LAVIOLETTE'S CUT-FAITHFUL DECOMPOSITIONS AND NASH-WILLIAMS' DECOMPOSITION THEOREM

MAX PITZ

Infinite Graph Theory, WS2019/20

A family of graphs \mathcal{H} forms a *decomposition*¹ of a graph G if the graphs in \mathcal{H} are pairwise edge-disjoint subgraphs with $G = \bigcup \{H : H \in \mathcal{H}\}$. In this case, an element $H \in \mathcal{H}$ is also called a *fragment* of the decomposition \mathcal{H} . Following Thomassen [7], a subgraph $H \subset G$ is called *cut-faithful* if every finite bond of H is also a finite bond of G.

Theorem 1 (Laviolette's Theorem (2005) [2]). Every graph has a decomposition into countable, cut-faithful graphs.²

We will prove Laviolette's theorem in a minute. But let us first illustrate its power in reducing problems to their countable case by deducing an early classic from the theory of infinite graphs. A finite cut F in a graph G us called *even* or *odd* depending on whether |F| is even or odd respectively. Recall that for *finite* connected graphs, we have the following equivalences:

Theorem 2 (Euler's Theorem). For a finite connected graph G, the following are equivalent:

- (i) G admits a closed Eulerian walk,
- (ii) every vertex of G has even degree,
- (iii) every (finite) cut of G is even, and
- (iv) G has a decomposition into cycles.

The double ray shows that the equivalence $(ii) \Leftrightarrow (iii)$ no longer holds for infinite graphs. But a classic theorem of Nash-Williams says that $(iii) \Leftrightarrow (iv)$ continues to hold.

Theorem 3 (Nash-Williams' Theorem (1960) [3]). A graph has a decomposition into cycles if and only if it contains no odd cut.

Proof. Since every cycle meets every cut in an even number of edges, the necessity of our condition is clear. Conversely, by Laviolette's Theorem we may assume that our graph G is countable; let us enumerate its edges. We shall find the desired cycles in countably many steps. At each step $n \in \mathbb{N}$ we shall assume inductively that every cut in the remaining graph G_n is infinite or even; find some new cycle $C_n \subset G_n$. And delete its edges $G_{n+1} = G_n - E(C_n)$.

 $^{^{1}}$ The word *decomposition* traditionally refers to edge-disjoint subgraphs, the word *partition* to vertex-disjoint subgraphs.

²We remark that Laviolette's notion is a little stronger; first, it works for general cardinals, and second, Laviolette required that every countable cut of G is contained in a single graph $H \in \mathcal{H}$.

MAX PITZ

To find that cycle, consider the first remaining edge e = xy in our enumeration. By our inductive assumption, e is not a bridge of G_n , so there is a x - y path in G_n not using e. Together with e this path forms a cycle C_n . The deletion of C_n keeps every finite cut even and every infinite cut infinite, so our inductive assumptions continue to hold for G_{n+1} .

After countably many steps no edges remain, so $\{C_n : n \in \mathbb{N}\}$ is a decomposition.

We remark that Theorem 1 and Theorem 3 are closely related: We have seen that the first implies the latter, but in fact, Laviolette relied on Nash-Williams' theorem in the proof of his result, and hence did not provide an independent proof of Theorem 3. Direct proofs of Laviolette's (and hence Nash-Williams') theorem were found by Soukup [5] using the theory of elementary submodels, and a truly elementary (but tricky) proof was later found by Thomassen [7].

We are now ready to prove Theorem 1. We follow Soukup's proof idea from [5], but replace the elementary submodel argument by an explicit closure-operation, similar to the direct proof of Nash-Williams theorem in [1].

Proof. By induction on |G|. If G is countable, there is nothing to do, as the one-element decomposition $\mathcal{H} = \{G\}$ does the job.

So assume that $|G| = \kappa$ is uncountable. Define a sequence of cardinals $(\kappa_{\alpha}: \alpha < cf(\kappa))$ as follows. If $\kappa = \mu^+$, set $\kappa = 0$ and $\kappa_{\alpha} = \mu$ for all other α . Otherwise, let $\kappa_0 = 0$ and $(\kappa_{\alpha}: 0 < \alpha < cf(\kappa))$ be a strictly increasing continuous sequence of infinite cardinals with supremum κ .

For $v \neq w \in V(G)$ fix a maximal³ system $\mathcal{P}(v, w)$ of edge-disjoint v - w paths of size $\lambda_G(v, w)$ (the edge-connectivity of G between v and w). Fix an enumeration $\{P_{v,w}^i: i < \lambda_G(v, w)\}$.

Write G as a continuous, increasing union of induced subgraphs $G = \bigcup_{\alpha < cf(\kappa)} G_{\alpha}$ such that for all $\alpha < cf(\kappa)$ we have

- (1) $|G_{\alpha}| = \kappa_{\alpha}$,
- (2) if $v \neq w \in G_{\alpha}$ and $F \subset E(G_{\alpha})$ is finite and there is a v w path in G avoiding F, then there is such a path in G_{α} ,
- (3) if $v \neq w \in G_{\alpha}$ and $F \subset E(G_{\alpha+1})$ is finite and there is a G_{α} -path⁴ in G from v to w avoiding F, then there is such a G_{α} -path in $G_{\alpha+1}$, and
- (4) for $v \neq w \in G_{\alpha}$, we have $P_{v,w}^i \subset G_{\alpha}$ for all $i < \kappa_{\alpha}$.

For the construction, pick an enumeration $V(G) = \{v_i : i < \kappa\}$, and find an increasing sequence of ordinals $\beta_{\alpha} < \kappa$ with supremum κ and $|\beta_{\alpha}| = \kappa_{\alpha}$. We will make sure that $\{v_i : i < \beta_{\alpha}\} \subset G_{\alpha}$. Define G_{α} by transfinite recursion on α . Let G_0 be the empty graph. For a limit λ , define $G_{\lambda} = \bigcup_{\alpha < \lambda} G_{\alpha}$. Since $\lambda < cf(\kappa)$, we have indeed $|G_{\lambda}| < |G|$. Since our sequence of cardinals is continuous, we have (1) for G_{λ} , and the other properties follow from the fact that $G_{\alpha} \subset G_{\beta}$ for all $\alpha < \beta < \lambda$. Lastly, suppose that G_{α} has already be defined according to the above requirements;

³Zorn's Lemma.

⁴For the purposes of this proof, an *H*-path is a path *P* in *G* which intersects *H* in start- and endvertex, and is edge-disjoint from *H* (but may have interior vertices in *H*).

our task is to define $G_{\alpha+1}$. We will do this in countably many steps, and define a chain of graphs $G_{\alpha} \subset G^0 \subset G^1 \subset \cdots$ and put $G_{\alpha+1} = \bigcup_{n \in \mathbb{N}} G^n$.

First, let $G^0 = G[G_\alpha \cup \{v_i : i < \beta_{\alpha+1}\}]$. Suppose inductively that G^n is already defined with $|G^n| = \kappa_{\alpha+1}$. Form G^{n+1} as follows:

- For every $v \neq w \in G^n$ and $F \subset E(G^n)$ as in (2) add in one such path to G^{n+1} .
- For every $v \neq w \in G_{\alpha}$ and $F \subset E(G^n)$ as in (3) add in one such G_{α} -path to G^{n+1} .
- For every $v \neq w \in G^n$ as in (4) add in all paths $P_{v,w}^i$ for $i < \kappa_{\alpha+1}$ to G^{n+1} .

Note that since there are only $\kappa_{\alpha+1}$ many such pairs $v \neq w \in G^n$ and only $\kappa_{\alpha+1}$ many finite edge sets $F \subset E(G^n)$, and for each case we are adding at most $\kappa_{\alpha+1}$ many new vertices. Hence, $|G^{n+1}| = \kappa_{\alpha+1}$. Finally, since $\kappa_{\alpha+1}$ is infinite, we have $|G_{\alpha+1}| = \aleph_0 \cdot \kappa_{\alpha+1} = \kappa_{\alpha+1}$ as desired. Lastly, it is easy to check that properties (2) – (4) are satisfied for $G_{\alpha+1}$: for (2) and (4) simply note that any pair $v \neq w \in G_{\alpha+1}$ is contained in some G^n and were therefore made happy in G^{n+1} . For (3), note that any finite $F \subset E(G_{\alpha+1})$ is contained in some $E(G^n)$, and therefore $v, w \in V(G_\alpha)$ were made happy with respect to F in G^{n+1} . This completes the construction.

First, let us see that property (2) implies that each G_{α} is a cut-faithful subgraph of G. Indeed, consider any finite bond $F \subset G_{\alpha}$. Then there is a connected component of C of G_{α} and a vertex partition (A, B) of C such that $F = E_{G_{\alpha}}(A, B)$. Let A' and B' be the components of G - Fcontaining A and B respectively. If A' = B', there is $v \in A$ and $w \in B$ such that in G there is a v - w path avoiding F, and hence by (2), there would be such a path in G_{α} , a contradiction. Hence, A' and B' are distinct components of G, and hence $F = E_G(A', B')$, i.e. F is also a bond of G. This shows that G_{α} is cut-faithful.

Now each G_{α} is a cut-faithful subgraph of G with $|G_{\alpha}| < |G|$ for all $\alpha < cf(\kappa)$ by (1), and so has decomposition into countable cut-faithful subgraphs by induction assumption. However, as the different G_{α} 's are not disjoint, it is not clear how to use this.

To make the graphs edge-disjoint, consider the "onion rings" $H_{\alpha} = G_{\alpha+1} - E(G_{\alpha})$ for $\alpha < cf(\kappa)$. Since $G_0 = \emptyset$ and the $\{G_{\alpha} : \alpha < cf(\kappa)\}$ formed a continuous chain, the collection $\mathcal{H} = \{H_{\alpha} : \alpha < cf(\kappa)\}$ forms a decomposition of G such that each $|H_{\alpha}| < |G|$ for all α by (1). We will show that each H_{α} is cut-faithful. By applying the induction assumption, we can further decompose G_0 and each H_{α} individually into countable cut-faithful subgraphs, which together form the desired decomposition for G.

Hence, it only remains to show that each $H_{\alpha} = G_{\alpha+1} - E(G_{\alpha})$ is cut-faithful. This will follow from properties (3) and (4) as follows. Again, consider any finite bond $F \subset H_{\alpha}$, a connected component of C of H_{α} and a vertex partition (A, B) of C such that $F = E_{H_{\alpha}}(A, B)$. Let A' and B' be the components of $G_{\alpha+1}$ containing A and B respectively. If A' and B' are distinct, then Fis a bond in $G_{\alpha+1}$ and hence in G by the above. Therefore, A' = B' and hence for some $a \in A$ and $b \in B$ there is an a - b path P in $G_{\alpha+1}$ avoiding F. The path P must use an edge from G_{α} , and hence at least two distinct vertices from G_{α} . Let v be the first and w be the last vertex of Pin G_{α} . Note that $v, w \in C$ (in fact, $v \in A$ and $w \in B$ as witnessed by aPv and wPb), and hence

MAX PITZ

there exists an v - w-path in C, which is then edge-disjoint from G_{α} . By property (4), it follows that $\lambda_G(v, w) > \kappa_{\alpha}$. Since $|E(G_{\alpha}) \cup F| \leq \kappa_{\alpha}$, one of the paths in $\mathcal{P}(v, w)$ is a G_{α} -path in G from v to w avoiding F, and hence by property (3), there would be one such G_{α} -path in $G_{\alpha+1}$, which would be a path in H_{α} from A to B avoiding F, a contradiction.

Corollary 4. Every 2-edge-connected graph has a collection C of cycles such that every edge of G is in at least one and at most countably many cycles in C.

Proof. Exercise.

In [4], Nash-Williams also proved the following well-known orientation theorem.

Theorem 5 (Nash-Williams' Orientation Theorem 1959). Every 2k-edge-connected finite graph has a strongly k-edge-connected orientation

It is a well-known open problem whether Nash-Williams' orientation theorem also holds for infinite graphs (as a partial breakthrough, Thomassen has shown that edge-connectivity 8k suffices, [6]). However, using Laviolette's theorem one easily gets:

Corollary 6. To establish Nash-Williams' orientation theorem for arbitrary graphs it suffices to prove the countable case.

Proof. Exercise.

In [3], Nash-Williams also proved the following statements, which can be proved using similar techniques as in our proof of Laviolette's theorem.

Theorem 7. (1) A graph G can be decomposed into cycles and 2-way infinite tours⁵ if and only if it has no vertex of odd degree. (2) G is decomposable into 2-way infinite tours if and only if it has no vertex of odd degree and no finite non-trivial component.

Proof. In both cases, we may assume that G is connected. Since a cut-faithful subgraph of a connected graph is still connected, it looks like Laviolette's theorem allows us to reduce both assertions immediately to the countable case. However, note that even if G has no vertex of odd degree, this need not hold for a cut-faithful subgraph (example?).

Let us call a subgraph $H \subseteq G$ degree-faithful if for every vertex $v \in H$ with $0 < \deg_H(v) < \infty$ we have $\deg_H(v) = \deg_G(v)$. We upgrade the construction in Laviolette's theorem so that with Galso every G_{α} and every Y_{α} has no odd-degree vertex. This can be achieved by fixing for every $v \in V(G)$ an enumeration of its neighbours $N_G(v) = \{x_v^i : i < \deg_G(v)\}$ and add properties

- (5) For every $v \in G_{\alpha}$ we have $x_v^i \in G_{\alpha}$ for all $i < \kappa_{\alpha}$, and
- (6) For every $v \in G_{\alpha}$ and every finite $F \subseteq E(G_{\alpha+1})$, if v has a neighbour in $G G_{\alpha} F$ then there is one such neighbour in $G_{\alpha+1} - G_{\alpha} - F$.

⁵A 2-way infinite tour is a walk $\{e_n = v_n v_{n+1} : n \in \mathbb{Z}\}$ without repeated edges; repeated vertices are allowed.

to our list of conditions in the above proof. With these conditions, one can show as above that all G_{α} and H_{α} are degree-faithful (in addition to being cut-faithful).

Hence, it suffices to prove both of Nash-Williams assertions for countable graphs G (as our decomposition fragments are now also degree-faithful, it follows easily that no fragment can be finite, or have a finite component), which we leave to the reader as an exercise.

References

- [1] Péter Komjáth. Infinite graphs. Research Monograph. In preparation.
- François Laviolette. Decompositions of infinite graphs. I. Bond-faithful decompositions. Journal of Combinatorial Theory, Series B, 94(2):259–277, 2005.
- [3] C. St. J. A. Nash-Williams. Decomposition of graphs into closed and endless chains. Proceedings of the London Mathematical Society, 3(1):221–238, 1960.
- [4] C St JA Nash-Williams. On orientations, connectivity and odd-vertex-pairings in finite graphs. Canadian Journal of Mathematics, 12:555–567, 1960.
- [5] Lajos Soukup. Elementary submodels in infinite combinatorics. Discrete Mathematics, 311(15):1585–1598, 2011.
- [6] Carsten Thomassen. Orientations of infinite graphs with prescribed edge-connectivity. Combinatorica, 36(5):601–621, Oct 2016.
- [7] Carsten Thomassen. Nash-Williams' cycle-decomposition theorem. Combinatorica, 37(5):1027–1037, 2017.