- 1.⁻ If G is connected and none of its ends is dominated, then G has a normal spanning tree.
- 2.⁻ Show that an ω_1 -graph has no NST.
- 3. Prove the following special case of Fodor's Lemma: every decreasing function $f: \omega_1 \to \omega_1$ (one such that $f(\alpha) < \alpha$ for all $0 \neq \alpha \in \omega_1$) is constant on some uncountable subset of its domain. Then use this to show that every ω_1 -graph contains a TK^{\aleph_1} .
- 4. (i)⁻ Show that overloaded graphs have no NST.
 (ii) Show that AT-graphs have no NST.

An (\aleph_0, \aleph_1) -graph G with bipartition (A, B) is called *divisible* if it contains two disjoint (\aleph_0, \aleph_1) -subgraphs, i.e. there are partitions $A = A_1 \dot{\cup} A_2$ and $B = B_1 \dot{\cup} B_2$ such that (A_1, B_1) and (A_2, B_2) are both again (\aleph_0, \aleph_1) -graphs.

5. (i)⁻ Show that a T_2 with \aleph_1 tops is divisible.

(ii) Show that every (\aleph_0, \aleph_1) -minor of a T_2 with \aleph_1 tops is divisible.

The colouring number of a graph G is the smallest cardinal κ such that there is a well-ordering $V(G) = \{v_{\alpha} : \alpha < \mu\}$ in which every vertex v_{α} has strictly fewer than κ many neighbours amongst the earlier v_{β} with $\beta < \alpha$. In particular, a graph G has countable colouring number if there is a wellordering $V(G) = \{v_{\alpha} : \alpha < \mu\}$ such that every vertex v_{α} has only finitely many neighbours amongst the earlier v_{β} with $\beta < \alpha$ (but may have infinitely many later neighbours). This generalizes the concept *Reihenzahl* from the colouring chapter in Diestel's book.

 $6.^+$ Show that a graph has a normal spanning tree if and only if each minor has countable colouring number.

Optional:

- 7.⁺ Construct, under the Continuum Hypothesis, an indivisible (\aleph_0, \aleph_1) -graph.
- 8.⁺⁺ Prove or disprove that every graph with an end containing uncountably many disjoint rays contains an (\aleph_0, \aleph_1) -graph as a minor.

Hinweise

- 1. Apply a suitable result from the lectures.
- 2.
- 3. To prove Fodor's Lemma, use that every countable subset of ω_1 has a supremum $< \omega_1$. Use the special case of Fodor's Lemma to show that every ω_1 -graph has uncountably many vertices of uncountable degree. Then construct the desired TK^{\aleph_1} inductively.
- 4. Levels and separators of the form $\lceil t \rceil$.
- 5. Which vertices have uncountably many tops above them? For (ii), study how the branch sets of an (\aleph_0, \aleph_1) -minor can lie in a binary tree with tops. Find a place where the latter splits that also splits the minor.
- 6.⁺ Use the Diestel-Leader Theorem. To check that AT-graphs have uncountable colouring number, note that Fodor's lemma from Q2 remains true for regressive functions with domain all limit ordinals.
- 7.⁺ A free ultrafilter on \mathbb{N} is a collection \mathcal{U} of infinite subsets of \mathbb{N} which is closed under pairwise intersection such that for every bipartition $\mathbb{N} = A_1 \dot{\cup} A_2$, either $A_1 \in \mathcal{U}$ or $A_2 \in \mathcal{U}$ (they exist by Zorn's lemma). Using CH, enumerate $\mathcal{U} = \{U_\alpha : \alpha < \omega_1\}$ and build an (\aleph_0, \aleph_1) -graph (\mathbb{N}, B) with $B = \{b_\alpha : \alpha < \omega_1\}$ satisfying that $N(b_\alpha)$ is contained, up to finitely many vertices, in each U_β for $\beta < \alpha$ (note there are countably many such β).
- 8.⁺⁺A related question is whether it must contain a subdivision of the cartesian product of an uncountable star with a ray? (This is a well-known problem due to Halin)