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A family of graphs H forms a decomposition1 of a graph G if the graphs in H are pairwise
edge-disjoint subgraphs with G =

⋃
{H : H ∈ H}. In this case, an element H ∈ H is also called

a fragment of the decomposition H. Following Thomassen [7], a subgraph H ⊂ G is called
cut-faithful if every finite bond of H is also a finite bond of G.

Theorem 1 (Laviolette’s Theorem (2005) [2]). Every graph has a decomposition into countable,
cut-faithful graphs.2

We will prove Laviolette’s theorem in a minute. But let us first illustrate its power in reducing
problems to their countable case by deducing an early classic from the theory of infinite graphs.
A finite cut F in a graph G us called even or odd depending on whether |F | is even or odd
respectively. Recall that for finite connected graphs, we have the following equivalences:

Theorem 2 (Euler’s Theorem). For a finite connected graph G, the following are equivalent:

(i) G admits a closed Eulerian walk,
(ii) every vertex of G has even degree,
(iii) every (finite) cut of G is even, and
(iv) G has a decomposition into cycles.

The double ray shows that the equivalence (ii)⇔ (iii) no longer holds for infinite graphs. But
a classic theorem of Nash-Williams says that (iii)⇔ (iv) continues to hold.

Theorem 3 (Nash-Williams’ Theorem (1960) [3]). A graph has a decomposition into cycles if
and only if it contains no odd cut.

Proof. Since every cycle meets every cut in an even number of edges, the necessity of our condition
is clear. Conversely, by Laviolette’s Theorem we may assume that our graph G is countable; let
us enumerate its edges. We shall find the desired cycles in countably many steps. At each step
n ∈ N we shall assume inductively that every cut in the remaining graph Gn is infinite or even;
find some new cycle Cn ⊂ Gn. And delete its edges Gn+1 = Gn − E(Cn).

1The word decomposition traditionally refers to edge-disjoint subgraphs, the word partition to vertex-disjoint

subgraphs.
2We remark that Laviolette’s notion is a little stronger; first, it works for general cardinals, and second, Laviolette

required that every countable cut of G is contained in a single graph H ∈ H.
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To find that cycle, consider the first remaining edge e = xy in our enumeration. By our
inductive assumption, e is not a bridge of Gn, so there is a x− y path in Gn not using e. Together
with e this path forms a cycle Cn. The deletion of Cn keeps every finite cut even and every infinite
cut infinite, so our inductive assumptions continue to hold for Gn+1.

After countably many steps no edges remain, so {Cn : n ∈ N} is a decomposition. �

We remark that Theorem 1 and Theorem 3 are closely related: We have seen that the first
implies the latter, but in fact, Laviolette relied on Nash-Williams’ theorem in the proof of his
result, and hence did not provide an independent proof of Theorem 3. Direct proofs of Laviolette’s
(and hence Nash-Williams’) theorem were found by Soukup [5] using the theory of elementary
submodels, and a truly elementary (but tricky) proof was later found by Thomassen [7].

We are now ready to prove Theorem 1. We follow Soukup’s proof idea from [5], but replace
the elementary submodel argument by an explicit closure-operation, similar to the direct proof of
Nash-Williams theorem in [1].

Proof. By induction on |G|. If G is countable, there is nothing to do, as the one-element
decomposition H = {G} does the job.

So assume that |G| = κ is uncountable. Define a sequence of cardinals (κα : α < cf(κ)) as follows.
If κ = µ+, set κ = 0 and κα = µ for all other α. Otherwise, let κ0 = 0 and (κα : 0 < α < cf(κ))

be a strictly increasing continuous sequence of infinite cardinals with supremum κ.
For v 6= w ∈ V (G) fix a maximal3 system P(v, w) of edge-disjoint v − w paths of size λG(v, w)

(the edge-connectivity of G between v and w). Fix an enumeration
{
P iv,w : i < λG(v, w)

}
.

Write G as a continuous, increasing union of induced subgraphs G =
⋃
α<cf(κ)Gα such that for

all α < cf(κ) we have

(1) |Gα| = κα,
(2) if v 6= w ∈ Gα and F ⊂ E(Gα) is finite and there is a v − w path in G avoiding F , then

there is such a path in Gα,
(3) if v 6= w ∈ Gα and F ⊂ E(Gα+1) is finite and there is a Gα-path4 in G from v to w

avoiding F , then there is such a Gα-path in Gα+1, and
(4) for v 6= w ∈ Gα, we have P iv,w ⊂ Gα for all i < κα.

For the construction, pick an enumeration V (G) = {vi : i < κ}, and find an increasing sequence
of ordinals βα < κ with supremum κ and |βα| = κα. We will make sure that {vi : i < βα} ⊂ Gα.
Define Gα by transfinite recursion on α. Let G0 be the empty graph. For a limit λ, define
Gλ =

⋃
α<λGα. Since λ < cf(κ), we have indeed |Gλ| < |G|. Since our sequence of cardinals is

continuous, we have (1) for Gλ, and the other properties follow from the fact that Gα ⊂ Gβ for all
α < β < λ. Lastly, suppose that Gα has already be defined according to the above requirements;

3Zorn’s Lemma.
4For the purposes of this proof, an H-path is a path P in G which intersects H in start- and endvertex, and is

edge-disjoint from H (but may have interior vertices in H).



CUT-FAITHFUL DECOMPOSITIONS AND CYCLE DECOMPOSITIONS 3

our task is to define Gα+1. We will do this in countably many steps, and define a chain of graphs
Gα ⊂ G0 ⊂ G1 ⊂ · · · and put Gα+1 =

⋃
n∈NG

n.
First, let G0 = G[Gα ∪ {vi : i < βα+1}]. Suppose inductively that Gn is already defined with

|Gn| = κα+1. Form Gn+1 as follows:

• For every v 6= w ∈ Gn and F ⊂ E(Gn) as in (2) add in one such path to Gn+1.
• For every v 6= w ∈ Gα and F ⊂ E(Gn) as in (3) add in one such Gα-path to Gn+1.
• For every v 6= w ∈ Gn as in (4) add in all paths P iv,w for i < κα+1 to Gn+1.

Note that since there are only κα+1 many such pairs v 6= w ∈ Gn and only κα+1 many finite
edge sets F ⊂ E(Gn), and for each case we are adding at most κα+1 many new vertices. Hence,
|Gn+1| = κα+1. Finally, since κα+1 is infinite, we have |Gα+1| = ℵ0 · κα+1 = κα+1 as desired.
Lastly, it is easy to check that properties (2) – (4) are satisfied for Gα+1: for (2) and (4) simply
note that any pair v 6= w ∈ Gα+1 is contained in some Gn and were therefore made happy in
Gn+1. For (3), note that any finite F ⊂ E(Gα+1) is contained in some E(Gn), and therefore
v, w ∈ V (Gα) were made happy with respect to F in Gn+1. This completes the construction.

First, let us see that property (2) implies that each Gα is a cut-faithful subgraph of G. Indeed,
consider any finite bond F ⊂ Gα. Then there is a connected component of C of Gα and a vertex
partition (A,B) of C such that F = EGα(A,B). Let A′ and B′ be the components of G − F
containing A and B respectively. If A′ = B′, there is v ∈ A and w ∈ B such that in G there is
a v − w path avoiding F , and hence by (2), there would be such a path in Gα, a contradiction.
Hence, A′ and B′ are distinct components of G, and hence F = EG(A

′, B′), i.e. F is also a bond
of G. This shows that Gα is cut-faithful.

Now each Gα is a cut-faithful subgraph of G with |Gα| < |G| for all α < cf(κ) by (1), and so
has decomposition into countable cut-faithful subgraphs by induction assumption. However, as
the different Gα’s are not disjoint, it is not clear how to use this.

To make the graphs edge-disjoint, consider the “onion rings” Hα = Gα+1 − E(Gα) for α <

cf(κ). Since G0 = ∅ and the {Gα : α < cf(κ)} formed a continuous chain, the collection H =

{Hα : α < cf(κ)} forms a decomposition of G such that each |Hα| < |G| for all α by (1). We
will show that each Hα is cut-faithful. By applying the induction assumption, we can further
decompose G0 and each Hα individually into countable cut-faithful subgraphs, which together
form the desired decomposition for G.

Hence, it only remains to show that each Hα = Gα+1 − E(Gα) is cut-faithful. This will follow
from properties (3) and (4) as follows. Again, consider any finite bond F ⊂ Hα, a connected
component of C of Hα and a vertex partition (A,B) of C such that F = EHα(A,B). Let A′ and
B′ be the components of Gα+1 containing A and B respectively. If A′ and B′ are distinct, then F
is a bond in Gα+1 and hence in G by the above. Therefore, A′ = B′ and hence for some a ∈ A
and b ∈ B there is an a− b path P in Gα+1 avoiding F . The path P must use an edge from Gα,
and hence at least two distinct vertices from Gα. Let v be the first and w be the last vertex of P
in Gα. Note that v, w ∈ C (in fact, v ∈ A and w ∈ B as witnessed by aPv and wPb), and hence
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there exists an v − w-path in C, which is then edge-disjoint from Gα. By property (4), it follows
that λG(v, w) > κα.Since |E(Gα) ∪ F | 6 κα, one of the paths in P(v, w) is a Gα-path in G from
v to w avoiding F , and hence by property (3), there would be one such Gα-path in Gα+1, which
would be a path in Hα from A to B avoiding F , a contradiction. �

Corollary 4. Every 2-edge-connected graph has a collection C of cycles such that every edge of G
is in at least one and at most countably many cycles in C.

Proof. Exercise. �

In [4], Nash-Williams also proved the following well-known orientation theorem.

Theorem 5 (Nash-Williams’ Orientation Theorem 1959). Every 2k-edge-connected finite graph
has a strongly k-edge-connected orientation

It is a well-known open problem whether Nash-Williams’ orientation theorem also holds for
infinite graphs (as a partial breakthrough, Thomassen has shown that edge-connectivity 8k suffices,
[6]). However, using Laviolette’s theorem one easily gets:

Corollary 6. To establish Nash-Williams’ orientation theorem for arbitrary graphs it suffices to
prove the countable case.

Proof. Exercise. �

In [3], Nash-Williams also proved the following statements, which can be proved using similar
techniques as in our proof of Laviolette’s theorem.

Theorem 7. (1) A graph G can be decomposed into cycles and 2-way infinite tours5 if and only
if it has no vertex of odd degree. (2) G is decomposable into 2-way infinite tours if and only if it
has no vertex of odd degree and no finite non-trivial component.

Proof. In both cases, we may assume that G is connected. Since a cut-faithful subgraph of a
connected graph is still connected, it looks like Laviolette’s theorem allows us to reduce both
assertions immediately to the countable case. However, note that even if G has no vertex of odd
degree, this need not hold for a cut-faithful subgraph (example?).

Let us call a subgraph H ⊆ G degree-faithful if for every vertex v ∈ H with 0 < degH(v) <∞
we have degH(v) = degG(v). We upgrade the construction in Laviolette’s theorem so that with G
also every Gα and every Yα has no odd-degree vertex. This can be achieved by fixing for every
v ∈ V (G) an enumeration of its neighbours NG(v) =

{
xiv : i < degG(v)

}
and add properties

(5) For every v ∈ Gα we have xiv ∈ Gα for all i < κα, and
(6) For every v ∈ Gα and every finite F ⊆ E(Gα+1), if v has a neighbour in G−Gα−F then

there is one such neighbour in Gα+1 −Gα − F .

5A 2-way infinite tour is a walk {en = vnvn+1 : n ∈ Z} without repeated edges; repeated vertices are allowed.
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to our list of conditions in the above proof. With these conditions, one can show as above that all
Gα and Hα are degree-faithful (in addition to being cut-faithful).

Hence, it suffices to prove both of Nash-Williams assertions for countable graphs G (as our
decomposition fragments are now also degree-faithful, it follows easily that no fragment can be
finite, or have a finite component), which we leave to the reader as an exercise. �
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