Exercise Sheet 9 for Infinite Graph Theory, WS 2019/20 (to be discussed on 16. December 2019)

- 1.⁻ Let A, B be two vertex sets in a locally finite connected graph G. Can there be an infinite sequence $\mathcal{P}_1, \mathcal{P}_2, \ldots$ of disjoint A-B paths such that each \mathcal{P}_{n+1} arises from \mathcal{P}_n by applying an alternating walk, and such that some edge $e \in G$ lies in $E[\mathcal{P}_n]$ for infinitely many n but not in $E[\mathcal{P}_n]$ for infinitely many other n?
- 2. Prove the following strengthening of Lemma 3.3.2: If for a system \mathcal{P} of disjoint A B-paths there is an alternating walk W ending in $B \setminus V[\mathcal{P}]$, then there also exists such an alternating walk W' such that the symmetric difference $E[\mathcal{P}] \triangle E(W')$ is precisely the edge-set of a system \mathcal{P}' of disjoint A B-paths with $|\mathcal{P}'| = |\mathcal{P}| + 1$.
- 3. Let G be a locally finite graph. Let us say that a finite set S of vertices separates two ends ω and ω' if $C(S, \omega) \neq C(S, \omega')$. Use Proposition 8.4.1 to show that if ω can be separated from ω' by $k \in \mathbb{N}$ but no fewer vertices, then G contains k disjoint double rays each with one tail in ω and one in ω' . Is the same true for all graphs that are not locally finite?
- 4. Prove the following more structural version of Exercise 2 on Sheet 8. Let ω be an end of a graph G. Show that either G contains a TK^{\aleph_0} with all its rays in ω , or there are disjoint finite sets S_0, S_1, \ldots such that, if C_i is the component of $G - (S_0 \cup S_i)$ that contains a tail of every ray in ω , we have for all i < j that $C_i \supseteq C_j$ and $G[S_i \cup C_i]$ contains $|S_i|$ disjoint $S_i - S_{i+1}$ paths for all $i \ge 1$.
- 5.⁺ Is there a planar \aleph_0 -regular graph all whose ends have infinite vertex-degree?

Hinweise

- 1.⁻ Try to construct G together with the \mathcal{P}_n .
- 2. Make sure that $E[\mathcal{P}] \triangle E(W')$ contains no cycles.
- 3. Look at next exercise and its hint. For locally finite G the sets S'_i are very easy to find, and no normal spanning tree is needed.
- 4.⁺ Use a normal spanning tree to find provisional sets S'_1, S'_2, \ldots of arbitrary finite cardinality that have the separation properties required of the S_i . Then use these to find the S_i .
- $5.^+$ Use the previous exercise.