Infinite graphs

Sheet 9

Besprechung am 18.12.2023

1. Show that every $I G$ contains a lean $I G$ as a subgraph.
2. Show that the assertion of Jung's Theorem 5.4.3 does not hold for the cardinal \aleph_{0}, i.e. find a graph containing $K_{\aleph_{0}}$ as a minor but not as a topological minor.
3. Let T be any order tree with comparability graph $G(T)$. Show that T is special if and only if $G(T)$ has countable chromatic number. ${ }^{1}$

4 (Written exercise). Construct for every infinite cardinal κ a graph of chromatic number κ^{+}but without $K_{\kappa^{+}}$minor.
5. Prove, using the generalised infinite lemma or otherwise, that every uncountable tree T with all levels finite contains an uncountable branch.
6. Show that the following hold for any order tree (T, \leq) and any T-graph G :
(1) For incomparable t, t^{\prime} in T, the set $\lceil t\rceil \cap\left\lceil t^{\prime}\right\rceil$ separates t from t^{\prime} in G.
(2) Every connected subgraph of G has a unique T-minimal element.
(3) If $T^{\prime} \subseteq T$ is down-closed, the components of $G-T^{\prime}$ are spanned by the sets $\lfloor t\rfloor$ for t minimal in $T-T^{\prime}$.
7. Let T be a normal tree in a graph G.
(1) Any two incomparable vertices t, s in T are separated in G by $\lceil t\rceil \cap\lceil s\rceil$.
(2) The boundary of T consists of all ends ε with $C(X, \varepsilon) \cap T \neq \varnothing$ for all finite $X \subseteq V(G)$.
(3) Every end of G in the boundary of T contains a unique normal ray of T.
8. Let T be a normal spanning tree of a graph G, and let ε be an end of G.
(1) The end ε has at most countable degree.
(2) Show that all vertices dominating ε lie on the unique normal ray representing ε. In particular, every end of a graph with a normal spanning tree is at most countably dominated.

[^0]
Hints

1.
2.
3.
4. Consider the order tree T consisting of all injective functions $i \hookrightarrow \kappa$ for all ordinals $i<\kappa^{+}$, ordered by extension.
5. -
6. Take a look at the proof of Lemma 1.5.5 in Diestel's book.
7. Apply the Star-Comb Lemma inside T.
8.

[^0]: ${ }^{1}$ The colouring number might again be larger: It can be shown that for a special Aronszajn tree T, the graph $G(T)$ has uncountable colouring number.

