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§1. INTRODUCTION

Halin showed in [9] that all trees of maximum degree 3 are <-ubiquitous. Andreae improved

this result to show that all locally finite trees are <-ubiquitous [1], and asked if his result could be

extended to arbitrary trees [1, p. 214]. This was recently answered in the affirmative [3]:

Theorem 1. Every tree is ubiquitous with respect to the topological minor relation.

The purpose of these notes, which are essentially a trimmed-to-purpose version of [3], is to give

a self-contained proof of Theorem 1 in the countable case.

§2. PRELIMINARIES

We agree on the following notation.

When H is a subdivision of G we write G <* H. Then, G < I' means that there is a
subgraph H C I' which is a subdivision of G, that is, G <* H. If H is a subdivision of
G and v a vertex of G, then we denote by H(v) the corresponding vertex in H. More
generally, given a subgraph G’ C G, we denote by H(G’) the corresponding subdivision of
G'in H.

A rooted graph is a pair (G,v) where G is a graph and v € V(G) is a vertex of G which
we call the root. Often, when it is clear from the context which vertex is the root of the
graph, we will refer to a rooted graph (G,v) as simply G.

Given a rooted tree (T',v), we define a partial order <, which we call the tree-order, on
V(T) by letting x < y if the unique path between y and v in T passes through z. See |7,
Section 1.5] for more background.

For any edge e € E(T) we denote by e~ the endpoint closer to the root and by e the
endpoint further from the root.

For any vertex ¢t we denote by N7 (t) the set of children of t in T, the neighbours s of ¢
satisfying t < s.

The subtree of T" rooted at t is denoted by (73,t), that is, the induced subgraph of T" on

the set of vertices {s € V(T'): t < s}. When the context is clear, we simply write 7.
1
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e We say that a rooted tree (S, w) is a rooted subtree of a rooted tree (T, v) if S is a subgraph
of T such that the tree order on (S, w) agrees with the induced tree order from (7, v). In
this case we write (S, w) C, (T, v).

e A rooted tree (S, w) is a rooted topological minor of a rooted tree (T, v) if there is a subgraph
S" of T which is a subdivision of S such that for any x < y € V(S5), S'(z) < S'(y) in
the tree-order on T'. We call such an S” a rooted subdivision of S. In this case we write
(S,w) <, (T,v), cf. |7, Section 12.2].

§3. WELL-QUASI-ORDERS AND w-EMBEDDABILITY

Definition 2 (well-quasi-order). A binary relation <t on a set X is a well-quasi-order if it is
reflexive and transitive, and for every sequence x1,x2,... € X there is some i < j such that

T; Ty

Lemma 3 (w-embeddability). If < is a well-quasi-order on a set X, then for every infinite
sequence (Tp)nen tn X there is N € N such that for every x, with n > N there are infinitely

many later T, with x, < Tp,.

Proof. Otherwise, if no N; satisfies the assertion of the lemma, we inductively find a sequence
ny < Ni <ng < Ny < --- such that z,, 4 x,, for any m > N;. But then (x,,);cn witnesses that

< is not a well-quasi-order. O

We will use the following theorem of Nash-Williams on well-quasi-ordering of rooted trees, and

its extension by Laver to labelled rooted trees.
Theorem 4 (Nash-Williams [11]). The relation <, is a well-quasi order on the set of rooted trees.

Theorem 5 (Laver [10]). The relation <, is a well-quasi order on the set of rooted trees with
finitely many labels, i.e. for every finite number k € N, whenever (T1,c1), (T2, c2), ... is a sequence
of rooted trees with k-colourings c¢;: T; — [k], there is some i < j such that there exists a subdivision
H of T; with H C,. T} and ¢;(t) = ¢;(H(t)) for all t € T;.

Together with Lemma 3 these results give us the following three corollaries:

Corollary 6. Let (T,v) be a countable rooted tree, t € V(T) a vertex of infinite degree and
(t; € Nt(t): i € N) an enumeration of its countably many children. Then there exists Ny € N
such that for all n > Ng,
o m<{puyr,
i>Ny i>n
(considered as trees rooted at t) fixing the root t.

Proof. Consider a labelling c: T; — [2] mapping ¢ to 1, and all remaining vertices of T} to 2.
By Theorem 5, the set T = {{t} UU,>, T, : n € N} is well-quasi-ordered by <, respecting the
labelling, and so the claim follows by applying Lemma 3 to 7. O
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Definition 7 (Self-similarity). A ray R = rirars... in a rooted tree (T,v) which is upwards with
respect to the tree order displays self-similarity of T' if there are infinitely many n such that there
exists a subdiwision H of T,, with H C, T, and H(R) C R.

Corollary 8. Let (T,v) be an infinite rooted tree and let R = rirors. .. be a ray which is upwards

with respect to the tree order. Then there is a k € N such that ry R displays self-similarity of T

Proof. Consider a labelling ¢: T — [2] mapping the vertices on the ray R to 1, and labelling all
remaining vertices of T with 2. By Theorem 5, the set T = {(T,,,¢;): ¢ € N}, where ¢; is the
natural restriction of ¢ to T}, is well-quasi-ordered by <, respecting the labellings. Now consider
the N provided by Lemma 3. Then for every T;, with £ > N, there are infinitely many r; € rp R
such that T;, <, T;, respecting the labelling, i.e. mapping the ray to the ray, and hence 7R
displays the self similarity of T'. O

§4. LINKAGES BETWEEN RAYS

In this section we will establish a toolkit for constructing a disjoint system of paths from one

family of disjoint rays to another.

Definition 9 (Tail of a ray). Given a ray R in a graph T' and a finite set X C V(') the tail of R
after X, denoted by T(R, X), is the unique infinite component of R in T' — X.

Definition 10 (Linkage of families of rays). Let R = (R;:i € I) and S = (S;: j € J) be
families of vertex disjoint rays, where the initial vertex of each R; is denoted x;. A family of paths
P = (P:i€l),is alinkage from R to S if there is an injective function o: I — J such that

e cach P; joins a vertex x}, € R; to a vertex Yo (i) € So(i)s

o the family T = (xiRia:;Piyg(i)SU(i): i€ 1) is a collection of disjoint rays.
We say that T is obtained by transitioning from R to S along the linkage P. Given a finite set of
vertices X C V(T'), we say that P is after X if 2, € T(R;, X) and ngiya(,-)Sa(i) avoids X for all
el

Lemma 11 (Weak linking lemma). Let T be a graph and ¢ € Q(T"). Then for any families
R =(Ri:i€n]) and S = (S;: j € [n]) of vertex disjoint rays in € and any finite set X of vertices,
there is a linkage from R to S after X.

Proof. Let us write x; for the initial vertex of each R; and let 2 be the initial vertex of the tail
T(R;, X). Furthermore, let X’ = X U ;¢ Riz}. For i € [n] we will construct inductively finite
disjoint connected subgraphs K; C IT" for each i € [n] such that

e K; meets T(S;,X’) and T(R;, X') for every j € [n];

o K; avoids X'.
Suppose that we have constructed K, ..., K,, 1 for some m < n. Let us write X,, = X' U
Uicm V(K;). Since Ry, ..., R, and Sy, ..., S, lie in the same end ¢, there exist paths Q; ; between
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T(Ri, Xim) and T'(Sj, Xm) avoiding X, for all i # j € [n]. Let Kpy = F U, 4j¢py) @iy, Where F
consists of an initial segment of each T'(R;, X,,) sufficiently large to make K, connected. Then it
is clear that K, is disjoint from all previous K; and satisfies the claimed properties.

Let K =J;", K; and for each j € [n], let y; be the initial vertex of T'(S;, V(K)). Note that by
construction T'(S;, V(K)) avoids X for each j, since K meets T'(S;, X) and so T'(S;, V(K)) C
T(S;,X).

We claim that there is no separator of size < n between {z},..., 2]} and {y1,...,yn} in the
subgraph IV C T" where I" = K U U;'L:1 T(R;, X")UT(S;,X’). Indeed, any set of < n vertices
must avoid at least one ray R;, at least one graph K, and one ray S;. However, since K, is
connected and meets R; and S}, the separator does not separate z; from y;.

Hence, by a version of Menger’s theorem for infinite graphs |7, Proposition 8.4.1|, there is a
collection of n disjoint paths P; from z to Yo (i) D I'". Since I" is disjoint from X and meets each

R;x} in ) only, it is clear that P = (P;: i € [n]) is as desired. O

Lemma 12 (Strong linking lemma). Let I be a graph and ¢ € Q(I'). Let X be a finite set of
vertices, n € N, and R = (R;: i € [n]) a family of vertex disjoint rays in €. Let z; be the initial
vertex of R; and let ) the initial vertex of the tail T(R;, X).

Then there is a finite number N = N (R, X) with the following property: For every collection
(Hj: j € [N]) of vertex disjoint connected subgraphs of I', all disjoint from X and each including
a specified ray S; in €, there is a linkage P = (P;: i € [n]) from R to (S;: j € [N]) which is after
X and such that

T = (2 Rix; Piyo(iySo(i): i € [n])

avoids at least one H;.

Proof. Let X" = X U ;¢ Riz; and let No = [X’|. We claim that the lemma holds with
N = Ny +n®+1.

Indeed suppose that (H;: j € [N]) is a collection of vertex disjoint subgraphs as in the statement
of the lemma. Since the H; are vertex disjoint, we may assume without loss of generality that the
family (H;: j € [n3 +1]) is disjoint from X'.

For each i € [n?] we will build inductively finite, connected, vertex disjoint subgraphs K; such
that

o K; meets T(R; (mod n)> X');
e K; meets exactly n of the Hj, that is |{j € [n® +a] : K; N Hj # 0}| =n, and
e K; avoids X'.
V(K;). We will build inductively
for t =0,...,n increasing connected subgraphs IA(}‘:,I that meet R; (mod n), meet exactly ¢ of the
Hj, and avoid X,,.
We start with K% = (). For each t = 0,...n — 1, if T(R,, (mod n)» Xm) meets some H; not

met by IA{fn then there is some initial vertex z; € T(Ry, (mod n)» Xm) Where it does so and we

Suppose we have done so for all i < m. Let X, = X’ U

<m
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set Kt .= K! UT(R,, (mod n)s Xm)zt. Otherwise we may assume T'(R, (mod n)> Xm) does not
meet any such H;. In this case, let j € [n® + a] be such that IA(f;l NH; = 0. Since R, (mod n) and
Sj belong to the same end ¢, there is some path P between T'(R,, (mod n)s Xm) and T'(Sj, Xy,)
which avoids X,,,. Since this path meets some Hj, with k € [n3 4 1] which K, does not, there is
some initial segment P’ which meets exactly one such Hj. To form Kf,‘f 1 we add this path to
[A(ﬁn together with an appropriately large initial segment of T'(R,;, (mod n)> Xm) such that Kﬁj Lis
connected. Finally we let K, = f(}}l

Let K = ] K;. Since each K; meets exactly n of the H;, the set

1€[n?
J={jem+1]: HinK # 0}

satisfies |J| < n®. For each j € J let y; be the initial vertex of T'(S;, V(K)).

We claim that there is no separator of size < n between {z/,...z;,} and {y; : j € J} in
the subgraph I'" C I where I = K U ¢, T(R;, X') UU,e s Hj. Suppose for a contradiction
that there is such a separator S. Then S cannot meet every R;, and hence avoids some R,.
Furthermore, there are n distinct K; such that i = q (mod n), all of which are disjoint. Hence
there is some K, with 7 = ¢ (mod n) disjoint from S. Finally, |[{j € J : K, N H; # 0}| = n and
so there is some H, disjoint from S such that K, N Hy # (. Since K, meets T(Rq, X') and Hs,
there is a path from x; to ys in I, contradicting our assumption.

Hence, by a version of Menger’s theorem for infinite graphs [7, Proposition 8.4.1], there is a
family of disjoint paths P = (P;: i € [n]) in I from & to y, ;. Furthermore, since |J| < n® there
is some subset A C [n3 4 a] of size a such that Hj}, is disjoint from K for each k € A.

Therefore, since I" is disjoint from X’ and meets each R;z} in 2 only, the family P is a linkage
from R to (S;)e[n3+q Which is after X such that

T = (ziRix; Piyo(iySo(i) - 1 € [n])

avoids H; for i € [n3 + 1]\ J. a

§5. G-TRIBES AND CONCENTRATION OF (G-TRIBES TOWARDS AN END

For showing that a given graph G is ubiquitous with respect to a fixed relation <1, we shall
assume that nG < I for every n € N and need to show that this implies that RoG <1 I'. Since
each subgraph witnessing that nG < I' will be a collection of n disjoint subgraphs each being a
witness for G <1 I, it will be useful to introduce some notation for talking about these families of
collections of n disjoint witnesses for each n.

To do this formally, recall that we write G <* H if H is a subdivision of G and G < T'if G is a

topological minor of I'.

Definition 13 (G-tribes). Let G and T" be graphs.

e A G-tribe in I' is a collection F of finite sets F' (called layer) of disjoint subgraphs H of
I’ such that G <* H for each member of F, i.e. for each H € |JF.
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o A G-tribe F in I is called thick, if for each n € N there is a layer F' € F with |F| > n;
otherwise, it is called thin.

o A G-tribe F' in T 1s a G-subtribe of a G-tribe F in T, denoted by F' < F, if there is an
injection W: F' — F such that for each F' € F' there is an injection opr: F' — W(F")
such that V(H') C V(pp(H')) for each H' € F'. The G-subtribe F' is called flat, denoted
by F' C F, if there is such an injection ¥ satisfying F' C W(F").

o A thick G-tribe F in T is concentrated at an end € of I, if for every finite vertex set X of T,
the G-tribe Fx = {Fx: F € F} consisting of the layers Fx ={H € F: HZ C(X,¢e)} C F
is a thin subtribe of F.

We first observe that removing a thin G-tribe from a thick G-tribe always leaves a thick G-tribe.

Lemma 14. Let F be a thick G-tribe in T and let F' be a thin subtribe of F, witnessed by
U: F' — F and (ppr: F' € F). For F € F, if F € U(F'), let V"Y(F) = {FL} and set
F=p (Fp). If F ¢ W(F), set F=0. Then

F':={F\F:FeF}
is a thick flat G-subtribe of F.

Proof. F" is obviously a flat subtribe of . As F’ is thin, there is a k € N such that |F’| < k for
every F' € F'. Thus |F| < k for all F € F. Let n € N. As F is thick, there is a layer F € F
satisfying |F| > n+ k. Thus |[F\ F|>n+k—k=n. O

Given a thick G-tribe, the members of this tribe may have different properties, for example,
some of them contain a ray belonging to a specific end € of I' whereas some of them do not.
The next lemma allows us to restrict onto a thick subtribe, in which all members have the same
properties, as long as we consider only finitely many properties. E.g. we find a subtribe in which

either all members contain an e-ray, or none of them contain such a ray.

Lemma 15 (Pigeon hole principle for thick G-tribes). Suppose for some k € N, we have a
k-colouring c: \UF — [k] of the members of some thick G-tribe F in I'. Then there is a
monochromatic, thick, flat G-subtribe F' of F.

Proof. Since F is a thick G-tribe, there is a sequence (n;: ¢ € N) of natural numbers and a

sequence (F; € F: i € N) such that
ny < |F1| <ng < |Fy| <ng < |F3| < ---.

Now for each 4, by pigeon hole principle, there is one colour ¢; € [k] such that the subset F} C F; of
elements of colour ¢; has size at least n;/k. Moreover, since [k] is finite, there is one colour ¢* € [k]
and an infinite subset I C N such that ¢; = ¢* for all ¢ € I. But this means that ' := {F]: i € I}

is a monochromatic, thick, flat G-subtribe. O
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Lemma 16. Suppose I' contains a thick G-tribe F for some connected G. Then either oG < T,
or there is a thick flat subtribe F' of F and an end € of T such that F' is concentrated at €.

Proof. For every finite vertex set X C V(I'), only a thin subtribe of F can meet X, so by Lemma
14 a thick flat subtribe F” is contained in the graph I' — X. Since each member of F” is connected,
any member H of F” is contained in a unique component of I' — X . If for any X, infinitely many
components of I' — X contain a subdivision of GG, the union of all these copies is a subdivided
copy of NgG in I'. Thus, we may assume that for each X, only finitely many components contain
elements from F”, and hence, by colouring each H with a colour corresponding to the component
of I' — X containing it, we may assume by the pigeon hole principle for G-tribes, Lemma 15, that
at least one component of I' — X contains a thick flat subtribe of F.

Let Cp =T and Fy = F and consider the following recursive process: If possible, we choose a
finite vertex set X,, in C,, such that there are two components Cy, 41 # Dy 41 of C;, — X,, where
Ch+1 contains a thick flat subtribe F,,41 C F, and D, contains at least one subdivided copy
H,, .1 of G. Since by construction all H,, are pairwise disjoint, we either find infinitely many such
H,, and thus an NgG < I'; or our process terminates at step N say. That is, we have a thick flat
subtribe Fn contained in a subgraph Cp such that there is no finite vertex set Xy satisfying the
above conditions.

Let F' := Fy. We claim that for every finite vertex set X of I', there is a unique component
Cx of I' — X that contains a thick flat G-subtribe of F’. Indeed, note that if for some finite X C T’
there are two components C' and C’ of I' — X both containing thick flat G-subtribes of F’, then
since every G-copy in F' is contained in Cy, it must be the case that C N Cy # 0 # C' N Cy.
But then Xy = X N Cy # ) is a witness that our process could not have terminated at step V.

Next, observe that whenever X’ D X, then Cxs C Cx. By the direction theorem of Diestel and
Kiihn, [8], it follows that there is a unique end € of I" such that C(X,€) = Cx for all finite X CT.
It now follows easily from the uniqueness of Cx = C(X,¢€) that F' is concentrated at this e. O

We note that concentration towards an end € is a robust property in the following sense:

Lemma 17. Let G be a connected graph and I' a graph containing a thick connected G-tribe F

concentrated at an end € of I'. Then the following assertions hold:

(1) For every finite set X, the component C(X,€) contains a thick flat G-subtribe of F.
(2) Every thick subtribe F' of F is concentrated at €, too.

Proof. Let X be a finite vertex set. By definition, if the G-tribe F is concentrated at €, then F is
thick, and the subtribe Fx consisting of the sets Fixy ={H € F': H Z C(X,¢e)} C F for F € F is
a thin subtribe of F, i.e. there exists k € N such that |Fx| < k for all Fx € Fx.

For (1), observe that the G-tribe 7/ = {F'\ Fx: F € F} is a thick flat subtribe of F by Lemma

14, and all its members are contained in C(X,¢€) by construction.
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For (2), observe that if ' is a subtribe of F, then for every F’ € F’ there is an injection
¢r 2 F' — F for some F € F. Therefore, |¢5 (Fx)| < k for Fx C F as defined above, and so
only a thin subtribe of F’ is not contained in C'(X, ¢). O

§6. COUNTABLE SUBTREES

In this section we prove the countable version of Theorem 1. Let T be a countable tree. By
Lemma 16, we may assume without loss of generality that there are an end € of I' and a thick
T-tribe F concentrated at e.

Without loss of generality, we may assume that ¢ is undominated in I'. Indeed, an end of I is
dominated by infinitely many distinct vertices if and only if I' contains a subdivision of Ky, |7,

Exercise 19, Chapter 8|, in which case proving ubiquity becomes trivial:
Lemma 18. For any countable graph G, we have Ry - G C Ky, .

Proof. By partitioning the vertex set of Ky, into countably many infinite parts, we see that
Rg - Ky, € Ky,. Also, clearly G C Ky,. Hence, we have Ry - G C Ry - Ky, C Ky,. [l

Therefore, € is only finitely dominated, but then, if X denotes the vertices dominating €, we
may simply work in the connected graph C(X,e) C I', in which now € is undominated and which

by concentration still contains a thick T-tribe concentrated at e.

6.1. Preprocessing. We begin by picking a root v for T. Let Voo (T) be the set of vertices of

infinite degree in T.

Definition 19. Given T as above, define a locally finite subtree T* C T by
T =T\ |J {Tn:tie N*(t),i> N},
eV (T)

where Ny is as in Corollary 6.

Definition 20. An edge e of T* is an extension edge if there is a ray in T* starting at e
which displays self-similarity of T.} For each extension edge e we fix one such a ray R.. Write
Ext(T*) C E(T*) for the set of extension edges.

Consider the forest T* — Ext(T*) obtained from T% by removing all extension edges. Since
every ray in T must contain an extension edge by Corollary 8, each component of T* — Ext(T™*)

is a locally finite rayless tree and so is finite. We enumerate the components of 7% — Ext(T™) as

15,17, . .. in such a way that for every n > 0, the set
T, =T || JV(T})
<n

IRecall that all such rays by definition go upwards with respect to the tree order. Also note that it should
display self-similarity of all of T, not just of T™.
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is a finite subtree of T containing the root r. Let us write 0(T},) = E(T,,T™ \ T5,), and note that
d(T,) C Ext(T*). We make the following definitions:

e For a given T-tribe F and ray R of T, we say that R converges to € according to F if for
all members H of F the ray H(R) is in e. We say that R is cut from e according to F
if for all members H of F the ray H(R) is not in e. Finally we say that F determines
whether R converges to € if either R converges to € according to F or R is cut from e
according to F.

e Given n € N, we say a thick T-tribe F agrees about 9(T),) if for each extension edge
e € 0(Ty,), it determines whether R, converges to e.

e Since 0(T3,) is a finite set of edges for all n, it follows from Lemma 15 that given some
n € N, any thick T-tribe has a flat thick T-subtribe F such that F agrees about 9(7},).

Under these circumstances we set

0c(T),) := {e € O(T,): Re converges to € according to F},
0-¢(T},) :=={e € 0(T},): Re is cut from e according to F} .

e Also, under these circumstances, let us write 7, for the component of the forest T'— 0,(T,)
containing the root of T'. Note that T, C T .

The following lemma contains a large part of the work needed for our inductive construction.

Lemma 21 (T-tribe refinement lemma). Suppose we have a thick T-tribe F,, concentrated at €
which agrees about O(T,,) for some n € N. Let f denote the unique edge from T, to Tpy1 \ T),.
Then there is a thick T-tribe Fp1 concentrated at € with the following properties:

(i) Fns1 agrees about O(Th41).
(i1) Fni1 U F, agree about O(T,) \ {f}.
(iii) T, D T
(iv) For all H € Fpy1 there is a finite X C T such that H(T,¢;) N Cr(X,€) = 0.
Moreover, if f € 0.(Ty), and Ry = vovivy... C T* (with vg = fT) denotes the ray displaying
self-similarity of T at f, then we may additionally assume:
(v) For every H € Fp1+1 and every k € N, there is H' € Fp11 with
e H'C,. H
o H'(T,) = H(T,),
o H'(Ty,)
o H'(Ry)

Proof. Concerning (v), if f € 0.(T},) recall that according to Definition 20, the ray R satisfies
that for all k € N we have T3, <, Ty, such that Ry gets embedded into itself. In particular, there
is a subtree Tl of T, which is a rooted subdivision of T, with Tl(Rf) C Ry, considering Tl as a
rooted tree given by the tree order in 7;,. If we define recursively for each k € N T, L= Tk,l(fﬁ)
then it is clear that (T: k € N) is a family of rooted subdivisions of T}, such that for each k € N
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o T}, C Ty,
o Tj 2 Ths;
o Tx(Ry) C Ry.

Hence, for every subdivision H of T' with H € |JF, and every k € N, the subgraph H(Tk)
is also a rooted subdivision of Tj,,. Let us construct a subdivision H (k) of T by letting H*) be
the minimal subtree of H containing H(T \ Ty,) U H(T}), where H®)(T'\ T,,) = H(T \ T,,) and
H®)(T,,) = H(T},). Note that

H®(T,,) = H(T},) S, H*(T,) = H(T}_1) S, ... S, H(Ty,).

In particular, for every subdivision H € |JF, of T and every k € N, there is a subdivision
H®) C H of T such that H*®)/(T,)) = H(T,¢), H¥(T,,) C, H(Ty,), and H®(R;) C H(Ry).
By the pigeon hole principle, there is an infinite index set Ky = {k, ki ...} C N such that
{{H®™}: k € Ky} agrees about 9(Ty,41). Consider the thick subtribe F, = {F}: F € F,,i € N}
of F,, with

(h  F={a®): HeF}.

Observe that F) U F, still agrees about 9(Ty,). (If f € 0-¢(Ty), then skip this part and simply let
F) = Fn.)

Concerning (iii), observe that for every H € |JF},, since the rays H(R,) for e € 0-.(T},) do
not tend to e, there is a finite vertex set Xy such that H(R.) N Xy = 0 for all e € 0-(T},).

Furthermore, since Xy is finite, for each such extension edge e there exists z. € R, such that
H(T,,)NC(Xg,e) =0.

By definition of extension edges, cf. Definition 20, for each e € 0-(T},) there is a rooted embedding
of T.+ into H(Ty,). Hence, there is a subdivision H of T with H < H and H(T}) = H(T},) such
that H(T.+) C H(T},) for each e € 9-(T},).

Note that if e € 0-¢(T},) and ¢ is an extension edge with e < g € 9(T+1) \ 9(Ty), then
H(R,) C H(T,+) C H(Tz.), and so

(1) lfI(Rg) doesn’t tend to e.

Define F,, to be the thick T-subtribe of F! consisting of the H for every H in |JF!. Now use
Lemma 15 to chose a maximal thick flat subtribe F of F,, which agrees about 9(Tj,11), so it
satisfies (i) and (ii). By (%), the tribe F}' satisfies (iii), and by maximality and (), it satisfies (v).

In our last step, we now arrange for (iv) while preserving all other properties. For each
H e |JF;, since H(Tp+1) is finite and € undominated, we may find a finite separator Yz such
that

H(Tn—I—l) N (YH U C(YH, 6)) = 0.

Since Yy is finite, for every vertex t € V(T,,11) N Voo (T), say with N () = (;);en, there exists
ng € N such that C(Ypy,€) N H(Ty;) = () for all j > ny. Using Corollary 6, for every such ¢ there is
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a rooted embedding
HuJn < v,
J>N¢ J>ny
fixing the root t. Hence there is a subdivision H' of T' with H' < H such that H'(T*) = H(T*)
and for every for every vertex t € V(Ty4+1) N Voo (T)

H [{tyu | T, | n(Yu UC(Ya,e) = 0.
J>Nt

Moreover, note that by construction of F,, every such H’ automatically satisfies that
H(T.+)NC(XgUYy,e)=10

for all e € 0-c(Tyh+1). Let Fpy1 consist of the set of H' as defined above for all H € F'. Then
Xy UYy is a finite separator witnessing that F,; satisfies (iv). O

6.2. The construction. So let T be a countable tree. Recall that we may assume that there are

an undominated end € of I and a thick T-tribe F concentrated at e.

Definition 22 (Bounder, extender). Suppose that some thick T-tribe F which is concentrated at
e agrees about O(T,,) for some given n € N, and QV,Q%,...,QF are disjoint subdivisions of T,
(note, T, depends on F).

e A bounder for the (Q7: i € [n]) is a finite set X of vertices in I' separating all the Q;
from €, i.e. such that
n
C(X,en|JQr =0.
i=1
o An extender for the (Q: i € [n]) is a family &, = (E};: e € 0/(Ty),i € [n]) of rays in
I' tending to € which are disjoint from each other and also from each Q7 except at their

initial vertices, and where the start verter of Ey; is Q' (e™).

To prove Theorem 1 for T', we now assume inductively that for some n € N, with r := |n/2]

and s := [n/2] we have:

(1) A thick T-tribe F, in I' concentrated at e which agrees about 9(7;), with a boundary
Oc (T}) such that T,7¢, C T,
(2) a family (Q7: i € [s]) of s pairwise disjoint subdivisions of 7,7 in T with Q(T,,) = Q' *
forall e < s—1,
(3) a bounder X, for the (Q7': i € [s]), and
(4) an extender &, = (El;: e € 0. (T,7) , i € [s]) for the (QF: i € [s]).
The base case n = 0 it easy, as we simply may choose Fy <, F to be any thick T-subtribe in '
which agrees about 9(7p), and let all other objects be empty.
So, let us assume that our construction has proceeded to step n > 0. Our next task splits into

two parts: First, if n = 2k — 1 is odd, we extend the already existing k subdivisions (Q}': i € [k])
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of T, to subdivisions (Q7': i € [k]) of T}°. And secondly, if n = 2k is even, we construct a
further disjoint copy QZill of T} °.

Construction part 1: n =2k — 1 is odd. By assumption, Fj_; agrees about 9(Tj_1). Let
f denote the unique edge from Ty_q to Ty \ Tk_1. We first apply Lemma 21 to Fi_1 in order to
find a thick T-tribe Fj, concentrated at e satisfying properties (i)—(v). In particular, Fj agrees
about 9(T}) and T}, C T}°

We first note that if f ¢ 0.(Tk—1), then T, = T}, and we can simply take Q?H = Q7 for
all i € [k], Ent1 := &, and X1 := X,

Otherwise, we have f € 0.(T;_1). By Lemma 17(2) Fj is concentrated at €, and so we may
pick a collection {Hi,..., Hy} of disjoint subdivisions of T' from some F' € Fj, all of which are
contained in C(X,,€), where N = |£,|. By Lemma 11 there is some linkage P C C(X,, €) from

En to (Hj(Ry): j € [N]),

which is after X;,. Let us suppose that the linkage P joins a vertex @¢,; € E¢'; 10 Yo(ei) € Ho(ei) (Ry)
via a path P.; € P. Let z,(. ;) be a vertex in Ry such that ys(ci) < Hy(e,i)(Z0(e,i)) in the tree
order on H . (T).

By property (v) of Fj, in Lemma 21, we may assume without loss of generality that for each H;
there is a another member H} C H; of Fj such that H}(Ty+) C, H;(T%;). Let P; C H denote
the path from H;(y;) to H(f7).

Now for each i € [k], define

QT = QF U B} @i Pratio(riy o) U Ho(r (T \ Tia)-

By construction, each Q;”rl is a subdivision of T},
By Lemma 21(iv) we may find a finite set X,,11 C T" with X, C X, ;1 such that

C(Xn—i-lae) a ( U Q;H_l) = @
1€[k]
This set X,,4+1 will be our bounder.
Define an extender &,11 = (Eg;rl e € 0c(Ty,),i € [K]) for the Q" as follows:

o For e € 0c(Th—1) \ {f}, let ElT' i= ElweiPeito(eiyHo(e ) (Ry).
o For e € 0.(Ty) \ 8(Ty—1), let Bl = HY o (Re).

Since each Hg(c ), H(;(e i € U Fk, and Fj, determines that Ry converges to e, these rays belong

indeed to the end €. Furthermore, since H(;( C Hgy(c,zy and {Hy, ..., Hy} are disjoint, it follows

e,i)
that the rays are disjoint.

Construction part 2: n = 2k is even. If 9.(T}) = 0, then T, = S, and so picking any
element QZI% from F, with QZIII C C(Xp,¢€) gives us a further copy of S disjoint from all the
previous ones. Using Lemma 21(iv), there is a suitable bounder X,,+1 2 X, for Qz_tll, and we are

done. Otherwise, pick eg € 0.(T}) arbitrary.
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Since Fj, is concentrated at €, we may pick a collection {Hj, ..., Hy} of disjoint subdivisions
of T from Fy, all contained in C'(X,, €), where N is large enough so that we may apply Lemma 12
to find a linkage P C C(X,,, €) from

En to (Hi(Re,): i € [N]),

after X,,, avoiding say Hj. Let us suppose the linkage P joins a vertex z.; € EQI tO Yo (e,i) €
Hy (e (Re,) via a path P.; € P. Define
1 -
QZL = Hl(Tk E)-
Note that Q7! is a T-suitable subdivision of 7, e

k+1

By Lemma 21(iv) there is a finite set X,,41 C I with X, € X, 11 such that C(X,,+1,¢€) HQZI} =

(). This set X, 1 will be our new bounder.
Define the extender &,41 = (Egjl € € 0c(Tk+1),1 € [k + 1]) of e-rays as follows:

e For i€ [k], let B := B2 e iPe itfo(e,i) Ho(e,i) (Rey)-

€,

e Fori=Fk+1,let E"! = H{(R,) for all e € Oe(Tj11).

ek+1 °
Once the construction is complete, let us define H; := Un>2i—1 Q7. Since |J,cn T, =T, and
due to the extension property (2), the collection (H;);en is a topological minor of Rg7" in I', and
the proof is complete. ([l
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