Exercise Sheet 13 for Infinite Graph Theory, WS 2019/20 (to be discussed on 27. January 2020)

- 1. Let \triangleleft be X well-quasi order. Given an infinite cardinal κ we say that an element $x \in X$ is κ -embeddable in X if there are at least κ many elements $x' \in X$ such that $x \triangleleft x'$. Show that for any infinite cardinal κ the number of elements of X which are not κ -embeddable with respect to \triangleleft in X is less than κ .
- 2. Show that for the minor ubiquity conjecture for countable graphs, we can always assume that the host graph does not have any infinitely dominated ends.
- 3. Halin's theorem 8.2.5(i) says that the ray is \subseteq -uniquitous, and on Sheet 8 Q7 we have seen that the infinite comb is not \subseteq -uniquitous. Show that every subdivided comb with finitely many leaves is \subseteq -uniquitous.
- 4. Show that any connected graph with infinitely many ends has infinitely many edge-disjoint double rays.
- 5. Let G be a graph with a thin end ω . Show that for any infinite collection of rays $\mathbb{R} \subseteq \omega$ there is an infinite subcollection $\mathcal{R}' \subseteq \mathcal{R}$ such that any two members of \mathcal{R}' intersect in infinitely many vertices.

Optional:

6.⁺⁺Can you characterise which trees are ⊆-uniquitous? This might be hard; can you find interesting examples of trees which are ⊆-uniquitous? E.g. an infinite star? An infinite star of rays? Can you find locally finite ⊆-uniquitous tree with infinitely many leaves?

Hinweise

- 1. Similar to the corollary on ω -embeddabilty in the lecture.
- 2. TK^{\aleph_0} .
- 3. Strong linking lemma.
- 4.
- 5. Ramsey
- $6.^{++}$