Infinite graphs

Sheet 9

Besprechung am 18.12.2023

1. Show that every IG contains a lean IG as a subgraph.

2. Show that the assertion of Jung's Theorem 5.4.3 does not hold for the cardinal \aleph_0 , i.e. find a graph containing K_{\aleph_0} as a minor but not as a topological minor.

3. Let T be any order tree with comparability graph G(T). Show that T is special if and only if G(T) has countable chromatic number.¹

4 (Written exercise). Construct for every infinite cardinal κ a graph of chromatic number κ^+ but without K_{κ^+} minor.

5. Prove, using the generalised infinite lemma or otherwise, that every uncountable tree T with all levels finite contains an uncountable branch.

6. Show that the following hold for any order tree (T, \leq) and any T-graph G:

- (1) For incomparable t, t' in T, the set $[t] \cap [t']$ separates t from t' in G.
- (2) Every connected subgraph of G has a unique T-minimal element.
- (3) If $T' \subseteq T$ is down-closed, the components of G T' are spanned by the sets |t| for t minimal in T T'.

7. Let T be a normal tree in a graph G.

- (1) Any two incomparable vertices t, s in T are separated in G by $\lceil t \rceil \cap \lceil s \rceil$.
- (2) The boundary of T consists of all ends ε with $C(X, \varepsilon) \cap T \neq \emptyset$ for all finite $X \subseteq V(G)$.
- (3) Every end of G in the boundary of T contains a unique normal ray of T.
- 8. Let T be a normal spanning tree of a graph G, and let ε be an end of G.
- (1) The end ε has at most countable degree.
- (2) Show that all vertices dominating ε lie on the unique normal ray representing ε . In particular, every end of a graph with a normal spanning tree is at most countably dominated.

¹The colouring number might again be larger: It can be shown that for a special Aronszajn tree T, the graph G(T) has uncountable colouring number.

Hints

1. –

2. -

3. –

4. Consider the order tree T consisting of all injective functions $i \hookrightarrow \kappa$ for all ordinals $i < \kappa^+$, ordered by extension.

5. –

6. Take a look at the proof of Lemma 1.5.5 in Diestel's book.

7. Apply the Star-Comb Lemma inside T.

8. –