Exercise Sheet 11 for Topological Infinite Graph Theory, Summer 2020 (to be discussed on 13. July 2020)

Let $G = (V, E, \Omega)$ be a locally finite connected graph, C its topological cycle space, $\hat{\mathcal{B}}$ its cut space, $\hat{\mathcal{C}}$ its set of circuits and $\hat{\mathcal{B}}$ its set of bonds.

- 1.⁻ If a finite set D of edges meets every finite cut of G evenly, must it also meet every infinite cut evenly?
- 2.⁺ Write $\hat{\mathcal{C}}$ for the set of circuits in G, and $\hat{\mathcal{B}}$ for the set of bonds.
 - (i) Show that every element of $\hat{\mathcal{C}}^{\perp}$ is a disjoint union of finite bonds, and that every element of $\hat{\mathcal{B}}^{\perp}$ is a disjoint union of finite circuits.
 - (ii) Construct 2-connected graphs with $\mathcal{C}^{\perp} \subsetneq \hat{\mathcal{C}}^{\perp}$ or $\mathcal{B}^{\perp} \subsetneq \hat{\mathcal{B}}^{\perp}$.
- 3.⁺ Let (X, V, E) be a metrizable graph-like continuum, C = C(X) its topological cycle space, and $\mathcal{B} = \mathcal{B}_{top}(X)$ its topological cut space. Can you generalize Theorem 2.6 (iii) to show that for 2-connected X, we have $C^{\perp} = \mathcal{B}$?
- 4. Find an example of G whose ordinary (meaning maximal number of vertex disjoint rays) end degrees and whose vertex degrees are all even but with $E(G) \notin C$.
- 5. Show that the number of odd vertices and ends in some |G| is even or infinite.

Bonus:

- 6.⁺ Let G = (V, E) be a locally finite connected graph. The *k*th power G^k is the graph with vertex set V, and $vw \in E(G^k)$ if their distance in G is at most k. Show that G^3 has a topological Hamilton circle.
- 7.⁺ Prove Bruhn & Stein's conjecture on weakly even degrees for D = E(G) in the case where G has at most countably many ends.

Hinweise

- $1.^-\,$ Review all you know about the cycle space.
- 2.⁺ (i) For the first assertion, show first that every set F ∈ Ĉ[⊥] is a cut. Then delete a maximal set of disjoint finite bonds from F to obtain a cut F', and show that F' = Ø. The second, dual, part of (i) is similar except for the last step, where a spanning tree will come in handy.
 (ii) Any set F ∈ Ĉ[⊥] \ C[⊥] will be an infinite cut that meets every circuit evenly. It is not hard to construct G and F so that F meets no circuit infinitely. A trick in the construction, which works for 2-connected but not for 3-connected graphs (for which it is unknown whether Ĉ[⊥] = C[⊥]), will prevent it from meeting a circuit oddly. The construction of a 2-connected graph with C^{*⊥} ⊆ B̂[⊥] can use the dual trick.
- 3. First find a proof for Theorem 2.6(iii) that uses TSTs instead of NSTs.
- 4.
- 5.
- 6.⁺ For finite graphs, this is easily proved by induction, see Exercise 10.14. First, argue why it suffices to consider the case G = T a tree. Also, show that $\Omega(T)$ is homeomorphic to $\Omega(T^3)$. Finally, pick a root $r \in T$ and let $S_n = B_n(r)$ be the ball of radius n around the root, and consider the usual minors $G_n = T_n$ with respect to S_n . Can you find compatible Hamilton cycles for the minors $(T_n)^3$?
- 7.⁺ Find disjoint neighbourhoods U_1, \ldots, U_n with $|\partial U_i|$ even covering the endspace and contract every U_i .