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Definition 1. A language L is a countable family of symbols R;, i € I, which represent
relations, and symbols f;, j € J, which represent functions. To each symbol we associate a
particular arity, i.e. a positive integer n(i) for relation symbols, or a nonnegative integer

m(j) for function symbols.

Definition 2. A structure for a language L is a set A together with a family of relations
R C A" one for each i € I, and a family of functions f]A . A™U) — A, one for each
j € J. The relations R# and functions fjA are called interpretations of the relation and

function symbols in L. If L has no function symbols, then we call A a relational structure.

Examples. (1) If L = (), then the structures for L are just sets.

(2) If L = {<}, where < is a relation symbol of arity 2, then linearly ordered sets are
examples of structures in L. So are partially ordered sets.

(3) Suppose L again contains just one relation symbol E of arity 2. A graph G = (V, E)
is a structure in L on the set V where F is an irreflexive, symmetric relation on V' specifying
the edges. This can easily be extended to multigraphs.

(4) Let L={D,:q€ QnN(0,00)} consist of binary relation symbols. A rational metric
space (X, d) is a structure in L, where we understand that DX (z,y) holds if and only if
d(z,y) = q for all x,y € X.

(5) A Boolean algebra is a structure for two binary function symbols V and A, a unary

function symbol —, and constant symbols 0 and 1.

Definition 3. An injective (bijective) map f: A — B between two structures A and B for
the same language L is called an embedding (isomorphism) if for every relation symbol
R; € L, we have

((11, ,a,n(l)) € Rf‘ < (f(a1)7 ceny f(an(z))) € RzB

and similar for all functions symbols.

Definition 4. A structure F' is called locally finite if every finite subset of F' is contained

i some finite substructure D C F.
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Remark. All relational structures are locally finite, as every finite subset induces a
substructure. Groups are examples, where for given finite sets, need to consider the

generated subgroup.

Definition 5. A structure F' is called homogenous if every isomorphism between finite

substructures A C F and B C F extends to an automorphism of F.

Definition 6. If A is a structure, then the age of A, denoted Age(A), is the class of all

finite structures which are isomorphic to a substructure of A.

Theorem 7. Let F be a countable locally finite structure. The following are equivalent:

(1) F is homogeneous.
(2) F has the finite extension property, i.e., whenever A, B € Age(F), and A C B,
every embedding of A into F' extends to an embedding of B into F.

Proof. For (1) = (2), consider any embedding f: A < F. Since B € Age(F), there is
also an embedding h: B < F, and there is another copy h[A]| of A in h[B] C F. Since
F is homogeneous, the partial isomorphism f o h~! between h[A] and f[A] extends to an
automorphism « of F. But then is clear that oo h is the desired extendion of f.

For (2) = (1), consider any partial isomorphism fy between two finite substructures
Ay and Aj of F. Since F' is countable and locally finite, it is clear that we can write
Unen An = F = U,,en 4, cach as the union of a chain of finite substructures starting with
Ap and Aj, respectively. We will define the isomorphism f in countably many steps using a
back-and-forth argument. Suppose a partial isomorphism f,,: B, — C, is already defined.
At even steps: Let k be minimal such that B, C Ay and use the finite extension property
to extend f, to Axi1. At odd steps: Let k& be minimal such that C,, C A and use the

finite extension property to extend f,, ! to A ;. O

Theorem 8. FEvery two countable locally finite homogenous structures in the same language,

having the same age, are isomorphic.

Proof. Consider two such structure N and N’ with Age(N) = Age(N’). Since both are

countable and locally finite, we can write N = J,, oy An and N’ = |J, oy 4;, each as the

neN
union of a chain of finite substructures.

We will define the isomorphism f in countably many steps using a back-and-forth
argument. Suppose a partial isomorphism f,: B, — C,, is already defined.

At even steps: Let k be minimal such that B, C Aj. Since B, C A1 € Age(N'),
the embedding f, extends to a partial isomorphism f,,;; with domain Aj,; by the finite

extension property of N’ (Theorem 7).
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At odd steps: Let k be minimal such that C,, C A}, and extend f,, to a partial isomorphism

fn+1 with codomain A | using a symmetric argument. 0

Lemma 9. If N is a countable, locally finite homogeneous L-structure, then C = Age(N)

satisfies the following properties:

(1) C is closed under isomorphisms;

(2) C is closed under taking substructures;

(3) C contains structures of arbitrarily high finite cardinality;

(4) C satisfies the joint embedding property, i.e., whenever A, B € C, then there is
D € C containing both (isom. copies of ) A and B as substructures; and

(5) C satisfies the amalgamation property, i.e. whenever fi : A — By and fy : A — By
are embeddings of structures in C, then there is D € C and embeddings g, : By — D
and gy : By — D such that g1 o fi = g2 0 fs.

Proof. We check the amalgamation property (the others are easy).
Assume A, By, By C N. Since N is homogeneous, the maps

extend to automorphisms fz of N. Since N is locally finite, there is a finite substructure D
of N containing ffl(Bl) U f;l(Bg), and D with g; := fi_l | B; is as desired. O

Definition 10. Any class C of finite L-structures satisfying (1) - (5) is called an amal-
gamation class or Fraissé class. It is called essentially countable if it contains at most

countably many isomorphism types.

Theorem 11 (Fraissé 1954). Every essentially countable amalgamation class C of finite
L-structures is the age of a unique countable, locally finite homogeneous L-structure, which
15 called the Fraissé-limit of C.

Examples. The set of finite (K"-free) graphs is an essentially countable amalgamation
class with Fraissé-limit R (R"). Similarly, the set of finite linear orders is an essentially

countable amalgamation class with Fraissé-limit (Q, <).

Proof. Enumerate representatives of isomorphism types in C as Ay, A1, Ag, .. ..
Step I: Construct a chain My C M; € My C --- of structures M,, € C such that for all

n € N we have
(1) M, has a substructure isomorphic to 4,, and
(2) whenever 4,j < n and a: A; - A; and f: A; — M, are embeddings, there is an
embedding g: A; — M, such that f = goa.
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Start by taking My, = Ay. Suppose that some finite chain My C --- C M, has been
constructed as required. Enumerate the finitely many, say r many, pairs of embeddings
(o Aiy, = Ay, fror Ay — My, with iy, ji, < n. Using the joint embedding property,
find By containing M,, and A, ;. Using the amalgamation property, we build inductively
a chain M,, C By C By C By C--- C B, =: M,,.1 where for 1 < k < r, we have that By is
the amalgam of By_; and A;, over A; via the embeddings a; and f;. Then M, is as

desired.!

Step II: Put M = J,,cy My It remains to check that
e M is countable and locally finite.

Follows since countable union of finite sets is countable. Moreover, and finite set is contained
in some finite substructure M,,.

o Age(M)=C.
‘C’ Let A C M be a finite substructure. Then A C M, for some M,,, and since M,, € C
has the hereditary property, we have A € C. ‘2’ Any A € C is isomorphic to some A = A,,,
and A,, C M, by construction, so A € Age(M) by definition.

e M has the ‘finite extension property’ (then M is homogeneous by Theorem 7, and

uniqueness follows from Theorem 8).

If AC Be Age(M) =C and f: A< M is an embedding, need to show that f extends
to embedding g: B — M. But A =2 A, and B = A; and f: A — M, for some large
enough M. The identity map id: A — B translates to some embedding a: A, = A; and
f+ Ai — M,, so by construction, there is an extension g: A; — M, ;. O

ITo see that without loss of generality, the M, form a chain, we may always pretend that M,,, B; C N
as a set. When we get a new amalgam B; — B;;1, then simply relabel the new elements of B;1 by

unused integers.



