Exercise Sheet 12 for Infinite Graph Theory, WS 2019/20 (to be discussed on 20. January 2020)

- 1.⁻ Verify that the class of finite graphs without induced $\overline{K^r}$ is an essentially countable amalgamation class.
- 2. Show that every essentially countable class C of L-structures is the age of a countable L-structure if and only if C it is closed under isomorphisms, has the joint embedding property and the hereditary property.
- 3.⁻ Prove that every 2-edge-connected graph has a collection C of cycles such that every edge of G is in at least one and at most countably many cycles in C.
- 4. Prove that in order to establish Nash-Williams' orientation theorem for arbitrary graphs it suffices to prove the statement for countable graphs.
- 5. Prove Lemma 2 from the lectures on Laviolette's cut-faithful decomposition theorem.
- 6. Show that a graph G can be decomposed into cycles and 2-way infinite tours if and only if it has no vertex of odd degree.
- $7.^+$ Show that a graph G is decomposable into 2-way infinite tours if and only if it has no vertex of odd degree and no finite non-trivial component.

Optional:

- 8.⁺⁺Can you find a characterisation for a graph to decomposable into double rays (plus maybe cycles)?
- 9.⁺⁺Improve Q3 and show that every 2-edge-connected graph has a collection C of cycles such that every edge of G is in at least one and at most finitely many cycles in C. Can you do "in at most 6 cycles"?

Hinweise

 $1.^{-}$

- 2. Construct the desired countable structure as the union of a suitable chain of elements in C.
- $3.^-$ Laviolette.
- 4. Laviolette.
- 5. Similar to Lemma 1.
- 6. Laviolette.
- 7.⁺ First prove the countable case. To reduce to the countable case, generalise Laviolette's construction by adding a suitable condition to the construction of the G_{α} , similar to (4), but not about paths in $\mathcal{P}(v, w)$ for distinct $v \neq w$, but instead about vertices in $N_G(v)$ for $v \in V(G)$.
- $8.^{++}$

 $9.^{++}$