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Abstract. A proof of MacLane’s theorem for graph-like spaces via inverse limits.
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§1. Topological versions of Kuratowski’s and MacLane’s theorem

Theorem 1 (Kuratowski 1930, see [4, Theorem 4.4.6]). A finite connected graph G is planar if
and only if G contains no topological copy of a K5 and K3,3.
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Figure 1.1. The forbidden minors K5 and K3,3

Theorem 2 (MacLane 1937, see [4, Theorem 4.5.1]). A finite connected graph G is planar if and
only if its cycle space C(G) has a simple basis.

Sketch. MacLane can be derived from Kuratowski as follows: By considering blocks, wlog G is
2-connected. Then every edge lies on precisely two faces, and the facial boundaries generate every
cycle in G: given a cycle C ⊂ G, take the sum of all boundaries of faces “inside” C.

Conversely, one shows that if G has a simple basis, then so does every subgraph H ⊆ G. But
TK5 and TK3,3 don’t have simple bases by a simple counting argument, see [4, Theorem 4.5.1]. �

We now want to generalise MacLane’s result to |G| for locally finite connected graphs G, and
even to compact graph-like metrizable spaces X:

Theorem 3 (Bruhn & Stein [1]). A connected locally finite graph G (equivalently: |G|) is planar
if and only if its topological cycle space C(G) has a simple basis.

Theorem 4 (Christian, Richter & Rooney [2]). A 2-connected compact metrizable graph-like space
X is planar if and only if its topological cycle space C(X) has a simple basis.

If X is not 2-connected, there are examples that have a simple basis but fail to be planar (see
Figure 1.3)

Just like MacLane is a consequence of Kuratowski’s theorem, topological MacLane is a conse-
quence of Clayor’s theorem, a deep generalisation of Kuratowksi from graphs to Peano continua,
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i.e. compact metrizable connected locally connected spaces. (Recall that graph-like continua are
Peano).

Theorem 5 (Claytor 1937, see [3]). A Peano continuum X is planar if and only if X contains
no subspace homeomorphic to one of the two Kuratowski graphs K5 and K3,3, nor a subspace
homeomorphic to the two Claytor curves K∞5 and K∞3,3.

K∞5 =

p

K∞3,3 =

q

Figure 1.2. The forbidden spaces K∞5 and K∞3,3

Figure 1.3. Drawings of K∞5 and K∞3,3 as “thumbtacks” (“Reißzwecke”), as printed
in [3].

The second pair of drawings can be obtained from the first by pulling the left-upper vertex
from every rectangle below the horizontal line, so that the edge to its right neighbour becomes a
half-circle around the right of the figure.

Using that a Peano continuum is 2-connected if and only if any two points lie on a common
simple closed curve, and that in a |G| any end of degree at least 2 lies on a topological circle
respectively, one readily obtains:

Corollary 6. A 2-connected Peano continuum X is planar if and only if X contains no subspace
homeomorphic to one of the two Kuratowski graphs K5 and K3,3.

Proof. Exercise. �

Corollary 7. The following are equivalent for a locally finite connected graph G:

(1) G is planar,
(2) G contains no subdivision of K5 and K3,3,
(3) |G| contains no subspace homeomorphic to K5 and K3,3, and
(4) |G| is planar.

Proof. Exercise. �

Given these two corollaries, it is clear that the following result implies both Theorems 3 and 4.
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Theorem 8 (Christian, Richter & Rooney [2]). A connected compact metrizable graph-like space
X contains no copy of K5 or K3,3 if and only if its topological cycle space C(X) has a simple basis.

Christian, Richter & Rooney’s proof in [2] uses a number of non-trivial topological lemmas.
Our approach circumvents these topological results and instead relies directly on a combinatorial
compactness argument. Indeed, it is clear that Theorem 8 is implied by the following lemmas.

Lemma 9. Let X be a metrizable graph-like continuum with inverse limit representation X =

lim←−Gn with edge-contraction bonding maps. Then C(X) has a simple basis if and only if every
C(Gn) has a simple basis.

Proof. ⇒: Let B be a simple basis for C(X).1 Let πn : X → Gn denote the contraction map onto
the factor Gn.

Claim that Bn := πn(B) = {πn(C) : C ∈ B} is a simple basis for C(Gn). It is clear that every
element of Bn is a cycle space element of Gn, and that every edge of Gn is used at most twice.
Hence, it remains to show that Bn generates C(Gn). To this end, let C be an arbitrary cycle of
Gn. By arc-connectedness of the fibres π−1n (v) for v ∈ V (C), the element C extends to a cycle Ĉ
of X with πn(Ĉ) = C. Since Ĉ lies in the span of B, it follows readily that C is spanned by Bn.
⇐: Conversely, assume that every C(Gn) has a simple basis. Since every Gn is a contraction

minor of Gn+1, it follows as above that every simple basis of C(Gn+1) restricts to a simple basis
C(Gn). Use the infinity lemma to pick a compatible sequence Bn of simple bases for C(Gn).

Claim that the collection B of unions of maximal chains in (
⋃
Bn,⊆) is a simple basis for

C(X). Every element of B clearly projects to an element of Bn for each n, so meets every finite
cut evenly, so is a cycle space element of X. Moreover, every edge of Gn and hence every edge of
X is used at most twice. Hence, it remains to show that B generates C(X). Let C ∈ C(X) be
arbitrary. Since Bn is a basis, there is An ⊆ Bn with πn(C) =

∑
An, and this linear combination

induces on for Bn−1 to generate πn−1(C). By the infinity lemma, we may select compatible linear
combinations An for n ∈ N. Then the collection A ⊆ B of unions of maximal chains in (

⋃
An,⊆)

satisfies that C =
∑
A, as both C ⊆

∑
A and C ⊇

∑
A can be checked edge-wise on all large

enough Gn. Finally, this sum is automatically thin, as B is simple. �

Lemma 10. Let X be a metrizable graph-like continuum with inverse limit representation X =

lim←−Gn with edge-contraction bonding maps. Then X contains no topological copy of K3,3 or K5 if
and only if no Gn contains a subdivided K3,3 or K5.

Proof. ⇒: Let πn : X → Gn denote the contraction map onto the factor Gn. Proving the
contrapositive, assume that some Gn contains a subdivided K3,3 or K5 with branch vertices S say.
Since π−1n (v) are arc-connected in X for v ∈ S, it is straightforward to construct a topological
copy of K3,3 or K5 in X by adding suitable arcs inside the fibres π−1n (v).2

1Since E(X) is countable, and every edge is contained in at most two elements of B, also B is countable.
2This is as in Wagner’s proof that the existence of a K3,3 or K5 minor implies the existence of a subdivided

K3,3 or K5; note that a K5 minor might give an inflated, so subdivided K3,3 though. Cf. [4, Lemma 4.4.2].
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⇐: We prove more generally that if H is any finite graph topologically contained in X, then
some Gn contains an IH. Assume that f : H ↪→ X is the embedding. Let V (H) = {h1, . . . , hk}
and write xi = f(hi). Moreover, for each e ∈ E(H) pick an edge e′ ∈ E(X) with e′ ⊂ f(e). Write
Hi ⊂ X for the connected component of f(H)− {e′ : e ∈ E(H)} containing xi.

Using the property that if A,B are disjoint closed sets of vertices of X, there is n ∈ N such
that πn(A) ∩ πn(B) = ∅ (Sheet7Q1), there is some n ∈ N such that πn(Hi) ∩ πn(Hj) = ∅ for all
i 6= j ∈ [k].

Then H 4 Gn as witnessed by the branch sets πn(Hi) for i ∈ [k] and edges {e′ : e ∈ E(H)}.
Hence, if X contains a topological K3,3 or K5, then Gn contains an IK3,3 or IK5, but then Gn

also contains a topological K3,3 or a topological K5 by Wagner’s Lemma [4, Lemma 4.4.2]. �

Proof of Theorem 8. Let X be a compact metrizable graph-like space. Choose an inverse limit
representation X = lim←−Gn with edge-contraction bonding maps (by the main result of [5]). Then:

X contains no K5 or K3,3

⇔ no Gn contains a subdivided K3,3 or K5 (by Lemma 10)

⇔ every C(Gn) has a simple basis (by Theorem 2)

⇔ C(X) has a simple basis (by Lemma 9).

�
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