

Grundbildung lineare Algebra und analytische Geometrie

Aufgabenblatt 9

(Abgabe am 11. Juni 2018 vor der Vorlesung)

Präsenzaufgaben (11./12. Juni 2018):

P12: Es sei $V = \mathbb{R}[x]$ der Vektorraum aller Polynome mit Koeffizienten in \mathbb{R} . Der *Grad* eines Polynoms v ist die Zahl n des höchsten Potenz von x, die in v vorkommt: Wenn

$$v = a_n x^n + \dots + a_1 x^1 + a_0$$

mit $a_n \neq 0$, so hat v den Grad $n \in \mathbb{N}_0$, und wir schreiben $\operatorname{grad}(v) = n$.

- (1) Beweisen oder widerlegen Sie: $U_n = \{v \in V : \operatorname{grad}(v) = n\}$ ist ein Untervektorraum von V.
- (2) Beweisen oder widerlegen Sie: $V_n = \{v \in V : \operatorname{grad}(v) \leq n\}$ ist ein Untervektorraum von V.
- (3) Geben Sie eine Basis für V_n an. Was ist also die Dimension von V_n ?
- (4) Finden Sie Polynome $v_1, v_2, v_3 \in V_2$, so dass
 - $v_1(0) = 1$, $v_1(1) = 0$, $v_1(2) = 0$,
 - $v_2(0) = 0$, $v_2(1) = 1$, $v_2(3) = 0$, und
 - $v_3(0) = 0$, $v_3(1) = 0$, $v_3(3) = 1$,
- (5) Gesucht ist ein Polynom $v \in V_2$, was an den Punkten 0, 1, 2 vorgegebene Werte λ_1, λ_2 und λ_3 annehmen soll. Sehen Sie eine schnelle Methode, um v zu finden?
- (6) Falls noch Zeit ist: Angenommen, wir suchen ein Polynom $v \in V_2$, was an den Punkten -1, 0, 1 vorgegebene Werte λ_1, λ_2 und λ_3 annehmen soll. Wie würden Sie vorgehen?

Hausaufgaben (Abgabe am 11. Juni 2018, Besprechung 18./19. Juni 2018):

H33: Beweisen Sie Lemma 2.3.24 aus der Vorlesung, nämlich dass die Elementarmatrizen P_i^j und $Q_i^j(\lambda,\mu)$ in $\mathbb{R}^{m\times m}$ für $i\neq j$ und $\lambda,\mu\in\mathbb{R},\ \mu\neq 0$ invertierbar sind, und dass ihre Inversen selbst wieder Elementarmatrizen sind.

(4 Punkte)

H34: Gegeben sei die Matrix $A \in \mathbb{R}^{m \times n}$ mit Spalten $\vec{a_1}, \dots, \vec{a_n}$. Man betrachte die zugehörige Abbildung $f_A : \mathbb{R}^n \to \mathbb{R}^m$, $\vec{v} \mapsto A \cdot \vec{v}$.

- (1) Zeigen Sie, dass $U = \text{kern}(f_A)$ (Def 2.3.9) ein Untervektorraum von \mathbb{R}^n ist.
- (2) Zeigen Sie, dass der Wertebereich W von f_A ein Untervektorraum von \mathbb{R}^m ist.

(6 Punkte)

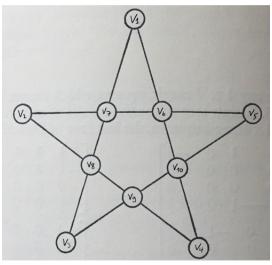
H35: Es sei $K = \mathbb{N}/\sim_3 = \{\bar{0}, \bar{1}, \bar{2}\}$ der Körper der Kongruenzklassen modulo 3 (vergleiche Theorem 6.19 und 6.20 aus den Grundlagen). Wir betrachten den K-Vektorraum K^4 und darin die Teilmenge

$$U = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in K^4 \colon x_1 + x_2 + x_3 + 2x_4 \equiv 0 \pmod{3} \right\}$$

- (a) Entscheiden Sie, ob $\begin{bmatrix} \bar{1} \\ \bar{1} \\ \bar{1} \end{bmatrix}$ und $\begin{bmatrix} \bar{2} \\ \bar{1} \\ \bar{1} \end{bmatrix}$ in U liegen.
- (b) Beweisen oder widerlegen Sie: U ist ein Untervektorraum von K^4 .
- (c) Geben Sie eine Basis für K^4 und U an. Wieviele Elemente haben K^4 und U jeweils?

(5 Punkte)

H36: Betrachte die Teilmenge $P \subseteq \mathbb{R}^{10}$, wobei ein Vektor in $v = (v_1, \dots, v_{10}) \in P$ liegen soll, wenn seine Einträge ein magisches Pentagramm bilden, d.h. wenn die vier Einträge auf jeder Linie immer zu gleichen Zahl $s_v \in \mathbb{R}$ aufaddieren.



- (1) Finden Sie mindestens drei verschiedene nicht-triviale magische Pentagramme (nicht-trivial soll heißen, dass nicht alle Einträge gleich sein dürfen).
- (2) Beweisen Sie, dass P ein Untervektorraum von \mathbb{R}^{10} ist.
- (3) Finden Sie möglichst viele verschiedene linear unabhängige magische Pentagramme. Können Sie eine Basis für P angeben (mit Begründung)? Was ist die Dimension von P? Beweisen Sie Ihre Antwort!

(1+2+2=5 Punkte)