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Definition 1. A language L is a countable family of symbols Ri, i ∈ I, which represent
relations, and symbols fj, j ∈ J , which represent functions. To each symbol we associate a
particular arity, i.e. a positive integer n(i) for relation symbols, or a nonnegative integer
m(j) for function symbols.

Definition 2. A structure for a language L is a set A together with a family of relations
RA

i ⊆ An(i), one for each i ∈ I, and a family of functions fA
j : Am(j) → A, one for each

j ∈ J . The relations RA
i and functions fA

j are called interpretations of the relation and
function symbols in L. If L has no function symbols, then we call A a relational structure.

Examples. (1) If L = ∅, then the structures for L are just sets.
(2) If L = {<}, where < is a relation symbol of arity 2, then linearly ordered sets are

examples of structures in L. So are partially ordered sets.
(3) Suppose L again contains just one relation symbol E of arity 2. A graph G = (V,E)

is a structure in L on the set V where E is an irreflexive, symmetric relation on V specifying
the edges. This can easily be extended to multigraphs.

(4) Let L = {Dq : q ∈ Q ∩ (0,∞)} consist of binary relation symbols. A rational metric
space (X, d) is a structure in L, where we understand that DX

q (x, y) holds if and only if
d(x, y) = q for all x, y ∈ X.

(5) A Boolean algebra is a structure for two binary function symbols ∨ and ∧, a unary
function symbol ¬, and constant symbols 0 and 1.

Definition 3. An injective (bijective) map f : A→ B between two structures A and B for
the same language L is called an embedding (isomorphism) if for every relation symbol
Ri ∈ L, we have

(a1, ..., an(i)) ∈ RA
i ↔ (f(a1), ..., f(an(i))) ∈ RB

i

and similar for all functions symbols.

Definition 4. A structure F is called locally finite if every finite subset of F is contained
in some finite substructure D ⊆ F .
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Remark. All relational structures are locally finite, as every finite subset induces a
substructure. Groups are examples, where for given finite sets, need to consider the
generated subgroup.

Definition 5. A structure F is called homogenous if every isomorphism between finite
substructures A ⊆ F and B ⊆ F extends to an automorphism of F .

Definition 6. If A is a structure, then the age of A, denoted Age(A), is the class of all
finite structures which are isomorphic to a substructure of A.

Theorem 7. Let F be a countable locally finite structure. The following are equivalent:

(1) F is homogeneous.
(2) F has the finite extension property, i.e., whenever A,B ∈ Age(F ), and A ⊆ B,

every embedding of A into F extends to an embedding of B into F .

Proof. For (1) ⇒ (2), consider any embedding f : A ↪→ F . Since B ∈ Age(F ), there is
also an embedding h : B ↪→ F , and there is another copy h[A] of A in h[B] ⊂ F . Since
F is homogeneous, the partial isomorphism f ◦ h−1 between h[A] and f [A] extends to an
automorphism α of F . But then is clear that α ◦ h is the desired extendion of f .

For (2) ⇒ (1), consider any partial isomorphism f0 between two finite substructures
A0 and A′0 of F . Since F is countable and locally finite, it is clear that we can write⋃

n∈NAn = F =
⋃

n∈NA
′
n each as the union of a chain of finite substructures starting with

A0 and A′0 respectively. We will define the isomorphism f in countably many steps using a
back-and-forth argument. Suppose a partial isomorphism fn : Bn → Cn is already defined.
At even steps: Let k be minimal such that Bn ⊂ Ak and use the finite extension property
to extend fn to Ak+1. At odd steps: Let k be minimal such that Cn ⊂ A′k and use the
finite extension property to extend f−1n to A′k+1. �

Theorem 8. Every two countable locally finite homogenous structures in the same language,
having the same age, are isomorphic.

Proof. Consider two such structure N and N ′ with Age(N) = Age(N ′). Since both are
countable and locally finite, we can write N =

⋃
n∈NAn and N ′ =

⋃
n∈NA

′
n each as the

union of a chain of finite substructures.
We will define the isomorphism f in countably many steps using a back-and-forth

argument. Suppose a partial isomorphism fn : Bn → Cn is already defined.
At even steps: Let k be minimal such that Bn ⊂ Ak. Since Bn ⊂ Ak+1 ∈ Age(N ′),

the embedding fn extends to a partial isomorphism fn+1 with domain Ak+1 by the finite
extension property of N ′ (Theorem 7).
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At odd steps: Let k be minimal such that Cn ⊂ A′k and extend fn to a partial isomorphism
fn+1 with codomain A′k+1 using a symmetric argument. �

Lemma 9. If N is a countable, locally finite homogeneous L-structure, then C = Age(N)

satisfies the following properties:

(1) C is closed under isomorphisms;
(2) C is closed under taking substructures;
(3) C contains structures of arbitrarily high finite cardinality;
(4) C satisfies the joint embedding property, i.e., whenever A,B ∈ C, then there is

D ∈ C containing both (isom. copies of) A and B as substructures; and
(5) C satisfies the amalgamation property, i.e. whenever f1 : A→ B1 and f2 : A→ B2

are embeddings of structures in C, then there is D ∈ C and embeddings g1 : B1 → D

and g2 : B2 → D such that g1 ◦ f1 = g2 ◦ f2.

Proof. We check the amalgamation property (the others are easy).
Assume A,B1, B2 ⊂ N . Since N is homogeneous, the maps

fi : Ai → f(Ai) ⊂ Bi

extend to automorphisms f̂i of N . Since N is locally finite, there is a finite substructure D
of N containing f̂−11 (B1) ∪ f̂−12 (B2), and D with gi := f̂−1i � Bi is as desired. �

Definition 10. Any class C of finite L-structures satisfying (1) - (5) is called an amal-
gamation class or Fraissé class. It is called essentially countable if it contains at most
countably many isomorphism types.

Theorem 11 (Fraïssé 1954). Every essentially countable amalgamation class C of finite
L-structures is the age of a unique countable, locally finite homogeneous L-structure, which
is called the Fraïssé-limit of C.

Examples. The set of finite (Kr-free) graphs is an essentially countable amalgamation
class with Fraissé-limit R (Rr). Similarly, the set of finite linear orders is an essentially
countable amalgamation class with Fraissé-limit (Q,<).

Proof. Enumerate representatives of isomorphism types in C as A0, A1, A2, . . ..
Step I: Construct a chain M0 ⊆M1 ⊆M2 ⊆ · · · of structures Mn ∈ C such that for all

n ∈ N we have

(1) Mn has a substructure isomorphic to An, and
(2) whenever i, j 6 n and α : Ai → Aj and f : Ai → Mn are embeddings, there is an

embedding g : Aj →Mn+1 such that f = g ◦ α.
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Start by taking M0 = A0. Suppose that some finite chain M0 ⊆ · · · ⊆ Mn has been
constructed as required. Enumerate the finitely many, say r many, pairs of embeddings
(αk : Aik → Ajk , fk : Aik → Mn)

r
k=1 with ik, jk 6 n. Using the joint embedding property,

find B0 containing Mn and An+1. Using the amalgamation property, we build inductively
a chain Mn ⊆ B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Br =:Mn+1 where for 1 6 k 6 r, we have that Bk is
the amalgam of Bk−1 and Ajk over Aik via the embeddings αk and fk. Then Mn+1 is as
desired.1

Step II: Put M =
⋃

n∈NMn. It remains to check that

• M is countable and locally finite.

Follows since countable union of finite sets is countable. Moreover, and finite set is contained
in some finite substructure Mn.

• Age(M) = C.

‘⊆’ Let A ⊂ M be a finite substructure. Then A ⊂ Mn for some Mn, and since Mn ∈ C
has the hereditary property, we have A ∈ C. ‘⊇’ Any A ∈ C is isomorphic to some A ∼= An,
and An ⊂Mn by construction, so A ∈ Age(M) by definition.

• M has the ‘finite extension property’ (then M is homogeneous by Theorem 7, and
uniqueness follows from Theorem 8).

If A ⊆ B ∈ Age(M) = C and f : A ↪→ M is an embedding, need to show that f extends
to embedding g : B ↪→ M . But A ∼= Ai and B ∼= Aj and f : A ↪→ Mn for some large
enough M . The identity map id : A ↪→ B translates to some embedding α : Ai → Aj and
f : Ai ↪→Mn, so by construction, there is an extension g : Aj →Mn+1. �

1To see that without loss of generality, the Mn form a chain, we may always pretend that Mn, Bi ⊂ N
as a set. When we get a new amalgam Bi ↪→ Bi+1, then simply relabel the new elements of Bi+1 by
unused integers.


