Infinite graphs

Sheet 0

Bearbeitung und Besprechung am 16.10.2023

1. Show that \mathbb{N}, \mathbb{Z} and \mathbb{Q} are countable, while \mathbb{R} and $2^{\mathbb{N}}$ (the set of all infinite 0-1 sequences, i.e. functions $f \colon \mathbb{N} \to \{0, 1\}$) have size *continuum*; in particular, they are uncountable. By identifying subsets of \mathbb{N} with their characteristic functions, it follows that $\mathcal{P}(\mathbb{N})$ has size continuum, too.

2. Prove the following facts about countable sets.

- (i) A countable union of countable sets is again countable.
- (ii) The pigeon hole principle: If uncountably many objects are put into countably many boxes, then at least one box will contain uncountably many objects.
- (iii) A countable set has only countably many finite subsets.

3. Find continuum many subsets of \mathbb{N} such that

- (i) their pairwise intersections are all finite.
- (ii) for any two of them, one is contained in the other.
- 4. How many disjoint circles are there in the plane? How many disjoint disks?

5. In the following, we want to find many disjoint, homeomorphic copies of a given letter in the plane.

- (i) Prove that there is an uncountable collection of disjoint L's in the plane.
- (ii) Prove that every collection of disjoint B's in the plane is countable.
- **6.** Show that $G_1(\mathbb{Q}^2)$ is disconnected.

Hints

1. Every number in [0, 1) has a unique binary expansion $\frac{a_0}{2} + \frac{a_1}{2^2} + \frac{a_1}{2^3} + \ldots$ with $a_i \in \{0, 1\}$ for all $i \in \mathbb{N}$.

2. -

3. It is easier to take a countable set different from \mathbb{N} . For example, the vertices of a binary tree. Or the rationals \mathbb{Q} .

4. Every disk in the plane contains an element of \mathbb{Q}^2 .

5. Use Exercise 2 (ii) and the fact that every disk in the plane contains an element of \mathbb{Q}^2 .

6. From a hypothetical $(0,0) - (0,\frac{1}{2})$ path construct an odd cycle in $G_1(\mathbb{Q}^2)$.