Dr. Max Pitz WS 2016/17

Einführung in die Mathematische Logik und Mengenlehre

Aufgabenblatt 1

(Abgabe am 31. Oktober 2016. Besprechung am 3. November 2016.)

Aufgabe 1: Betrachten Sie die Menge Z aller endlichen Zeichenfolgen $z_0z_1...z_n$ $(n \in \mathbb{N}, z_i \in \Omega \cup X)$, welche den Algorithmus 1.5 passieren, und zeigen Sie $F_{\Omega}(X) = Z$.

Tipp: Für ' \supseteq ', betrachte $z_0z_1\ldots z_n\in Z$ und verwende Induktion nach der Länge der Zeichenkette n. Begründen Sie für den Induktionsschritt, dass $z_0=\omega$ ein Funktionssymbol sein muss mit $\alpha(\omega)\geq 1$. Partitionieren Sie nun $z_1\ldots z_n$ in $\alpha(\omega)$ aufeinanderfolgende Teilfolgen, die jeweils den Algorithmus passieren.

Aufgabe 2: Zeigen Sie, dass die folgende Definition der Interpretation von Termen equivalent ist zur Definition aus der Vorlesung:

Für $t \in F_{\Omega}(X_n)$, und a_1, \ldots, a_n Elemente einer Ω -Struktur A, definiere $t_A(a_1, \ldots, a_n) = \overline{f}(t)$, wobei $\overline{f}: F_{\Omega}(X_n) \to A$ der eindeutige Ω -Homomorphismus ist, der $f: X_n \to A$, $x_i \mapsto a_i$ fortsetzt.

Aufgabe 3: Es seien s, t und u jeweils Ω -Terme, sowie x_i und x_j verschiedene Variablen. Wir schreiben $s[(t, u)/(x_i, x_j)]$ für den Term, den man aus s erhält, indem man gleichzeitig jedes Vorkommen von x_i in s durch t ersetzt und jedes Vorkommen von x_j in s durch u ersetzt.

Zeigen Sie, dass $s[(t,u)/(x_i,x_j)]$ im Allgemeinen nicht dasselbe ist wie $s[t/x_i][u/x_j]$; aber das es immer dasselbe ist wie $s[t[x_n/x_j]/x_i][u/x_j][x_j/x_n]$, wobei n so gewählt sei, dass die Variable x_n nirgends in s,t oder u vorkommt. Folgern Sie, dass wenn $(s \equiv s'), (t \equiv t')$ und $(u \equiv u')$ alles abgeleitete Gleichungen einer Theorie (Ω, E) sind, dann ist es auch $(s[t,u)/(x_i,x_j)] \equiv s'[t',u')/(x_i,x_j)]$.

Aufgabe 4: Es sei T eine algebraische Theorie. Zeigen Sie, dass die 1-elementige Menge $\{0\}$ auf genau eine Weise zu einer T-Struktur gemacht werden kann, und zeigen Sie, dass die leere Menge zu einer T-Struktur gemacht werden kann, wenn Ω kein nullstelliges Funktionssymbol enthält.

Aufgabe 5: Es sei $\Omega = \{m, i, \overline{e}\}$ wobei $\alpha(m) = 2$ sowie $\alpha(i) = \alpha(\overline{e}) = 1$. Betrachte $E = \{(mxmyz \equiv mmxyz), (\overline{e}x \equiv \overline{e}y), (m\overline{e}xx \equiv x), (mixx \equiv \overline{e}x)\}.$

Zeigen Sie, dass jede Gruppe in natürlicher Weise ein (Ω, E) -Model ist. Ist die Umkehrung wahr?

Aufgabe 6: (i) Rufen Sie sich in Erinnerung, wie eine Untergruppe und wie das Produkt von Gruppen definiert sind. Überlegen Sie sich eine Definition für (Ω, E) -Untermodelle, sowie das Produkt von (Ω, E) -Modellen.

(ii) Wir nehmen an, dass T eine algebraische Theorie ist, die einen dreistellige Term p enthält, für den

$$(pxyy \equiv x)$$
 sowie $(pxxy \equiv y)$ (*)

(möglicherweise abgeleitete) Gleichungen von T sind. Es sei A ein T-Model, und R ein T-Untermodel von $A \times A$, mit $\{(a,a) \colon a \in A\} \subset R$ (d.h. interpretiert als binäre Relation auf A ist R reflexiv). Zeige, dass R auch symmetrisch und transitiv ist.

(iii) Zeigen Sie umgekehrt, dass falls T eine algebraische Theorie ist, so dass jedes reflexive Untermodel des Quadrats eines T-Models automatisch auch symmetrisch ist, dann enthält T einer dreistellige Operation, die (*) erfüllt.

Tipp: Es sei F das freie T-Model erzeugt durch $\{x,y\},$ und betrachte das Untermodel von $F\times F$ erzeugt durch $\{(x,x),(x,y),(y,y)\}.$

(iv) Gegen Sie ein Beispiel an für eine Operation p, die (*) erfüllt, für die Theorie der Gruppen. Zeigen Sie, dass hingegen für die Theorie der Halbgruppen (d.h. die Theorie, die man von der Theorie der Gruppen enthält, indem man die Operation i und all Gleichungen, in denen i vorkommt, löscht) es keine solche Operation geben kann.

Aufgabe 7: Betrachte einen operationalen Typ $\Omega = \{e, m\}$ wobei $\alpha(e) = 0$ und $\alpha(m) = 2$, und $E = \{(mex \equiv x), (mxe \equiv x)\}$. Angenommen, wir haben zwei (Ω, E) -Strukturen auf derselben

Menge A mit Interpretationen (e_1, m_1) und (e_2, m_2) , so dass die Operationen der zweiten Struktur $1 \stackrel{e_2}{\to} A$ und $A \times A \stackrel{m_2}{\to} A$ Ω -Homomorphismen bezüglich der ersten Struktur sind.

Zeigen Sie, dass A die Gleichungen $(e_1 \equiv e_2)$ sowie $(m_2m_1xzm_1yt \equiv m_1m_2xym_2zt)$ erfüllt, und folgern Sie, dass $m_1 = m_2$ und dass m_1 kommutativ und assoziativ ist.

Aufgabe 8: Es sei Ω das funktionale Vokabular für Gruppen. Ein Ω -Term heißt *reduziert*, wenn er entweder nur aus dem Symbol e besteht, oder der Form $mm \dots mu$ ist, wobei u eine Zeichenfolge ist, die nur Variablen und i enthält, und keine Zeichen-unterfolge der Form ii, ixx oder xix (es sei denn als Unterfolge von ixix) enthält.

- (i) Beschreiben Sie einen Algorithmus, der für einen beliebigen Ω -Term t einen reduzierten Term \bar{t} ausgibt, sodass $(t \equiv \bar{t})$ eine abgeleitete Gleichung für die Theorie der Gruppen ist.
- (ii) Zeigen Sie, dass die Menge aller reduzierten Terme über einer Variablenmenge X zu einer Gruppe RX gemacht werden kann, die X als Untermenge enthält. Indem sie den Gruppenhomomorphismus $\overline{f} \colon FX \to RX$ induziert durch $id \colon X \to X$ betrachten (vgl. Theorem 1.7), zeigen Sie, dass falls s,t reduzierte Terme sind mit $(r \equiv s) \in \tilde{E}$, dann s = t.
- (iii) Folgern Sie, dass ein Algorithmus existiert, der für eine Gleichung ($t \equiv s$) entscheidet, ob sie in allen Gruppen erfüllt ist, oder nicht.

Aufgabe 9: Es sei $2 = \{0,1\}$ mit der gewöhnlichen Struktur einer Boolschen Algebra, und es sei n eine natürlich Zahl. Zeige, dass jede Funktion $2^n \to 2$ ein Interpretation einer n-stelligen abgeleiteten Operation der Theorie der Boolschen Algebra ist [Tipp: Induktion nach n.] Folgern Sie, dass die freie Boolsche Algebra erzeugt durch X_n genau 2^{2^n} Elemente hat.