TOPOLOGICAL UBIQUITY OF COUNTABLE TREES

MAX PITZ

Infinite Graph Theory, WS2019/20

§1. Introduction

Halin showed in [9] that all trees of maximum degree 3 are \leq -ubiquitous. Andreae improved this result to show that all *locally finite* trees are \leq -ubiquitous [1], and asked if his result could be extended to arbitrary trees [1, p. 214]. This was recently answered in the affirmative [3]:

Theorem 1. Every tree is ubiquitous with respect to the topological minor relation.

The purpose of these notes, which are essentially a trimmed-to-purpose version of [3], is to give a self-contained proof of Theorem 1 in the countable case.

§2. Preliminaries

We agree on the following notation.

- When H is a subdivision of G we write $G \leq^* H$. Then, $G \leq \Gamma$ means that there is a subgraph $H \subseteq \Gamma$ which is a subdivision of G, that is, $G \leq^* H$. If H is a subdivision of G and V a vertex of G, then we denote by H(V) the corresponding vertex in H. More generally, given a subgraph $G' \subseteq G$, we denote by H(G') the corresponding subdivision of G' in H.
- A rooted graph is a pair (G, v) where G is a graph and $v \in V(G)$ is a vertex of G which we call the root. Often, when it is clear from the context which vertex is the root of the graph, we will refer to a rooted graph (G, v) as simply G.
- Given a rooted tree (T, v), we define a partial order \leq , which we call the *tree-order*, on V(T) by letting $x \leq y$ if the unique path between y and v in T passes through x. See [7, Section 1.5] for more background.
- For any edge $e \in E(T)$ we denote by e^- the endpoint closer to the root and by e^+ the endpoint further from the root.
- For any vertex t we denote by $N^+(t)$ the set of *children of* t in T, the neighbours s of t satisfying $t \leq s$.
- The subtree of T rooted at t is denoted by (T_t, t) , that is, the induced subgraph of T on the set of vertices $\{s \in V(T): t \leq s\}$. When the context is clear, we simply write T_t .

- We say that a rooted tree (S, w) is a rooted subtree of a rooted tree (T, v) if S is a subgraph of T such that the tree order on (S, w) agrees with the induced tree order from (T, v). In this case we write $(S, w) \subseteq_T (T, v)$.
- A rooted tree (S, w) is a rooted topological minor of a rooted tree (T, v) if there is a subgraph S' of T which is a subdivision of S such that for any $x \leq y \in V(S)$, $S'(x) \leq S'(y)$ in the tree-order on T. We call such an S' a rooted subdivision of S. In this case we write $(S, w) \leq_r (T, v)$, cf. [7, Section 12.2].

§3. Well-quasi-orders and ω -embeddability

Definition 2 (well-quasi-order). A binary relation \triangleleft on a set X is a well-quasi-order if it is reflexive and transitive, and for every sequence $x_1, x_2, \ldots \in X$ there is some i < j such that $x_i \triangleleft x_j$.

Lemma 3 (ω -embeddability). If \lhd is a well-quasi-order on a set X, then for every infinite sequence $(x_n)_{n\in\mathbb{N}}$ in X there is $N\in\mathbb{N}$ such that for every x_n with $n\geqslant N$ there are infinitely many later x_m with $x_n\lhd x_m$.

Proof. Otherwise, if no N_i satisfies the assertion of the lemma, we inductively find a sequence $n_1 < N_1 < n_2 < N_2 < \cdots$ such that $x_{n_i} \not < x_m$ for any $m \ge N_i$. But then $(x_{n_i})_{i \in \mathbb{N}}$ witnesses that \lhd is not a well-quasi-order.

We will use the following theorem of Nash-Williams on well-quasi-ordering of rooted trees, and its extension by Laver to labelled rooted trees.

Theorem 4 (Nash-Williams [11]). The relation \leq_r is a well-quasi order on the set of rooted trees.

Theorem 5 (Laver [10]). The relation \leq_r is a well-quasi order on the set of rooted trees with finitely many labels, i.e. for every finite number $k \in \mathbb{N}$, whenever $(T_1, c_1), (T_2, c_2), \ldots$ is a sequence of rooted trees with k-colourings $c_i \colon T_i \to [k]$, there is some i < j such that there exists a subdivision H of T_i with $H \subseteq_r T_j$ and $c_i(t) = c_j(H(t))$ for all $t \in T_i$.

Together with Lemma 3 these results give us the following three corollaries:

Corollary 6. Let (T, v) be a countable rooted tree, $t \in V(T)$ a vertex of infinite degree and $(t_i \in N^+(t): i \in \mathbb{N})$ an enumeration of its countably many children. Then there exists $N_t \in \mathbb{N}$ such that for all $n \geqslant N_t$,

$$\{t\} \cup \bigcup_{i>N_t} T_{t_i} \leqslant_r \{t\} \cup \bigcup_{i>n} T_{t_i}$$

(considered as trees rooted at t) fixing the root t.

Proof. Consider a labelling $c: T_t \to [2]$ mapping t to 1, and all remaining vertices of T_t to 2. By Theorem 5, the set $\mathcal{T} = \{\{t\} \cup \bigcup_{i>n} T_{t_i} : n \in \mathbb{N}\}$ is well-quasi-ordered by \leqslant_r respecting the labelling, and so the claim follows by applying Lemma 3 to \mathcal{T} .

Definition 7 (Self-similarity). A ray $R = r_1 r_2 r_3 \dots$ in a rooted tree (T, v) which is upwards with respect to the tree order displays self-similarity of T if there are infinitely many n such that there exists a subdivision H of T_{r_1} with $H \subseteq_r T_{r_n}$ and $H(R) \subseteq R$.

Corollary 8. Let (T, v) be an infinite rooted tree and let $R = r_1 r_2 r_3 ...$ be a ray which is upwards with respect to the tree order. Then there is a $k \in \mathbb{N}$ such that $r_k R$ displays self-similarity of T.

Proof. Consider a labelling $c: T \to [2]$ mapping the vertices on the ray R to 1, and labelling all remaining vertices of T with 2. By Theorem 5, the set $T = \{(T_{r_i}, c_i): i \in \mathbb{N}\}$, where c_i is the natural restriction of c to T_{r_i} , is well-quasi-ordered by \leq_r respecting the labellings. Now consider the N provided by Lemma 3. Then for every T_{r_k} with $k \geq N$, there are infinitely many $r_j \in r_k R$ such that $T_{r_k} \leq_r T_{r_j}$ respecting the labelling, i.e. mapping the ray to the ray, and hence $r_k R$ displays the self similarity of T.

§4. Linkages between rays

In this section we will establish a toolkit for constructing a disjoint system of paths from one family of disjoint rays to another.

Definition 9 (Tail of a ray). Given a ray R in a graph Γ and a finite set $X \subseteq V(\Gamma)$ the tail of R after X, denoted by T(R, X), is the unique infinite component of R in $\Gamma - X$.

Definition 10 (Linkage of families of rays). Let $\mathcal{R} = (R_i : i \in I)$ and $\mathcal{S} = (S_j : j \in J)$ be families of vertex disjoint rays, where the initial vertex of each R_i is denoted x_i . A family of paths $\mathcal{P} = (P_i : i \in I)$, is a linkage from \mathcal{R} to \mathcal{S} if there is an injective function $\sigma : I \to J$ such that

- each P_i joins a vertex $x_i' \in R_i$ to a vertex $y_{\sigma(i)} \in S_{\sigma(i)}$;
- the family $\mathcal{T} = (x_i R_i x_i' P_i y_{\sigma(i)} S_{\sigma(i)} : i \in I)$ is a collection of disjoint rays.

We say that \mathcal{T} is obtained by transitioning from \mathcal{R} to \mathcal{S} along the linkage \mathcal{P} . Given a finite set of vertices $X \subseteq V(\Gamma)$, we say that \mathcal{P} is after X if $x'_i \in T(R_i, X)$ and $x'_i P_i y_{\sigma(i)} S_{\sigma(i)}$ avoids X for all $i \in I$.

Lemma 11 (Weak linking lemma). Let Γ be a graph and $\epsilon \in \Omega(\Gamma)$. Then for any families $\mathcal{R} = (R_i : i \in [n])$ and $\mathcal{S} = (S_j : j \in [n])$ of vertex disjoint rays in ϵ and any finite set X of vertices, there is a linkage from \mathcal{R} to \mathcal{S} after X.

Proof. Let us write x_i for the initial vertex of each R_i and let x_i' be the initial vertex of the tail $T(R_i, X)$. Furthermore, let $X' = X \cup \bigcup_{i \in [n]} R_i x_i'$. For $i \in [n]$ we will construct inductively finite disjoint connected subgraphs $K_i \subseteq \Gamma$ for each $i \in [n]$ such that

- K_i meets $T(S_j, X')$ and $T(R_j, X')$ for every $j \in [n]$;
- K_i avoids X'.

Suppose that we have constructed K_1, \ldots, K_{m-1} for some $m \leq n$. Let us write $X_m = X' \cup \bigcup_{i < m} V(K_i)$. Since R_1, \ldots, R_n and S_1, \ldots, S_n lie in the same end ϵ , there exist paths $Q_{i,j}$ between

 $T(R_i, X_m)$ and $T(S_j, X_m)$ avoiding X_m for all $i \neq j \in [n]$. Let $K_m = F \cup \bigcup_{i \neq j \in [n]} Q_{i,j}$, where F consists of an initial segment of each $T(R_i, X_m)$ sufficiently large to make K_m connected. Then it is clear that K_m is disjoint from all previous K_i and satisfies the claimed properties.

Let $K = \bigcup_{i=1}^n K_i$ and for each $j \in [n]$, let y_j be the initial vertex of $T(S_j, V(K))$. Note that by construction $T(S_j, V(K))$ avoids X for each j, since K_1 meets $T(S_j, X)$ and so $T(S_j, V(K)) \subseteq T(S_j, X)$.

We claim that there is no separator of size < n between $\{x'_1, \ldots, x'_n\}$ and $\{y_1, \ldots, y_n\}$ in the subgraph $\Gamma' \subseteq \Gamma$ where $\Gamma' = K \cup \bigcup_{j=1}^n T(R_j, X') \cup T(S_j, X')$. Indeed, any set of < n vertices must avoid at least one ray R_i , at least one graph K_m and one ray S_j . However, since K_m is connected and meets R_i and S_j , the separator does not separate x'_i from y_j .

Hence, by a version of Menger's theorem for infinite graphs [7, Proposition 8.4.1], there is a collection of n disjoint paths P_i from x'_i to $y_{\sigma(i)}$ in Γ' . Since Γ' is disjoint from X and meets each $R_i x'_i$ in x'_i only, it is clear that $\mathcal{P} = (P_i : i \in [n])$ is as desired.

Lemma 12 (Strong linking lemma). Let Γ be a graph and $\epsilon \in \Omega(\Gamma)$. Let X be a finite set of vertices, $n \in \mathbb{N}$, and $\mathcal{R} = (R_i : i \in [n])$ a family of vertex disjoint rays in ϵ . Let x_i be the initial vertex of R_i and let x_i' the initial vertex of the tail $T(R_i, X)$.

Then there is a finite number $N = N(\mathcal{R}, X)$ with the following property: For every collection $(H_j : j \in [N])$ of vertex disjoint connected subgraphs of Γ , all disjoint from X and each including a specified ray S_j in ϵ , there is a linkage $\mathcal{P} = (P_i : i \in [n])$ from \mathcal{R} to $(S_j : j \in [N])$ which is after X and such that

$$\mathcal{T} = (x_i R_i x_i' P_i y_{\sigma(i)} S_{\sigma(i)} \colon i \in [n])$$

avoids at least one H_i .

Proof. Let $X' = X \cup \bigcup_{i \in [n]} R_i x_i'$ and let $N_0 = |X'|$. We claim that the lemma holds with $N = N_0 + n^3 + 1$.

Indeed suppose that $(H_j: j \in [N])$ is a collection of vertex disjoint subgraphs as in the statement of the lemma. Since the H_j are vertex disjoint, we may assume without loss of generality that the family $(H_j: j \in [n^3 + 1])$ is disjoint from X'.

For each $i \in [n^2]$ we will build inductively finite, connected, vertex disjoint subgraphs \hat{K}_i such that

- \hat{K}_i meets $T(R_{i \pmod{n}}, X')$;
- \hat{K}_i meets exactly n of the H_j , that is $|\{j \in [n^3 + a] : \hat{K}_i \cap H_j \neq \emptyset\}| = n$, and
- \hat{K}_i avoids X'.

Suppose we have done so for all i < m. Let $X_m = X' \cup \bigcup_{i < m} V(\hat{K}_i)$. We will build inductively for $t = 0, \ldots, n$ increasing connected subgraphs \hat{K}_m^t that meet $R_{i \pmod{n}}$, meet exactly t of the H_j , and avoid X_m .

We start with $\hat{K}_m^0 = \emptyset$. For each $t = 0, \ldots n - 1$, if $T(R_{m \pmod{n}}, X_m)$ meets some H_j not met by \hat{K}_m^t then there is some initial vertex $z_t \in T(R_{m \pmod{n}}, X_m)$ where it does so and we

set $\hat{K}_m^{t+1} := \hat{K}_m^t \cup T(R_{m \pmod n}, X_m) z_t$. Otherwise we may assume $T(R_{m \pmod n}, X_m)$ does not meet any such H_j . In this case, let $j \in [n^3 + a]$ be such that $\hat{K}_m^t \cap H_j = \emptyset$. Since $R_{m \pmod n}$ and S_j belong to the same end ϵ , there is some path P between $T(R_{m \pmod n}, X_m)$ and $T(S_j, X_m)$ which avoids X_m . Since this path meets some H_k with $k \in [n^3 + 1]$ which \hat{K}_m^t does not, there is some initial segment P' which meets exactly one such H_k . To form \hat{K}_m^{t+1} we add this path to \hat{K}_m^t together with an appropriately large initial segment of $T(R_{m \pmod n}, X_m)$ such that \hat{K}_m^{t+1} is connected. Finally we let $\hat{K}_m = \hat{K}_m^n$.

Let $K = \bigcup_{i \in [n^2]} \hat{K}_i$. Since each \hat{K}_i meets exactly n of the H_j , the set

$$J = \{ j \in [n^3 + 1] : H_j \cap K \neq \emptyset \}$$

satisfies $|J| \leq n^3$. For each $j \in J$ let y_j be the initial vertex of $T(S_j, V(K))$.

We claim that there is no separator of size < n between $\{x'_1, \ldots x'_n\}$ and $\{y_j : j \in J\}$ in the subgraph $\Gamma' \subseteq \Gamma$ where $\Gamma' = K \cup \bigcup_{j \in [n]} T(R_j, X') \cup \bigcup_{j \in J} H_j$. Suppose for a contradiction that there is such a separator S. Then S cannot meet every R_i , and hence avoids some R_q . Furthermore, there are n distinct \hat{K}_i such that $i = q \pmod{n}$, all of which are disjoint. Hence there is some \hat{K}_r with $r = q \pmod{n}$ disjoint from S. Finally, $|\{j \in J : \hat{K}_r \cap H_j \neq \emptyset\}| = n$ and so there is some H_s disjoint from S such that $\hat{K}_r \cap H_s \neq \emptyset$. Since \hat{K}_r meets $T(R_q, X')$ and H_s , there is a path from x'_q to y_s in Γ' , contradicting our assumption.

Hence, by a version of Menger's theorem for infinite graphs [7, Proposition 8.4.1], there is a family of disjoint paths $\mathcal{P} = (P_i : i \in [n])$ in Γ' from x'_i to $y_{\sigma(i)}$. Furthermore, since $|J| \leq n^3$ there is some subset $A \subseteq [n^3 + a]$ of size a such that H_k is disjoint from K for each $k \in A$.

Therefore, since Γ' is disjoint from X' and meets each $R_i x_i'$ in x_i' only, the family \mathcal{P} is a linkage from \mathcal{R} to $(S_j)_{j \in [n^3+a]}$ which is after X such that

$$\mathcal{T} = (x_i R_i x_i' P_i y_{\sigma(i)} S_{\sigma(i)} \colon i \in [n])$$

avoids H_i for $i \in [n^3 + 1] \setminus J$.

§5. G-tribes and concentration of G-tribes towards an end

For showing that a given graph G is ubiquitous with respect to a fixed relation \triangleleft , we shall assume that $nG \triangleleft \Gamma$ for every $n \in \mathbb{N}$ and need to show that this implies that $\aleph_0 G \triangleleft \Gamma$. Since each subgraph witnessing that $nG \triangleleft \Gamma$ will be a collection of n disjoint subgraphs each being a witness for $G \triangleleft \Gamma$, it will be useful to introduce some notation for talking about these families of collections of n disjoint witnesses for each n.

To do this formally, recall that we write $G \leq^* H$ if H is a subdivision of G and $G \leq \Gamma$ if G is a topological minor of Γ .

Definition 13 (G-tribes). Let G and Γ be graphs.

• A G-tribe in Γ is a collection \mathcal{F} of finite sets F (called layer) of disjoint subgraphs H of Γ such that $G \leq^* H$ for each member of \mathcal{F} , i.e. for each $H \in \bigcup \mathcal{F}$.

6

- A G-tribe \mathcal{F} in Γ is called thick, if for each $n \in \mathbb{N}$ there is a layer $F \in \mathcal{F}$ with $|F| \ge n$; otherwise, it is called thin.
- A G-tribe \mathcal{F}' in Γ is a G-subtribe of a G-tribe \mathcal{F} in Γ , denoted by $\mathcal{F}' \lhd \mathcal{F}$, if there is an injection $\Psi \colon \mathcal{F}' \to \mathcal{F}$ such that for each $F' \in \mathcal{F}'$ there is an injection $\varphi_{F'} \colon F' \to \Psi(F')$ such that $V(H') \subseteq V(\varphi_{F'}(H'))$ for each $H' \in F'$. The G-subtribe \mathcal{F}' is called flat, denoted by $\mathcal{F}' \subseteq \mathcal{F}$, if there is such an injection Ψ satisfying $F' \subseteq \Psi(F')$.
- A thick G-tribe \mathcal{F} in Γ is concentrated at an end ϵ of Γ , if for every finite vertex set X of Γ , the G-tribe $\mathcal{F}_X = \{F_X : F \in \mathcal{F}\}$ consisting of the layers $F_X = \{H \in F : H \not\subseteq C(X, \epsilon)\} \subseteq F$ is a thin subtribe of \mathcal{F} .

We first observe that removing a thin G-tribe from a thick G-tribe always leaves a thick G-tribe.

Lemma 14. Let \mathcal{F} be a thick G-tribe in Γ and let \mathcal{F}' be a thin subtribe of \mathcal{F} , witnessed by $\Psi \colon \mathcal{F}' \to \mathcal{F}$ and $(\varphi_{F'} \colon F' \in \mathcal{F}')$. For $F \in \mathcal{F}$, if $F \in \Psi(\mathcal{F}')$, let $\Psi^{-1}(F) = \{F'_F\}$ and set $\hat{F} = \varphi_{F'_F}(F'_F)$. If $F \notin \Psi(\mathcal{F}')$, set $\hat{F} = \emptyset$. Then

$$\mathcal{F}'' := \{ F \setminus \hat{F} \colon F \in \mathcal{F} \}$$

is a thick flat G-subtribe of \mathcal{F} .

Proof. \mathcal{F}'' is obviously a flat subtribe of \mathcal{F} . As \mathcal{F}' is thin, there is a $k \in \mathbb{N}$ such that $|F'| \leq k$ for every $F' \in \mathcal{F}'$. Thus $|\hat{F}| \leq k$ for all $F \in \mathcal{F}$. Let $n \in \mathbb{N}$. As \mathcal{F} is thick, there is a layer $F \in \mathcal{F}$ satisfying $|F| \geq n + k$. Thus $|F \setminus \hat{F}| \geq n + k - k = n$.

Given a thick G-tribe, the members of this tribe may have different properties, for example, some of them contain a ray belonging to a specific end ϵ of Γ whereas some of them do not. The next lemma allows us to restrict onto a thick subtribe, in which all members have the same properties, as long as we consider only finitely many properties. E.g. we find a subtribe in which either all members contain an ϵ -ray, or none of them contain such a ray.

Lemma 15 (Pigeon hole principle for thick G-tribes). Suppose for some $k \in \mathbb{N}$, we have a k-colouring $c: \bigcup \mathcal{F} \to [k]$ of the members of some thick G-tribe \mathcal{F} in Γ . Then there is a monochromatic, thick, flat G-subtribe \mathcal{F}' of \mathcal{F} .

Proof. Since \mathcal{F} is a thick G-tribe, there is a sequence $(n_i: i \in \mathbb{N})$ of natural numbers and a sequence $(F_i \in \mathcal{F}: i \in \mathbb{N})$ such that

$$n_1 \leqslant |F_1| < n_2 \leqslant |F_2| < n_3 \leqslant |F_3| < \cdots$$

Now for each i, by pigeon hole principle, there is one colour $c_i \in [k]$ such that the subset $F_i' \subseteq F_i$ of elements of colour c_i has size at least n_i/k . Moreover, since [k] is finite, there is one colour $c^* \in [k]$ and an infinite subset $I \subseteq \mathbb{N}$ such that $c_i = c^*$ for all $i \in I$. But this means that $\mathcal{F}' := \{F_i' : i \in I\}$ is a monochromatic, thick, flat G-subtribe.

Lemma 16. Suppose Γ contains a thick G-tribe \mathcal{F} for some connected G. Then either $\aleph_0 G \lhd \Gamma$, or there is a thick flat subtribe \mathcal{F}' of \mathcal{F} and an end ϵ of Γ such that \mathcal{F}' is concentrated at ϵ .

Proof. For every finite vertex set $X \subseteq V(\Gamma)$, only a thin subtribe of \mathcal{F} can meet X, so by Lemma 14 a thick flat subtribe \mathcal{F}'' is contained in the graph $\Gamma - X$. Since each member of \mathcal{F}'' is connected, any member H of \mathcal{F}'' is contained in a unique component of $\Gamma - X$. If for any X, infinitely many components of $\Gamma - X$ contain a subdivision of G, the union of all these copies is a subdivided copy of $\aleph_0 G$ in Γ . Thus, we may assume that for each X, only finitely many components contain elements from \mathcal{F}'' , and hence, by colouring each H with a colour corresponding to the component of $\Gamma - X$ containing it, we may assume by the pigeon hole principle for G-tribes, Lemma 15, that at least one component of $\Gamma - X$ contains a thick flat subtribe of \mathcal{F} .

Let $C_0 = \Gamma$ and $\mathcal{F}_0 = \mathcal{F}$ and consider the following recursive process: If possible, we choose a finite vertex set X_n in C_n such that there are two components $C_{n+1} \neq D_{n+1}$ of $C_n - X_n$ where C_{n+1} contains a thick flat subtribe $\mathcal{F}_{n+1} \subseteq \mathcal{F}_n$ and D_{n+1} contains at least one subdivided copy H_{n+1} of G. Since by construction all H_n are pairwise disjoint, we either find infinitely many such H_n and thus an $\aleph_0 G \leqslant \Gamma$, or our process terminates at step N say. That is, we have a thick flat subtribe \mathcal{F}_N contained in a subgraph C_N such that there is no finite vertex set X_N satisfying the above conditions.

Let $\mathcal{F}' := \mathcal{F}_N$. We claim that for every finite vertex set X of Γ , there is a unique component C_X of $\Gamma - X$ that contains a thick flat G-subtribe of \mathcal{F}' . Indeed, note that if for some finite $X \subseteq \Gamma$ there are two components C and C' of $\Gamma - X$ both containing thick flat G-subtribes of \mathcal{F}' , then since every G-copy in \mathcal{F}' is contained in C_N , it must be the case that $C \cap C_N \neq \emptyset \neq C' \cap C_N$. But then $X_N = X \cap C_N \neq \emptyset$ is a witness that our process could not have terminated at step N.

Next, observe that whenever $X' \supseteq X$, then $C_{X'} \subseteq C_X$. By the direction theorem of Diestel and Kühn, [8], it follows that there is a unique end ϵ of Γ such that $C(X, \epsilon) = C_X$ for all finite $X \subseteq \Gamma$. It now follows easily from the uniqueness of $C_X = C(X, \epsilon)$ that \mathcal{F}' is concentrated at this ϵ . \square

We note that concentration towards an end ϵ is a robust property in the following sense:

Lemma 17. Let G be a connected graph and Γ a graph containing a thick connected G-tribe \mathcal{F} concentrated at an end ϵ of Γ . Then the following assertions hold:

- (1) For every finite set X, the component $C(X, \epsilon)$ contains a thick flat G-subtribe of \mathcal{F} .
- (2) Every thick subtribe \mathcal{F}' of \mathcal{F} is concentrated at ϵ , too.

Proof. Let X be a finite vertex set. By definition, if the G-tribe \mathcal{F} is concentrated at ϵ , then \mathcal{F} is thick, and the subtribe \mathcal{F}_X consisting of the sets $F_X = \{H \in F : H \not\subseteq C(X, \epsilon)\} \subseteq F$ for $F \in \mathcal{F}$ is a thin subtribe of \mathcal{F} , i.e. there exists $k \in \mathbb{N}$ such that $|F_X| \leq k$ for all $F_X \in \mathcal{F}_X$.

For (1), observe that the G-tribe $\mathcal{F}' = \{F \setminus F_X : F \in \mathcal{F}\}$ is a thick flat subtribe of \mathcal{F} by Lemma 14, and all its members are contained in $C(X, \epsilon)$ by construction.

For (2), observe that if \mathcal{F}' is a subtribe of \mathcal{F} , then for every $F' \in \mathcal{F}'$ there is an injection $\varphi_{F'} \colon F' \to F$ for some $F \in \mathcal{F}$. Therefore, $|\varphi_{F'}^{-1}(F_X)| \leq k$ for $F_X \subseteq F$ as defined above, and so only a thin subtribe of \mathcal{F}' is not contained in $C(X, \epsilon)$.

§6. Countable subtrees

In this section we prove the countable version of Theorem 1. Let T be a countable tree. By Lemma 16, we may assume without loss of generality that there are an end ϵ of Γ and a thick T-tribe \mathcal{F} concentrated at ϵ .

Without loss of generality, we may assume that ϵ is undominated in Γ . Indeed, an end of Γ is dominated by infinitely many distinct vertices if and only if Γ contains a subdivision of K_{\aleph_0} [7, Exercise 19, Chapter 8], in which case proving ubiquity becomes trivial:

Lemma 18. For any countable graph G, we have $\aleph_0 \cdot G \subseteq K_{\aleph_0}$.

Proof. By partitioning the vertex set of K_{\aleph_0} into countably many infinite parts, we see that $\aleph_0 \cdot K_{\aleph_0} \subseteq K_{\aleph_0}$. Also, clearly $G \subseteq K_{\aleph_0}$. Hence, we have $\aleph_0 \cdot G \subseteq \aleph_0 \cdot K_{\aleph_0} \subseteq K_{\aleph_0}$.

Therefore, ϵ is only finitely dominated, but then, if X denotes the vertices dominating ϵ , we may simply work in the connected graph $C(X, \epsilon) \subset \Gamma$, in which now ϵ is undominated and which by concentration still contains a thick T-tribe concentrated at ϵ .

6.1. **Preprocessing.** We begin by picking a root v for T. Let $V_{\infty}(T)$ be the set of vertices of infinite degree in T.

Definition 19. Given T as above, define a locally finite subtree $T^* \subseteq T$ by

$$T^* := T \setminus \bigcup_{t \in V_{\infty}(T)} \{ T_{t_i} \colon t_i \in N^+(t), i > N_t \},$$

where N_t is as in Corollary 6.

Definition 20. An edge e of T^* is an extension edge if there is a ray in T^* starting at e^+ which displays self-similarity of T.¹ For each extension edge e we fix one such a ray R_e . Write $Ext(T^*) \subseteq E(T^*)$ for the set of extension edges.

Consider the forest $T^* - Ext(T^*)$ obtained from T^* by removing all extension edges. Since every ray in T^* must contain an extension edge by Corollary 8, each component of $T^* - Ext(T^*)$ is a locally finite rayless tree and so is finite. We enumerate the components of $T^* - Ext(T^*)$ as T_0^*, T_1^*, \ldots in such a way that for every $n \ge 0$, the set

$$T_n := T\left[\bigcup_{i \leqslant n} V(T_i^*)\right]$$

¹Recall that all such rays by definition go upwards with respect to the tree order. Also note that it should display self-similarity of all of T, not just of T^* .

is a finite subtree of T^* containing the root r. Let us write $\partial(T_n) = E(T_n, T^* \setminus T_n)$, and note that $\partial(T_n) \subseteq Ext(T^*)$. We make the following definitions:

- For a given T-tribe \mathcal{F} and ray R of T, we say that R converges to ϵ according to \mathcal{F} if for all members H of \mathcal{F} the ray H(R) is in ϵ . We say that R is cut from ϵ according to \mathcal{F} if for all members H of \mathcal{F} the ray H(R) is not in ϵ . Finally we say that \mathcal{F} determines whether R converges to ϵ if either R converges to ϵ according to \mathcal{F} or R is cut from ϵ according to \mathcal{F} .
- Given $n \in \mathbb{N}$, we say a thick T-tribe \mathcal{F} agrees about $\partial(T_n)$ if for each extension edge $e \in \partial(T_n)$, it determines whether R_e converges to ϵ .
- Since $\partial(T_n)$ is a finite set of edges for all n, it follows from Lemma 15 that given some $n \in \mathbb{N}$, any thick T-tribe has a flat thick T-subtribe \mathcal{F} such that \mathcal{F} agrees about $\partial(T_n)$. Under these circumstances we set

```
\partial_{\epsilon}(T_n) := \{e \in \partial(T_n) \colon R_e \text{ converges to } \epsilon \text{ according to } \mathcal{F}\},
\partial_{\neg \epsilon}(T_n) := \{e \in \partial(T_n) \colon R_e \text{ is cut from } \epsilon \text{ according to } \mathcal{F}\}.
```

• Also, under these circumstances, let us write $T_n^{\neg \epsilon}$ for the component of the forest $T - \partial_{\epsilon}(T_n)$ containing the root of T. Note that $T_n \subseteq T_n^{\neg \epsilon}$.

The following lemma contains a large part of the work needed for our inductive construction.

Lemma 21 (*T*-tribe refinement lemma). Suppose we have a thick *T*-tribe \mathcal{F}_n concentrated at ϵ which agrees about $\partial(T_n)$ for some $n \in \mathbb{N}$. Let f denote the unique edge from T_n to $T_{n+1} \setminus T_n$. Then there is a thick *T*-tribe \mathcal{F}_{n+1} concentrated at ϵ with the following properties:

- (i) \mathcal{F}_{n+1} agrees about $\partial(T_{n+1})$.
- (ii) $\mathcal{F}_{n+1} \cup \mathcal{F}_n$ agree about $\partial(T_n) \setminus \{f\}$.
- (iii) $T_{n+1}^{\neg \epsilon} \supseteq T_n^{\neg \epsilon}$.
- (iv) For all $H \in \mathcal{F}_{n+1}$ there is a finite $X \subseteq \Gamma$ such that $H(T_{n+1}^{\neg \epsilon}) \cap C_{\Gamma}(X, \epsilon) = \emptyset$.

Moreover, if $f \in \partial_{\epsilon}(T_n)$, and $R_f = v_0 v_1 v_2 \dots \subseteq T^*$ (with $v_0 = f^+$) denotes the ray displaying self-similarity of T at f, then we may additionally assume:

- (v) For every $H \in \mathcal{F}_{n+1}$ and every $k \in \mathbb{N}$, there is $H' \in \mathcal{F}_{n+1}$ with
 - $H' \subseteq_r H$
 - $\bullet \ H'(T_n) = H(T_n),$
 - $H'(T_{v_0}) \subseteq_r H(T_{v_k})$, and
 - $H'(R_f) \subseteq H(R_f)$.

Proof. Concerning (v), if $f \in \partial_{\epsilon}(T_n)$ recall that according to Definition 20, the ray R_f satisfies that for all $k \in \mathbb{N}$ we have $T_{v_0} \leq_r T_{v_k}$ such that R_f gets embedded into itself. In particular, there is a subtree \hat{T}_1 of T_{v_1} which is a rooted subdivision of T_{v_0} with $\hat{T}_1(R_f) \subseteq R_f$, considering \hat{T}_1 as a rooted tree given by the tree order in T_{v_1} . If we define recursively for each $k \in \mathbb{N}$ $\hat{T}_k = \hat{T}_{k-1}(\hat{T}_1)$ then it is clear that $(\hat{T}_k : k \in \mathbb{N})$ is a family of rooted subdivisions of T_{v_0} such that for each $k \in \mathbb{N}$

- $\hat{T}_k \subseteq T_{v_k}$;
- $\hat{T}_k \supseteq \hat{T}_{k+1}$;
- $\hat{T}_k(R_f) \subseteq R_f$.

Hence, for every subdivision H of T with $H \in \bigcup \mathcal{F}_n$ and every $k \in \mathbb{N}$, the subgraph $H(\hat{T}_k)$ is also a rooted subdivision of T_{v_0} . Let us construct a subdivision $H^{(k)}$ of T by letting $H^{(k)}$ be the minimal subtree of H containing $H(T \setminus T_{v_0}) \cup H(\hat{T}_k)$, where $H^{(k)}(T \setminus T_{v_0}) = H(T \setminus T_{v_0})$ and $H^{(k)}(T_{v_0}) = H(\hat{T}_k)$. Note that

$$H^{(k)}(T_{v_0}) = H(\hat{T}_k) \subseteq_r H^{(k-1)}(T_{v_0}) = H(\hat{T}_{k-1}) \subseteq_r \dots \subseteq_r H(T_{v_k}).$$

In particular, for every subdivision $H \in \bigcup \mathcal{F}_n$ of T and every $k \in \mathbb{N}$, there is a subdivision $H^{(k)} \subseteq H$ of T such that $H^{(k)}(T_n^{\neg \epsilon}) = H(T_n^{\neg \epsilon})$, $H^{(k)}(T_{v_0}) \subseteq_r H(T_{v_k})$, and $H^{(k)}(R_f) \subseteq H(R_f)$. By the pigeon hole principle, there is an infinite index set $K_H = \{k_1^H, k_2^H, \ldots\} \subseteq \mathbb{N}$ such that $\{\{H^{(k)}\}: k \in K_H\}$ agrees about $\partial(T_{n+1})$. Consider the thick subtribe $\mathcal{F}'_n = \{F'_i: F \in \mathcal{F}_n, i \in \mathbb{N}\}$ of \mathcal{F}_n with

$$(\dagger)$$
 $F'_i := \{H^{(k_i^H)} : H \in F\}.$

Observe that $\mathcal{F}'_n \cup \mathcal{F}_n$ still agrees about $\partial(T_n)$. (If $f \in \partial_{\neg \epsilon}(T_n)$, then skip this part and simply let $\mathcal{F}'_n := \mathcal{F}_n$.)

Concerning (iii), observe that for every $H \in \bigcup \mathcal{F}'_n$, since the rays $H(R_e)$ for $e \in \partial_{\neg \epsilon}(T_n)$ do not tend to ϵ , there is a finite vertex set X_H such that $H(R_e) \cap X_H = \emptyset$ for all $e \in \partial_{\neg \epsilon}(T_n)$. Furthermore, since X_H is finite, for each such extension edge e there exists $x_e \in R_e$ such that

$$H(T_{x_e}) \cap C(X_H, \epsilon) = \emptyset.$$

By definition of extension edges, cf. Definition 20, for each $e \in \partial_{\neg \epsilon}(T_n)$ there is a rooted embedding of T_{e^+} into $H(T_{x_e})$. Hence, there is a subdivision \tilde{H} of T with $\tilde{H} \leq H$ and $\tilde{H}(T_n) = H(T_n)$ such that $\tilde{H}(T_{e^+}) \subseteq H(T_{x_e})$ for each $e \in \partial_{\neg \epsilon}(T_n)$.

Note that if $e \in \partial_{\neg \epsilon}(T_n)$ and g is an extension edge with $e \leqslant g \in \partial(T_{n+1}) \setminus \partial(T_n)$, then $\tilde{H}(R_q) \subseteq \tilde{H}(T_{e^+}) \subseteq H(Tx_e)$, and so

(‡)
$$\tilde{H}(R_g)$$
 doesn't tend to ϵ .

Define $\tilde{\mathcal{F}}_n$ to be the thick T-subtribe of \mathcal{F}'_n consisting of the \tilde{H} for every H in $\bigcup \mathcal{F}'_n$. Now use Lemma 15 to chose a maximal thick flat subtribe \mathcal{F}_n^* of $\tilde{\mathcal{F}}_n$ which agrees about $\partial(T_{n+1})$, so it satisfies (i) and (ii). By (\dagger), the tribe \mathcal{F}_n^* satisfies (iii), and by maximality and (\dagger), it satisfies (v).

In our last step, we now arrange for (iv) while preserving all other properties. For each $H \in \bigcup \mathcal{F}_n^*$, since $H(T_{n+1})$ is finite and ϵ undominated, we may find a finite separator Y_H such that

$$H(T_{n+1}) \cap (Y_H \cup C(Y_H, \epsilon)) = \emptyset.$$

Since Y_H is finite, for every vertex $t \in V(T_{n+1}) \cap V_{\infty}(T)$, say with $N^+(t) = (t_i)_{i \in \mathbb{N}}$, there exists $n_t \in \mathbb{N}$ such that $C(Y_H, \epsilon) \cap H(T_{t_j}) = \emptyset$ for all $j \geqslant n_t$. Using Corollary 6, for every such t there is

a rooted embedding

$$\{t\} \cup \bigcup_{j>N_t} T_{t_j} \leqslant_r \{t\} \cup \bigcup_{j>n_t} T_{t_j}.$$

fixing the root t. Hence there is a subdivision H' of T with $H' \leq H$ such that $H'(T^*) = H(T^*)$ and for every vertex $t \in V(T_{n+1}) \cap V_{\infty}(T)$

$$H'\left[\{t\} \cup \bigcup_{j>N_t} T_{t_j}\right] \cap (Y_H \cup C(Y_H, \epsilon)) = \emptyset.$$

Moreover, note that by construction of \tilde{F}_n , every such H' automatically satisfies that

$$H(T_{e^+}) \cap C(X_H \cup Y_H, \epsilon) = \emptyset$$

for all $e \in \partial_{\neg \epsilon}(T_{n+1})$. Let \mathcal{F}_{n+1} consist of the set of H' as defined above for all $H \in \mathcal{F}_n^*$. Then $X_H \cup Y_H$ is a finite separator witnessing that \mathcal{F}_{n+1} satisfies (iv).

6.2. The construction. So let T be a countable tree. Recall that we may assume that there are an undominated end ϵ of Γ and a thick T-tribe \mathcal{F} concentrated at ϵ .

Definition 22 (Bounder, extender). Suppose that some thick T-tribe \mathcal{F} which is concentrated at ϵ agrees about $\partial(T_n)$ for some given $n \in \mathbb{N}$, and $Q_1^n, Q_2^n, \ldots, Q_n^n$ are disjoint subdivisions of $T_n^{\neg \epsilon}$ (note, $T_n^{\neg \epsilon}$ depends on \mathcal{F}).

• A bounder for the $(Q_i^n : i \in [n])$ is a finite set X of vertices in Γ separating all the Q_i from ϵ , i.e. such that

$$C(X, \epsilon) \cap \bigcup_{i=1}^{n} Q_i^n = \emptyset.$$

• An extender for the $(Q_i^n : i \in [n])$ is a family $\mathcal{E}_n = (E_{e,i}^n : e \in \partial_{\epsilon}(T_n), i \in [n])$ of rays in Γ tending to ϵ which are disjoint from each other and also from each Q_i^n except at their initial vertices, and where the start vertex of $E_{e,i}^n$ is $Q_i^n(e^-)$.

To prove Theorem 1 for T, we now assume inductively that for some $n \in \mathbb{N}$, with $r := \lfloor n/2 \rfloor$ and $s := \lceil n/2 \rceil$ we have:

- (1) A thick T-tribe \mathcal{F}_r in Γ concentrated at ϵ which agrees about $\partial(T_r)$, with a boundary $\partial_{\epsilon}(T_r)$ such that $T_{r-1}^{\neg \epsilon} \subseteq T_r^{\neg \epsilon}$.
- (2) a family $(Q_i^n : i \in [s])$ of s pairwise disjoint subdivisions of $T_r^{-\epsilon}$ in Γ with $Q_i^n(T_{r-1}^{-\epsilon}) = Q_i^{n-1}$ for all $i \leq s-1$,
- (3) a bounder X_n for the $(Q_i^n : i \in [s])$, and
- (4) an extender $\mathcal{E}_n = (E_{e,i}^n : e \in \partial_{\epsilon} (T_r^{\neg \epsilon}), i \in [s])$ for the $(Q_i^n : i \in [s])$.

The base case n = 0 it easy, as we simply may choose $\mathcal{F}_0 \leq_r \mathcal{F}$ to be any thick T-subtribe in Γ which agrees about $\partial(T_0)$, and let all other objects be empty.

So, let us assume that our construction has proceeded to step $n \ge 0$. Our next task splits into two parts: First, if n = 2k - 1 is odd, we extend the already existing k subdivisions $(Q_i^n : i \in [k])$

of $T_{k-1}^{\neg \epsilon}$ to subdivisions $(Q_i^{n+1}: i \in [k])$ of $T_k^{\neg \epsilon}$. And secondly, if n = 2k is even, we construct a further disjoint copy Q_{k+1}^{n+1} of $T_k^{\neg \epsilon}$.

Construction part 1: n = 2k - 1 is odd. By assumption, \mathcal{F}_{k-1} agrees about $\partial(T_{k-1})$. Let f denote the unique edge from T_{k-1} to $T_k \setminus T_{k-1}$. We first apply Lemma 21 to \mathcal{F}_{k-1} in order to find a thick T-tribe \mathcal{F}_k concentrated at ϵ satisfying properties (i)–(v). In particular, \mathcal{F}_k agrees about $\partial(T_k)$ and $T_{k-1}^{-\epsilon} \subseteq T_k^{-\epsilon}$

We first note that if $f \notin \partial_{\epsilon}(T_{k-1})$, then $T_{k-1}^{-\epsilon} = T_k^{-\epsilon}$, and we can simply take $Q_i^{n+1} := Q_i^n$ for all $i \in [k]$, $\mathcal{E}_{n+1} := \mathcal{E}_n$ and $X_{n+1} := X_n$.

Otherwise, we have $f \in \partial_{\epsilon}(T_{k-1})$. By Lemma 17(2) \mathcal{F}_k is concentrated at ϵ , and so we may pick a collection $\{H_1, \ldots, H_N\}$ of disjoint subdivisions of T from some $F \in \mathcal{F}_k$, all of which are contained in $C(X_n, \epsilon)$, where $N = |\mathcal{E}_n|$. By Lemma 11 there is some linkage $\mathcal{P} \subseteq C(X_n, \epsilon)$ from

$$\mathcal{E}_n$$
 to $(H_j(R_f): j \in [N]),$

which is after X_n . Let us suppose that the linkage \mathcal{P} joins a vertex $x_{e,i} \in E_{e,i}^n$ to $y_{\sigma(e,i)} \in H_{\sigma(e,i)}(R_f)$ via a path $P_{e,i} \in \mathcal{P}$. Let $z_{\sigma(e,i)}$ be a vertex in R_f such that $y_{\sigma(e,i)} \leqslant H_{\sigma(e,i)}(z_{\sigma(e,i)})$ in the tree order on $H_{\sigma(e,i)}(T)$.

By property (v) of \mathcal{F}_k in Lemma 21, we may assume without loss of generality that for each H_j there is a another member $H'_j \subseteq H_j$ of \mathcal{F}_k such that $H'_j(T_{f^+}) \subseteq_r H_j(T_{z_j})$. Let $\hat{P}_j \subseteq H'_j$ denote the path from $H_j(y_j)$ to $H'_j(f^+)$.

Now for each $i \in [k]$, define

$$Q_i^{n+1} = Q_i^n \cup E_{f,i}^n x_{f,i} P_{f,i} y_{\sigma(f,i)} \hat{P}_{\sigma(f,i)} \cup H'_{\sigma(f,i)} (T_k^{\neg \epsilon} \setminus T_{k-1}^{\neg \epsilon}).$$

By construction, each Q_i^{n+1} is a subdivision of $T_k^{\neg \epsilon}$.

By Lemma 21(iv) we may find a finite set $X_{n+1} \subseteq \Gamma$ with $X_n \subseteq X_{n+1}$ such that

$$C(X_{n+1}, \epsilon) \cap \left(\bigcup_{i \in [k]} Q_i^{n+1}\right) = \emptyset.$$

This set X_{n+1} will be our bounder.

Define an extender $\mathcal{E}_{n+1} = (E_e^{n+1}) : e \in \partial_{\epsilon}(T_k), i \in [k]$ for the Q_i^{n+1} as follows:

- For $e \in \partial_{\epsilon}(T_{k-1}) \setminus \{f\}$, let $E_{e,i}^{n+1} := E_{e,i}^n x_{e,i} P_{e,i} y_{\sigma(e,i)} H_{\sigma(e,i)}(R_f)$.
- For $e \in \partial_{\epsilon}(T_k) \setminus \partial(T_{k-1})$, let $E_{e,i}^{n+1} := H'_{\sigma(e,i)}(R_e)$.

Since each $H_{\sigma(e,i)}, H'_{\sigma(e,i)} \in \bigcup \mathcal{F}_k$, and \mathcal{F}_k determines that R_f converges to ϵ , these rays belong indeed to the end ϵ . Furthermore, since $H'_{\sigma(e,i)} \subseteq H_{\sigma(e,i)}$ and $\{H_1, \ldots, H_N\}$ are disjoint, it follows that the rays are disjoint.

Construction part 2: n=2k is even. If $\partial_{\epsilon}(T_k)=\emptyset$, then $T_k^{\neg\epsilon}=S$, and so picking any element Q_{k+1}^{n+1} from \mathcal{F}_k with $Q_{k+1}^{n+1}\subseteq C(X_n,\epsilon)$ gives us a further copy of S disjoint from all the previous ones. Using Lemma 21(iv), there is a suitable bounder $X_{n+1}\supseteq X_n$ for Q_{k+1}^{n+1} , and we are done. Otherwise, pick $e_0\in\partial_{\epsilon}(T_k)$ arbitrary.

Since \mathcal{F}_k is concentrated at ϵ , we may pick a collection $\{H_1, \ldots, H_N\}$ of disjoint subdivisions of T from \mathcal{F}_k all contained in $C(X_n, \epsilon)$, where N is large enough so that we may apply Lemma 12 to find a linkage $\mathcal{P} \subseteq C(X_n, \epsilon)$ from

$$\mathcal{E}_n$$
 to $(H_i(R_{e_0}): i \in [N]),$

after X_n , avoiding say H_1 . Let us suppose the linkage \mathcal{P} joins a vertex $x_{e,i} \in E_{e,i}^n$ to $y_{\sigma(e,i)} \in H_{\sigma(e,i)}(R_{e_0})$ via a path $P_{e,i} \in \mathcal{P}$. Define

$$Q_{k+1}^{n+1} = H_1(T_k^{\neg \epsilon}).$$

Note that Q_{k+1}^{n+1} is a T-suitable subdivision of $T_k^{\neg \epsilon}$.

By Lemma 21(iv) there is a finite set $X_{n+1} \subseteq \Gamma$ with $X_n \subseteq X_{n+1}$ such that $C(X_{n+1}, \epsilon) \cap Q_{k+1}^{n+1} = \emptyset$. This set X_{n+1} will be our new bounder.

Define the extender $\mathcal{E}_{n+1} = (E_{e,i}^{n+1} : e \in \partial_{\epsilon}(T_{k+1}), i \in [k+1])$ of ϵ -rays as follows:

- For $i \in [k]$, let $E_{e,i}^{n+1} := E_{e,i}^n x_{e,i} P_{e,i} y_{\sigma(e,i)} H_{\sigma(e,i)}(R_{e_0})$.
- For i = k + 1, let $E_{e,k+1}^{n+1} := H_1(R_e)$ for all $e \in \partial_{\epsilon}(T_{k+1})$.

Once the construction is complete, let us define $H_i := \bigcup_{n \geqslant 2i-1} Q_i^n$. Since $\bigcup_{n \in \mathbb{N}} T_n^{-\epsilon} = T$, and due to the extension property (2), the collection $(H_i)_{i \in \mathbb{N}}$ is a topological minor of $\aleph_0 T$ in Γ , and the proof is complete.

References

- [1] T. Andreae. Über eine Eigenschaft lokalfiniter, unendlicher Bäume. *Journal of Combinatorial Theory, Series* B, 27(2):202–215, 1979.
- [2] T. Andreae. Classes of locally finite ubiquitous graphs. *Journal of Combinatorial Theory, Series B*, 103(2):274–290, 2013.
- [3] N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen. Ubiquity in graphs I: Topological ubiquity of trees. https://arxiv.org/abs/1806.04008.
- [4] N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen. Ubiquity in graphs II: Ubiquity of graphs with non-linear end structure. https://arxiv.org/abs/1809.00602.
- [5] N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen. Ubiquity in graphs III: Ubiquity of a class of locally finite graphs. in preparation.
- [6] N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, and M. Teegen. Ubiquity in graphs IV: Ubiquity of graphs of bounded tree-width. in preparation.
- [7] R. Diestel. Graph Theory. Springer, 5th edition, 2016.
- [8] R. Diestel and D. Kühn. Graph-theoretical versus topological ends of graphs. *Journal of Combinatorial Theory*, Series B, 87:197–206, 2003.
- [9] R Halin. A problem in infinite graph-theory. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 43(1):79–84, 1975.
- [10] R. Laver. Better-quasi-orderings and a class of trees. Studies in foundations and combinatorics, 1:31–48, 1978.
- [11] C. St. J. A. Nash-Williams. On well-quasi-ordering infinite trees. Mathematical proceedings of the Cambridge philosophical society, 61(3):697–720, 1965.