnonoanont o ffe

P ‘

A ~

(O N (peooonsonnng o Ne ... o He .. ® 7o

Hl
To make f1 happy: Add copy H of H behind red leaf of H, and
another copy N of N upstairs. 7

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 1.
SR 3.V SETTY 2K SESY ' IO TSN ? 395 2K SETY ® e

yar ‘

@ T @ o N & e e ® IO e

H/
At the end of time, both f; and fo are simultaneously happy.

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.

G
‘f/flufé
H

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.

Case n = 2.

!

N H

Promise leaves: @ Viewed from G and H: attach same graph behind

red promise leaves respectively. Then iso's fi, fo: G — H extend. |

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
G s
|
N H/s

Promise leaves: @ Viewed from G and H: attach same graph behind
red promise leaves respectively. Then iso's fi, fo: G — H extend. |

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
G s

A

N

Promise leaves: @ Viewed from G and H: attach same graph behind

red promise leaves respectively. Then iso's fi, fo: G — H extend. |

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
G s

y

N

Promise leaves: Either orbit closes a loop after finitely many
iterations...

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.

A

Promise leaves: ... or the orbit forms an infinite double ray.

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.

[]
GDN‘

e (5 ::
yflufz
b 0[—]::

Promise: Suppose have two distinct orbits of promise leaves coloured
blue and red.

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

@ Disjoint graphs G, H, N,

@ isomorphisms f1,...

Want:
e G'>Gand H D NUH s.t.

,fn: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

N ¢

+G]
‘f/flqu @
, ot

Hl

Promise: @ Viewed from G and H: attach same graph behind red and
blue leaves respectively. Then old iso's fi, fo: G — H extend. 9

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

@ Disjoint graphs G, H, N,

@ isomorphisms f1,...

Want:
e G'>Gand H D NUH s.t.

,fn: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

N ¢

+G]
‘f/flqu @
, ot

Hl

Promise: @ Viewed from G and N: attach same graph behind red and
blue leaves respectively. Then new iso f3: G — N extends. 9

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.

Case n = 2.

‘f/flqu @

INJ (3econanoconn o

H/
To make H' connected, add an edge between N and H.

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
® . ®
SN ¢ *G |

‘f/flqu @

H/

To make f1, fo happy: Add copy N of N behind blue leaf of G.

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.

Case n = 2.

‘f/flqu @

Hl
To make f3 happy: Add copy N of N behind blue leaf of N, and copy
H of H behind correct red leaf of G. 9

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

‘f/flqu @

Hl
To make f1, fo happy: Add copy H of H behind red leaf of H, and
another copy N of N upstairs. 9

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
“““ i o
[e9Gc]
f3 G’
n||
_____ iy PR
IOV S *sH [

H/
To make f3 happy: ...

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
“““ i o
[e9Gc]
f3 G’
n||
----- * Nl et
® () cacaacs

H/
To make f3 happy: ...

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
Ve * {)aaseoas H
T
f3 G’
n||
Wb g 3
..... ® N) SR * H ® ...

H/
To make f3 happy: ...

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms

@ (new) isomorphism f,+1: G — N. firG"—= H' fori<n+1.

Case n = 2.

<<<<< T gt

® ® ...

f3 G’
/flqu

~ —

R S v B o SO

..... ® > ...

Hl
Now f3 is happy. Continue, by adding in turn copies of H behind red
promise leaves, and new copies of N behind blue promise leaves. o

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
“““ ° P et
° () aacana
f3 G’
n||
Wb g 3
_____ ® N) G ° H > ...

H/

At the end of time, all of f1, fo and f3 are simultaneously happy.

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fi: G"—= H' fori <n+1.
Case n = 2.
<<<<< ° [P st
° (Yeoanaos
f3 G
/flqu
R T S ey B oy S
..... ® N > ...

Hl
Note: Obtain global structure of k-regular tree (where k € N U oo the
number of promise leaves) and hence uncountably many ends. 9

15

@ Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given: Want:
e Disjoint graphs G, H, N, e G'D>Gand H D NUH s.t.
@ isomorphisms f1,..., f,: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,41: G — N. fitG'— H'fori<n+1.
Case n = 2.
<<<<< 'Y o . C () eeacans
° (Yeoanaos
f3 G
/flqu
R T S ey B oy S
..... ® N > ...

Hl
Note as well: If G, H, N were (locally finite) trees to start with, then
so will be G’ and H'. 9

15

@ Shifting single vertices

Constructing non-isomorphic trees sharing a common card

Shifting Lemma: Given a ‘nice’ tree T' and € T, may construct tree
N 22T and y € N such that cards satisfy T'—z = N — .

X s
ha

10/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Znf
Tl
x2

Tn

flvf?a--'vfn

Yn,

Y2

At step n, have constructed trees T}, 2 S,, with n common cards,

S

witnessed by isomorphisms f;: T,, — x; — Sy — y;.

15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Znf
Tl

T2
Tn41*

Tn

flvf?a--'vfn

Yn,

Y2

Consider z,,41 € T, for which we want to find a corresponding card.

S

11/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Znf
Tl

T2

Tn41*

Tn

Tn+1 Ji, fas- s fn

In
Yn+1 Y1

]V’ Y2

S

Shifting Lemma: Construct new tree N and y,4+1 € N so that

Th —Tni1 =N — ypia.

11/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Pntl -2 Tn

Tn+1

fn+1

flvf?a--'vfn

N

Yn+1

Unj
v

»|g
n

Sn+1

Amalgamate. Obtain trees T},41 2 Sp+1 with n + 1 common cards,

witnessed by isomorphisms f!: T, 41 — 2; — Spt1 — ¥i.

11/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Yn+1

v2

Sn—l—l

f1>f27"'>fn+1

Tn+1
T
T2

Tn+1

At step n.+ 1, have constructed trees 1,11 2% Sp4+1 with n+ 1 common
cards, witnessed by isomorphisms f;: Sp11 —y; — Thy1 — ;.

12 /15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Yn+1

Y2
Yn+2 °

Sn+1

f1>f27"'>fn+1

Tn+1
T
T2

Consider y,,42 € Sp+1, for which we want to find a corresponding card.

Tn+1

12/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

fn+2

T 42

Yn+1

Y2
Yn+2 °

Sn—l—l

f1>f27"'>fn+1

Tn+1
T
T2

Tn+1

Shifting Lemma: Construct new tree N and z,49 € N, such that

Jn+2: Sngt — Yns2 N — py0.

12 /15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

'yn+1
v1
Yn+2 b2 Sn—i—l
Sn+2
fn+2 f1>f2>"'>fn+1
Zntl
Znt2 z1
€T
-2 Tn+1
Tn—|—2

Amalgamate. Obtain trees Sy,+9 % Ty42 with n 4+ 2 common cards,
witnessed by isomorphisms f!: Sy10 — yi = Thi2 — ;.

12 /15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

13/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

13/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

13/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

V(T) =N, V(T}) = ON_1

13/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

V(T)=N, V(T}) = 2N — 1, V(T3 \ T}) = 4N — 2

13/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

V(T)=N, V(T}) =2N — 1, V(Tx \ T1) = 4N — 2,
V(T3\Ty) =8N —4, ...

13/15

A non-reconstructible tree of maximum degree 3.

A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

o ¢ Th Cc T, C... So € S C S C...
W w w and W w w
Zo X1 Z2 Yo 1 Y2

such that T'=J7), and S = S, satisfiy T' — x; = S — y;.

Question: Do their decks agree? Need to arrange
V(T) ={z;: i € N} and V(S) = {y;: i € N}!

V(T)=N, V(1) = 2N — 1, V(T \ T1) = 4N — 2,
V(T3\Tz) =8N — 4, ...

)

Then T and S are non-isomorphic reconstructions of each other.

13/15

The second counterexample
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given:
e Disjoint graphs G, H, N,

@ isomorphisms f1,...

s Jfn: G— H,

e (new) isomorphism f,41: G — N.

b 1\ ¢

b [V ¢

ex*

|4

b [o

Want:

e G DG and H D NUH s.t.

@ all maps lift to isomorphisms
fl:G'— H' fori <n+1.

G/

Hl

14 /15

The second counterexample
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given: Want: One-ended graphs
e Disjoint graphs G, H, N, e G'D>Gand H' D NUH st.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,1: G — N. fi:G"—= H' fori<n+1.

ool) N (Poeeeasasae WK S oGe () JE (poecsasasass ® 7o

A :

o N @ ONG& eHe - [352 K SR oo

Hl

14 /15

The second counterexample
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given: Want: One-ended graphs
e Disjoint graphs G, H, N, e G'D>Gand H' D NUH st.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,1: G — N. fi:G"—= H' fori<n+1.

A~ ~

ool) N (poeesasasas @3\ OSER oG e () JB (poecsasasass [32 35

P ‘

oo) JF (docacaacaaa oNe@ ... o He - () JB[(Yoeacaacans o je

H/
To make the graphs one-ended, for finite G, H, N, glue on a big
half-grid ZON. Maps f1, fa still lift to maps f{ and f5. s

The second counterexample
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given: Want: One-ended graphs
e Disjoint graphs G, H, N, e G'D>Gand H' D NUH st.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,1: G — N. fi:G"—= H' fori<n+1.

A~ ~

ool) N (poeesasasas @3\ OSER oG e () JB (poecsasasass [32 35

P ‘

O NGS o0 /NGO e o0 e6ee0[060 990/

H/
To make the graphs one-ended, for finite G, H, N, glue on a big
half-grid ZON. Maps f1, fa still lift to maps f{ and f5. s

The second counterexample
Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient Q

A general set-up. Given: Want: One-ended graphs
e Disjoint graphs G, H, N, e G'D>Gand H' D NUH st.
@ isomorphisms f1,..., fn: G — H, e all maps lift to isomorphisms
@ (new) isomorphism f,1: G — N. fi:G"—= H' fori<n+1.

A~ ~ A~ ~

ool) N (poeesasasas @3\ OSER oG e () JB (poecsasasass o e

P ‘

O NGS o0 /NGO e o0 e6ee0[060 990/

H/
For n > 2, under mild assumptions on promise leaves, glueing on a

tree-grid TN for some suitable locally finite tree 71" works. s

Open questions for reconstruction of infinite graphs

When restricting the end-degree, our counterexample techniques no longer work.

ends Locally finite trees Locally finite graphs
1 v" Thomassen '78 X BEHLP '18
2 v Bondy/Hemminger '74 v NW '91
3,4,... v Bondy/Hemminger '74 v NW '87
IN| v" Andreae '81 X BEHLP '18
IR| X BEHLP '17 (X BEHLP '17)

Question A (Nash-Williams): Is every one-ended locally finite
connected graph with finite end-degree reconstructible?

Question B: Is every countably-ended connected graph with of finite
tree-width reconstructible?

15/15

