Infinite graphs

Sheet 8

Besprechung am 11.12.2023
1 (Written exercise). Show that the bipartite graph $K_{\omega, \omega}$ has colouring number \aleph_{0}, and that the bipartite graph $K_{\omega, \omega_{1}}$ has colouring number \aleph_{1}.
2. Show that for any infinite cardinals κ and λ, we have
(1) $\operatorname{col}\left(K_{\kappa}\right)=\kappa$
(2) $\operatorname{col}\left(K_{\kappa, \kappa}\right)=\kappa$, and
(3) if $\kappa<\lambda$, then $\operatorname{col}\left(K_{\kappa, \lambda}\right)=\kappa^{+}$.
3. Show that every graph with a normal spanning tree has countable colouring number.
4. Directly prove that the rational distance graph on the plane $G_{\mathbb{Q}}\left(\mathbb{R}^{2}\right)$ has no copies of $K_{2, \aleph_{1}}$ and then deduce from a theorem from the lecture that it must have countable chromatic number.
5. Show that if $\operatorname{col}(G)>\mu$, then G contains a $K_{n, \mu^{+}}$subgraph for every $n<\omega$.
6. Show that for every uncountably chromatic graph G there is $s \in \mathbb{N}$ and an edge e in $E(G)$ such that G contains cycles through e of all (even and odd) lengths greater than s.
7. Every graph of infinite chromatic number contains a $\bigsqcup_{n \in \mathbb{N}} T K_{n}$.

Hints

1. -
2. -
3. -
4. -
5. Adapt the proof of Theorem 5.4 .5 by constructing a continuous increasing transfinite sequence $\left(G_{i}: i<\sigma\right)$ of subgraphs all of size $<|G|$ such that if for some finite set of vertices $F \subset V\left(G_{i}\right)$ there one $v \in G \backslash G_{i}$ such that $N(v) \supseteq F$, then there are at least μ^{+}such vertices in G.
6. Consider the subgraph G^{\prime} of G from the proof of Theorem 5.2.7.
7. By Theorem 5.4.5, G contains a $T K_{n}$ for all $n \in \mathbb{N}$.
