

Grundbildung lineare Algebra und analytische Geometrie

Aufgabenblatt 10

(Abgabe am 18. Juni 2018 vor der Vorlesung)

Präsenzaufgaben (18./19. Juni 2018):

P13: In der Vorlesung wurde gezeigt, dass eine lineare Abbildung $f: V \to W$ eindeutig bestimmt ist durch die Bilder der Elemente einer Basis von V. Wir betrachten die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit f((1,1)) = (3,4) und f((-2,2)) = (2,0). Geben Sie eine 2×2 -Matrix A an, so dass für alle $v \in \mathbb{R}^2$ die Gleichung Av = f(v) gilt.

Hinweis: Ermitteln Sie zunächst Bilder $f(e_1)$ und $f(e_2)$ der Einheitsvektoren $e_1 = (1,0)$ und $e_2 = (0,1)$ unter der Abbildung f.

P14: Gegeben seien die Spiegelungen σ_1 , σ_2 und σ_3 in \mathbb{R}^2 , an der x-Achse, bzw. an der Geraden y = x bzw. an der Geraden 2y = x.

- (a) Bestimmen Sie Matrixdarstellungen für diese Abbildungen.
- (b) Bestimmen Sie die Abbildungen $\sigma_2 \circ \sigma_1$, $\sigma_3 \circ \sigma_2$, $\sigma_3 \circ \sigma_1$ und $\sigma_3 \circ \sigma_2 \circ \sigma_1$.
- (c)* Wie kann man die zugehörigen Umkehrabbildungen bestimmen?

Hausaufgaben (Abgabe am 18. Juni 2018, Besprechung 25./26. Juni 2018):

H37: Es sei V ein K-Vektorraum, und $U_1, U_2 \subseteq V$ Untervektorräume von V. Zeigen Sie:

- (1) $U_1 \cap U_2$ ist auch ein Untervektorraum von V.
- (2) Finden Sie ein Beispiel mit $V = \mathbb{R}^2$, welches zeigt, dass $U_1 \cup U_2$ nicht notwendigerweise ein Untervektorraum von V sein muss.

(2+2=4 Punkte)

H38: Es sei $V = \mathbb{R}[x]$ der Vektorraum aller Polynome mit Koeffizienten in \mathbb{R} .

- (1) Schreiben Sie das Polynom $f=x^2+2$ als Linearkombination der Polynome $p_1=2x^2+3$, $p_2=x^2-x+3$, $p_3=x-2$ und $p_4=2x^2+x+1$.
- (2) Bestimmen Sie eine Basis und die Dimension des von den Polynomen $x^2 1$, $x^2 + x$, 3x + 1 und $x^2 x + 1$ erzeugten Unterraums von $\mathbb{R}[x]$.

(3+3=6 Punkte)

H39: Gegeben seien die Abbildungen

$$f:\mathbb{R}^2\to\mathbb{R}^3;\;(x,y)\mapsto(2x,x+y,x-y)\;\text{und}\;g:\mathbb{R}^3\to\mathbb{R}^3;\;(x,y,z)\mapsto(x+y-z,x+y+z,2z).$$

- (a) Beschreiben Sie die Abbildungen mit Matrizen.
- (b) Bestimmen Sie eine Matrizendarstellung für $g \circ f$.

(5 Punkte)

H40: In der Vorlesung haben wir die fast-magischen Quadrate besprochen. In dieser Aufgabe soll es um magische 3×3 Quadrate gehen.

- (1) Zeigen Sie: Je drei reelle Zahlen a, b, c an den Positionen $\begin{bmatrix} a & b \\ & c \end{bmatrix}$ lassen sich eindeutig zu einem magischen Quadrat ergänzen.
- (2) Geben Sie eine Basis für die magischen 3×3 -Quadrate an, und beweisen Sie, dass es sich wirklich um eine Basis handelt.
- (3) Was ist also die Dimension der magischen 3×3 -Quadrate?