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The reconstruction conjecture in graph theory

Examples of decks and cards

G =
v3

v2v1

v4

D(G) =
, , ,

deck of G
card of G

A graph G is reconstructible if D(G) = D(H) only if G ⇠= H.

The Reconstruction Conjecture (Ulam, Kelly, 1941):
Every finite graph with at least 3 vertices is reconstructible.
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Why restricting the conjecture is necessary

Infinite graphs are in general not reconstructible

The Reconstruction Conjecture (Ulam, Kelly, 1941):
Every finite graph with at least 3 vertices is reconstructible.

Counterexample for infinite graphs: Countably branching tree T1.

We have D(T1) = {1 · T1,1 · T1, . . .} = D(2 · T1).
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Reconstruction results for infinite graphs

Due to non-reconstructible T1, should restrict to locally finite conn’d graphs.

The Harary-Schwenk-Scott Conjecture (1972):
Every locally finite tree is reconstructible.

Nash-Williams’ Problem (1991):
Is every locally finite connected infinite graph reconstructible?

# ends Locally finite trees Locally finite graphs

1
2

3, 4, . . .
|N|
|R|

4 / 15



Ends of trees and graphs

A small detour

ends
1�1 ! (infinite) rays starting

at the root.
ends

1�1 ! equivalence classes of
rays: R1 ⇠ R2 :, 9S s.t.

|S \Ri| =1.
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A Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

Disjoint graphs G,H,N ,

isomorphisms f1, . . . , fn : G! H,

(new) isomorphism fn+1 : G! N .

Want:

G
0 � G and H

0 � N [̇H s.t.

all maps lift to isomorphisms
f
0
i
: G0 ! H

0 for i  n+ 1.

Case n = 1.

G
0

H
0

G

f1
f2

HN
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To make f1 happy: Add copy Ĥ of H behind red leaf of H, and
another copy N̂ of N upstairs. 7 / 15



A Amalgamating isomorphisms via promise structures

A versatile proof technique to control isomorphisms of locally finite connected graphs

A general set-up. Given:

Disjoint graphs G,H,N ,

isomorphisms f1, . . . , fn : G! H,

(new) isomorphism fn+1 : G! N .

Want:

G
0 � G and H

0 � N [̇H s.t.

all maps lift to isomorphisms
f
0
i
: G0 ! H

0 for i  n+ 1.

Case n = 1.

G
0

H
0

GN̂ Ĥ ĤN̂
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Ĥ

f1 f2
f3

HN
N̂ Ĥ
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Ĥ

Ĥ
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(new) isomorphism fn+1 : G! N .

Want:

G
0 � G and H

0 � N [̇H s.t.

all maps lift to isomorphisms
f
0
i
: G0 ! H

0 for i  n+ 1.

Case n = 2.

G
0

H
0

GN̂
Ĥ

Ĥ

N̂

Ĥ

Ĥ

f1 f2
f3

HN
N̂ Ĥ

Ĥ

N̂

Ĥ

Note as well: If G,H,N were (locally finite) trees to start with, then
so will be G

0 and H
0. 9 / 15



B Shifting single vertices

Constructing non-isomorphic trees sharing a common card

Shifting Lemma: Given a ‘nice’ tree T and x 2 T , may construct tree
N 6⇠= T and y 2 N such that cards satisfy T � x ⇠= N � y.

10 / 15



A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Tn

x1

x2

xn

f1, f2, . . . , fn

Sn

y1

y2

yn

At step n, have constructed trees Tn 6⇠= Sn with n common cards,
witnessed by isomorphisms fi : Tn � xi ! Sn � yi.
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Tn

x1

x2

xn

xn+1

f1, f2, . . . , fnfn+1

SnN

y1

y2

yn
yn+1

Shifting Lemma: Construct new tree N and yn+1 2 N so that
Tn � xn+1

⇠= N � yn+1.
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A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Tn+1

Sn+1

Tn

x1

x2

xn

xn+1

f1, f2, . . . , fnfn+1

SnN

y1

y2

yn
yn+1

Amalgamate. Obtain trees Tn+1 6⇠= Sn+1 with n+ 1 common cards,
witnessed by isomorphisms f 0

i
: Tn+1 � xi ! Sn+1 � yi.
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A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Sn+1

y1

y2

yn+1

f1, f2, . . . , fn+1

Tn+1

x1

x2

xn+1

At step n+1, have constructed trees Tn+1 6⇠= Sn+1 with n+1 common
cards, witnessed by isomorphisms fi : Sn+1 � yi ! Tn+1 � xi.
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A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Sn+1

y1

y2

yn+1

yn+2

f1, f2, . . . , fn+1

Tn+1

x1

x2

xn+1

Consider yn+2 2 Sn+1, for which we want to find a corresponding card.
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A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Sn+1

y1

y2

yn+1

yn+2

f1, f2, . . . , fn+1fn+2

Tn+1N

x1

x2

xn+1

xn+2

Shifting Lemma: Construct new tree N and xn+2 2 N , such that
fn+2 : Sn+1 � yn+2

⇠= N � xn+2.
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A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Sn+2

Tn+2

Sn+1

y1

y2

yn+1

yn+2

f1, f2, . . . , fn+1fn+2

Tn+1N

x1

x2

xn+1

xn+2

Amalgamate. Obtain trees Sn+2 6⇠= Tn+2 with n+ 2 common cards,
witnessed by isomorphisms f 0

i
: Sn+2 � yi ! Tn+2 � xi.

12 / 15



A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

T0 ⇢ T1 ⇢ T2 ⇢ . . .

2 2 2
x0 x1 x2 . . .

and
S0 ⇢ S1 ⇢ S2 ⇢ . . .

2 2 2

y0 y1 y2 . . .

such that T =
S

Tn and S =
S
Sn satisfiy T � xi

⇠= S � yi.
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Question: Do their decks agree? Need to arrange
V (T ) = {xi : i 2 N} and V (S) = {yi : i 2 N}!
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V (T ) = N, V (T1) = 2N� 1, V (T2 \ T1) = 4N� 2,
V (T3 \ T2) = 8N� 4, ...
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A non-reconstructible tree of maximum degree 3.
A back-and-forth construction using the amalgamation theorem.

Get a sequence of trees and points

T0 ⇢ T1 ⇢ T2 ⇢ . . .

2 2 2
x0 x1 x2 . . .

and
S0 ⇢ S1 ⇢ S2 ⇢ . . .

2 2 2

y0 y1 y2 . . .

such that T =
S

Tn and S =
S
Sn satisfiy T � xi

⇠= S � yi.

Question: Do their decks agree? Need to arrange
V (T ) = {xi : i 2 N} and V (S) = {yi : i 2 N}!

V (T ) = N, V (T1) = 2N� 1, V (T2 \ T1) = 4N� 2,
V (T3 \ T2) = 8N� 4, ...

Then T and S are non-isomorphic reconstructions of each other.
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The second counterexample

Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient A .

A general set-up. Given:

Disjoint graphs G,H,N ,

isomorphisms f1, . . . , fn : G! H,

(new) isomorphism fn+1 : G! N .

Want:

G
0 � G and H

0 � N [̇H s.t.

all maps lift to isomorphisms
f
0
i
: G0 ! H

0 for i  n+ 1.

G
0

H
0

GN̂N̂ Ĥ Ĥ

f1
f2

HNN̂ Ĥ Ĥ
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f1
f2

HNN̂ Ĥ Ĥ
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To make the graphs one-ended, for finite G,H,N , glue on a big
half-grid Z⇤N. Maps f1, f2 still lift to maps f 0

1 and f
0
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The second counterexample

Constructing a non-reconstructible locally finite one-ended graph: Modify ingredient A .

A general set-up. Given:

Disjoint graphs G,H,N ,

isomorphisms f1, . . . , fn : G! H,

(new) isomorphism fn+1 : G! N .

Want: One-ended graphs

G
0 � G and H

0 � N [̇H s.t.

all maps lift to isomorphisms
f
0
i
: G0 ! H

0 for i  n+ 1.

G
0

H
0

GN̂N̂ Ĥ Ĥ

f1
f2

HNN̂ Ĥ Ĥ

For n � 2, under mild assumptions on promise leaves, glueing on a
tree-grid T⇤N for some suitable locally finite tree T works.

14 / 15



Open questions for reconstruction of infinite graphs

When restricting the end-degree, our counterexample techniques no longer work.

# ends Locally finite trees Locally finite graphs

1 X Thomassen ’78 7 BEHLP ’18
2 X Bondy/Hemminger ’74 X NW ’91

3, 4, . . . X Bondy/Hemminger ’74 X NW ’87
|N| X Andreae ’81 7 BEHLP ’18
|R| 7 BEHLP ’17 (7 BEHLP ’17)

Question A (Nash-Williams): Is every one-ended locally finite
connected graph with finite end-degree reconstructible?

Question B: Is every countably-ended connected graph with of finite
tree-width reconstructible?
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