Infinite graphs

Sheet 7

Besprechung am 04.12.2023

1. Show that the graph G defined in the proof of the pressing down lemma is a tree.
2. Prove the following local version of Halin's result: Let $k \in \mathbb{N}$, and κ an uncountable regular cardinal. Suppose G contains a k-block U of size at least κ. Then G contains a subdivision of $K_{k, \kappa}$, with the κ-side included in U.
3. Show that the following assertions are equivalent for connected countable graphs G.
(i) G has a locally finite spanning tree.
(ii) For no finite separator $X \subseteq V(G)$ does $G-X$ have infinitely many components.

Deduce that every (countable) planar 3-connected graph has a locally finite spanning tree.
4. A family of sets $\left(A_{i}: i \in I\right)$ is a Δ-system if the pairwise intersection of its members is the same, i.e. there is a set S such that $A_{i} \cap A_{j}=S$ for all $i \neq j \in I$. Show that for all $n \in \mathbb{N}$, any infinite family of n-element sets contains an infinite Δ-system as a subfamily.
5. (Harder) Let G be a 2-connected graph. Then for every infinite set of vertices U, the graph G contains a one-way double ladder, a dominated ray, or a $K_{2, \aleph_{0}}$, each with infinitely many vertices in U.
6. Let κ be an infinite cardinal. An ultrafilter \mathcal{U} on a set X is κ-uniform if every element $U \in \mathcal{U}$ has size at least κ. Show that on every set X of size at least κ there exists a κ-uniform ultrafilter.
7. (Written exercise) Let κ be any infinite cardinal, let $r \in \mathbb{N}$, and let G be a complete graph of size κ whose edges are coloured with r colours. Show that there is a monochromatic subdivided K_{κ} in G.
8. Let G by any countable, infinitely connected graph and let T be any countably infinite tree. Show that G has a spanning tree which is isomorphic to a subdivision of T.

Hints

1.
2. -
3. Normal spanning trees.
4. Induction on n.
5. Normal spanning trees. Note that we may assume that U and hence G are countably infinite by Proposition 2.6.1.
6.
7. Combine the previous exercise with the strategy of Theorem 2.3.5.
8. Enumerate $V(T)=\left\{t_{0}, t_{1}, t_{2}, \ldots\right\}$ such that $T_{n}:=T\left[t_{0}, \ldots, t_{n}\right]$ is connected for all $n \in \mathbb{N}$. Then recursively construct subdivisions of T_{n} in G extending each other and make sure that they eventually contain every vertex of G.
