Exercise Sheet 0 for Topological Infinite Graph Theory, Summer 2020 (to be discussed on 20. April 2020)

The purpose of this exercise sheet is a quick revision of some fundamental topological facts.

- 1. A collection \mathcal{B} of subsets of a set X is a *basis* for a topology on X if (1) for every $x \in X$ there is $B \in \mathcal{B}$ with $x \in B$, and (2) whenever $x \in B_1 \cap B_2$ for $B_i \in \mathcal{B}$ there is B_3 with $x \in B_3 \subseteq B_1 \cap B_2$. The unions of elements in \mathcal{B} are the open sets of the topology.
 - Verify that in a metric space (X, d), the collection \mathcal{B} of ε -balls $B_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$ for $\varepsilon > 0$ and $x \in X$ is a basis.
 - What about the closed ε -balls $\overline{B}_{\varepsilon}(x) = \{y \in X : d(x, y) \leq \varepsilon\}$?
- 2. A topological space X is *Hausdorff* if distinct points of X lie in disjoint open sets. The space X is *normal* if for any disjoint closed sets C, D there are disjoint open sets U, V with $C \subseteq U$ and $D \subseteq V$.
 - Show that every metric space is Hausdorff.
 - Show that every metric space is normal.
- 3. A space X is *compact* if every open cover of X has a finite subcover.
 - Show that a closed subset $Y \subseteq X$ of a compact space X is compact in the subspace topology.
 - Show that if X is Hausdorff and $Y \subseteq X$ is compact, then Y is closed in X.
 - Let \mathcal{B} be a basis for X. Show that X is compact if and only if every open cover consisting of elements from \mathcal{B} has a finite subcover.
 - A family C of subsets of X has the *finite intersection property* if $C_1 \cap \cdots \cap C_n \neq \emptyset$ for all $n \in \mathbb{N}$ and $C_i \in C$. Show that a space is compact if and only if every family C of closed sets with the f.i.p. satisfies $\bigcap C \neq \emptyset$.
- 4. A map $f: X \to Y$ is *continuous* if preimages of open sets are open. It is a *homeomorphism* if it is bijective and both f and f^{-1} are continuous.
 - Show that a map $f: X \to Y$ is continuous if and only if preimages of closed sets are closed.
 - Show that if X is compact and $f: X \to Y$ is a continuous surjection, then Y is compact, too.
 - Show that a continuous bijection $f: X \to Y$ between a compact space X and a Hausdorff space Y must be a homeomorphism.
- 5. Given a Cartesian product $X = \prod_{s \in S} X_s$ of topological spaces X_s , the *product topology* on X is given by the basis \mathcal{B} where elements are of the form $B = \prod_{s \in S} B_s$ with $B_s \subseteq X_s$ open and $B_s \subsetneq X_s$ for only finitely many $s \in S$.
 - Verify that \mathcal{B} is indeed a basis (see Ex 1.)
 - Prove carefully that the Cantor middle third set is homeomorphic to {0,1}^ℕ (the space of all 0-1-sequences) with the product topology.

Hinweise

- 1.
- 2. For normality, use the distance function to find for a closed set $C \subset X$ a continuous function $f_C: X \to \mathbb{R}$ such that $C = f^{-1}(0)$. Then consider the function $f_C/(f_C + f_D): X \to \mathbb{R}$.
- 3.
- $4. \quad \mbox{For the last item, combine earlier results from Q4 and Q3}.$
- 5. The previous exercise helps.