Dr. Max Pitz
WS 2019/20

Correction: Theorem 8.5.3

The following argument, marked blue in the screenshot below, needs one extra step to work:

Theorem 8.5.3. Every countable rayless graph G has an unfriendly
partition.

Proof. To help with our formal notation, we shall think of a partition
of a set V as a map mV — {0,1}. We apply induction on the rank
of G. When this is zero then G is finite, and an unfriendly partition can
be obtained by maximizing the number of edges across the partition.
Suppose now that G has rank a > 0. and assume the theorem as true
for graphs of smaller rank.

Let U be a finite set of vertices in G such that each of the compo-
nents Cy, ', ... of G = U has rank < a. Partition U into the set Up
of vertices that have finite degree in G, the set U, of vertices that have
infinitely many neighbours in some C',, and the set U, of vertices that
have infinite degree but only finitely many neighbours in each C,,.

For every n € N let G,, :== GIUUV(Cy)U...UV(C,)]. This is
a graph of some rank a, < a, so by induction it has an unfriendly
partition 7,. Each of these 7, induces a partition of U. Let wy be a
partition of U induced by 7, for infinitely many n, say for np <n; <....
Choose ng large enough that G,,, contains all the neighbours of vertices
in Up, and the other n; large enough that every vertex in U, has more
neighbours in G, — Gy, _, than in G,, _,, for all i > 0. Let m be the
partition of G' defined by letting 7(v) := 7, (v) for all v € G,,, =G, _,
and all i, where G,,_, := (. Note that 7|y = 7, | = 70

Let us show that 7 is unfriendly. We have to check that every
vertex is happy with , i.e., that it has at least as many neighbours in
the opposite class under 7 as in its own.® To see that a vertex v €
G — U is happy with 7, let 7 be minimal such that v € G,,, and recall
that v was happy with m, . As both v and its neighbours in G lie
in UUV(Gy, — Gyn,_,). and 7 agrees with m,, on this set, v is happy
also with 7. Vertices in Uy, are happy with 7, because they were happy
with 7,,,, and 7 agrees with m,, on Uy and all its neighbours. Vertices in
Uy are also happy. Indeed, every u € U has infinitely many neighbours
in some C,, and hence in some G,, —G,, ,. Then u has infinitely
many opposite neighbours in G,,, — G, _, under 7, . Since 7, agrees
with 7 on both U and G,, — G, ,, our vertex u has infinitely many
opposite neighbours also under 7. Vertices in Us, finally, are happy with
every 7,,. By our choice of n;, at least one of their opposite neighbours
under 7, must lie in G,,, —G,,_,. Since 7,, agrees with = on both U,
and G, — Gy, _,, this gives every u € Us at least one opposite neighbour
under 7 in every G,, — G,,_ ,. Hence u has infinitely many opposite
neighbours under 7, which clearly makes it happy.

We need to be a little more careful, and replace the blue lines by the following argument:

Indeed, every v € U; has infinitely many neighbours in some Cj,, and hence in some
Grn; —Gn,_,. Let n; be minimal such that « € U; has infinitely many neighbours in
Grn, — Gn,_,. Since m,, was unfriendly, v has infinitely many opposite neighbours
in Gy, under m,,. However, by minimality of n;, our vertex uw has only finitely
many neighbours in G, , altogether, and hence v must still have infinitely many
opposite neighbours in G, — G, , under my,,.



