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Mathematische Modellierung und Simulation

Die mathematisch-naturwissenschaftliche Methode, gegründet auf der Überzeugung,
dass „das Buch der Natur in der Sprache der Mathematik geschrieben“ sei (Galilei),
findet heute weit über ihren ursprünglichen Gegenstandsbereich hinaus
Verwendung. Mathematische Modellierung, also der Versuch, das Nachdenken über
eine Fragestellung in mathematische Termini zu übersetzen, verfolgt den Zweck,
sich die Stringenz mathematischer Argumente auch für die Bearbeitung von
Problemen außerhalb der Mathematik zu sichern. Im Begriff der Simulation ist in
diesem Zusammenhang der Anspruch enthalten, dass die Analyse eines
mathematischen Modells oder sein Nachvollzug auf dem Computer immer auch auf
Erkenntnisse zielt, die über die Mathematik hinausweisen.

Der Erfolg dieser Methode bei der Behandlung physikalischer und technischer
Systeme hat es nahegelegt, ihr Anwendungsfeld zu erweitern. In den Lebens- und
Sozialwissenschaften geht es bis in Bereiche hinein, die gesellschaftliches Handeln
zum Gegenstand haben und ihrerseits beeinflussen. Dabei werden häufig nur die
wissenschaftlichen Ergebnisse wahrgenommen, während den Methoden, mit denen
sie zustandekommen, blind vertraut wird. Doch die Mathematik als „höchste Form
der Rationalität“ anzupreisen, wie es auch mathematische Fachwissenschaftler
gerne tun, besagt noch nichts über ihre Bedeutung für die Erkenntnis
gesellschaftlicher und natürlicher Phänomene und Zusammenhänge. Zu hinterfragen
ist insbesondere die verbreitete Auffassung, bei mathematischen Modellen handele
es sich in aller Schlichtheit um „Abbilder der Wirklichkeit“.

Das Zentrum für Modellierung und Simulation und diese Schriftenreihe haben zum
Ziel, die methodischen Fragestellungen zu behandeln und zu durchleuchten, die die
mathematische Bearbeitung „realer“ Probleme aufwirft. Die Frage nach dem
„richtigen“ Einsatz mathematischer Modellierung im Einzelfall gehört ebenso dazu
dazu wie die Frage nach Kriterien dafür im Allgemeinen. Gibt es eine „Methode“ der
Modellierung und Simulation, und worin bestehen ihre Regeln, ihre Möglichkeiten,
ihre Grenzen? Es ist klar, dass eine so komplexe Fragestellung mehr als nur einen
Zugang erfordert. Gefragt sind u. a.
• Darstellungen und Untersuchungen von selbst entwickelten ebenso wie die

Auseinandersetzung mit in der Literatur vorgefundenen mathematischen
Modellklassen und Fallstudien,

• Untersuchungen zu spezifischen, am Modelltyp orientierten Instrumenten und
Methoden der mathematischen Modellierung,

• wissenschaftstheoretische und -historische Abhandlungen zur gesellschaftlichen
Bedeutung von Mathematisierungsprozessen.

Zentrum für Modellierung und Simulation
Fachbereich Mathematik der Universität Hamburg

Bundesstraße 55

D - 20146 Hamburg

Telefon  040 4123 5108
Fax 040 4123 5117

e -mail zms@math.uni-hamburg.de



Strategies of competition in constant and
fluctuating environments

J. Mainik, C. P. Ortlieb
Centre for Modelling and Simulation, University of Hamburg,

Bundesstrasse 55, 20146 Hamburg.

E-mail: Mainik: mainik@gmx.de, Ortlieb: ortlieb@math.uni-hamburg.de

Abstract

The competitive exclusion principle which is formulated within the
framework of the classic Lotka-Volterra model of species competing for
the same resource has had a profound impact on ecological thinking.
This principle is still an actual theme of mathematical and biological
research.

In this paper we study the dynamics of several competition models
with constant and variable environments. The competitive exclusion
principle will be proved for a wide class of models with constant envi-
ronments. In the case of variable environments we will show that the
efficiency of different competition strategies (gleaner, exploiter and
hunger resistance strategies) depends on the intensity of the environ-
ment’s fluctuations.

Key words: exploitative competition - fluctuating environment - competitive
exclusion - coexistence.

1 Introduction

The so-called competitive exclusion principle was formulated for the first
time within the framework of the classic competition models by Volterra.
It asserts that one of two species which compete for a single source must
go extinct [16,28]. The interest and discussions aroused by this theme [12]
prompted further research.

Traditionally, mathematicians distinguish between abiotic resource mod-
els (models with limiting factors)
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x′
i = ui(y1, · · · , yk)xi, i = 1, · · · , n,

yj = sj(x1, · · · , xn), j = 1, · · · , k (1)

and biotic resource models

x′
i = ui(y1, · · · , yk)xi, i = 1, · · · , n,

y′
j = gj(x1, · · · , xn, y1, · · · , yk)yj, j = 1, · · · , k.

(2)

y1, · · · , yk are the concentrations of k resources, and x1, · · · , xn are the den-
sities of n species competing for these resources, k < n. It holds that

∂ui

∂yj

≥ 0,
∂sj

∂xi

≤ 0,
∂gj

∂xi

≤ 0. (3)

Here and further t is the time and ′ = d
dt

. The competition is purely indirect,
because the species just share the food. There is no other mutual negative
interference. The growth rates of the competitors depend only on the food
supply. The classical Lotka-Volterra model belongs to the first group with
n = 2, k = 1 and linear functions ui and s1.

The competitive exclusion principle can be formulated in different ways.
We use the definition proposed by McGehee and Armstrong [1,17]. A system
is said to exhibit persistence if it has a compact attractor K0 in the interior
Rn

+ = {(x1 > 0, · · · , xn > 0)} of the state space. It means that K0 has
an open neighbourhood U0 ⊂ Rn

+, so that any orbit starting in U0 remains
in U0 and tends asymptotically to K0. The survival of the species in U0 is
thus ensured. The competitive exclusion principle holds if there are no such
attractors.

For abiotic resource models the competitive exclusion principle holds in
the case n = 2, k = 1 or if all functions ui, 1 ≤ i ≤ n, are linear. With the
exception of special cases, at least n − k consumers go extinct here and at
most k competitors can survive on k resources. We say that the ith species
goes extinct if limt→+∞ xi(t) = 0. For n > 2 there are no point-attractors in
the interior of the state space [1,9,14,17,21]. But in case n ≥ 3 and k = 1
the competitors can coexist [19] so that the competitive exclusion principle
does not hold for these models in general.

For biotic resource models the competitive exclusion principle holds if all
functions ui, 1 ≤ i ≤ n, are linear. In general, n consumers can coexist on
k < n resources. An appropriate model for the case n = 2 and k = 1 is
shown in [17].

Another important example is given by the so-called chemostat model
which belongs to the most cited ones. In simple cases it is described by the
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following system of differential equations

x′
i = (

wiy

hi + y
− mi)xi, 1 ≤ i ≤ n.

y′ = (y0 − y)D −
n∑

i=1

fiy

hi + y
xi

(4)

Here x1, · · · , xn are the densities of the consumers, and y is the nutrient con-
centration. The growth rates of the competing species are given by Michaelis-
Menten functions (Monod model [18]). y0 is the input concentration, D is
the dilution rate, wi, mi and hi are the rates of growth, mortality and the
half-saturation constant for the ith species. In a simple case these parameters
are constant.

The chemostat technique is very popular in laboratory research in micro-
biology and biology of populations [24]. The dynamics’ high correspondence
with the empirical data for this model is shown in [8]. The competitive ex-
clusion principle for the case D = m1 = · · · = mn has been proved in [10].
The winner is the consumer with the lowest persistence threshold λi. The
persistence threshold of the ith species is the lowest nutrient concentration
necessary for survival in the absence of competitors, i.e. x′

i(λi) = 0. This
threshold criterion has been discussed and tested empirically many times
[13,27].

Theoretical ecology accepts that the principle of competitive exclusion
is very important, but other mechanisms of competition must be evaluated,
too. For example, a distinction can be made between the so-called gleaner
and exploiter species which have different competition strategies [2,5,25,26].
The former are efficient at a low food level (low persistence threshold); the
latter have high growth rates when the food is abundant.

The vast majority of mathematical models, for which the competitive
exclusion principle was proved, considered the environment as constant. The
temporal variability of the parameters and the environment is a real factor
which can have a decisive effect on competition processes. It is important
for the population dynamics, whether external (e.g. seasonal) oscillations
make it possible to avoid the competitive exclusion. Looking at it from a
mathematical point of view, we must analyze the simplifying assumptions
which allow us to prove the competitive exclusion principle [1,12]. Here we
recall to mind several results that belong to this research direction.

The existence of positive periodic solutions for a model of the Lotka-
Volterra type is demonstrated in [3]. But it is not clear whether these periodic
solutions are stable. In this respect, the results of the paper [4] are interesting.
The existence of periodic solutions for the chemostat model is proved in

3



[7,11]. Interesting results of numerical simulations for the chemostat model
in a variable environment are shown in [6]. An informative survey of other
possible competition mechanisms for plankton communities can be found in
[22].

2 Statement of the models

The competition models we consider cannot be assigned exactly to the de-
scribed types. In general, the dynamics is described by the following system
of n + 1 differential equations

x′
1 = r1(y)x1

... (5)

x′
n = rn(y)xn

y′ = C(y) − (g1(y)x1 + · · ·+ gn(y)xn)

The functions ri(y), gi(y), i = 1, · · · , n, and C(y) are Lipschitz continuous
here; furthermore, the following conditions are satisfied:

1. ri(y), 1 ≤ i ≤ n, increase monotonously, ri(0) < 0 and ri(y) > 0 for
sufficiently large y,

2. gi(y), 1 ≤ i ≤ n, increase monotonously and g(0) = 0,
3. C(y) is a non-increasing function, C(0) > 0.

Here x1, · · · , xn are the densities of the n species competing for a single
source, y is the density of this nutrient. ri(y) is the growth rate and gi(y) is
the attack rate of the ith species, i = 1, · · · , n. The term C(y) determines
the speed of the food input. The case C(y) = C0 > 0 is especially interesting
for us. On these conditions the process described by (5) can be considered
as an external food input with the constant speed C0.

In the following we will use the term ”species xi” besides ”ith species”.
This will not create any misunderstandings because it is always clear whether
the species itself or its density is meant. The persistence threshold λi for xi is
the positive solution of the equation ri(λi) = 0. Further we assume λ1 < λi,
i = 2, · · · , n, and C(λ1) > 0 because otherwise all the species will obviously
go extinct.

The system (5) is an autonomous system of differential equations corre-
sponding to a constant environment. We will prove the exclusion principle
for this system on some additional conditions. Anyway, they are satisfied
for two especially important models. These models are described by the
following systems of differential equations.
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The first one has the form

x′
1 = r1(y)x1

... (6)

x′
n = rn(y)xn

y′ = C(y) − (f1x1 + · · ·+ fnxn)y

with

ri(y) =
wiy

hi + y
− mi, i = 1, · · · , n. (7)

The parameters mi, wi and hi in the Michaelis-Menten terms are positive.
The parameter mi > 0 determines the maximum mortality rate of xi (for
y = 0). The maximum growth rate of xi (for y → ∞) equals wi − mi, and
we assume wi > mi, 1 ≤ i ≤ n. The persistence threshold for the species xi

equals

λi =
mihi

wi − mi

, i = 1, · · · , n.

The second system has the form

x′
1 = r1(y)x1

... (8)

x′
n = rn(y)xn

y′ = C(y) − (g1(y)x1 + · · · + g(y)xn)

with the same growth rates ri(y) = wiy/(hi +y)−mi, i = 1, · · · , n, as before.
The attack rates fiy/(hi + y) are here, unlike (6), saturated functions as
in the chemostat model. The quotient wi/fi is the yield factor for the ith
species, i = 1, · · · , n. The system (8) is a generalization of the system (4).

In the case C(y) = C0 these systems differ from the chemostat model in
an important detail. The term −Dy, which describes in the chemostat model
the loss of food because of dilution, is absent here. In real models (e.g. with
rivers transporting food into the sea) there is no such loss indeed, so that our
model is biologically sensible. There are also other biological communities
which this model seems to fit.

Later these models will be considered in inconstant environments. The
environment’s variability will be modeled by pulsing food supply. Source
fluctuations of this kind are characteristic of the semi-continuous cultures
and correspond to a gradual delivery of nutrients. They appear in many
empirical studies, e.g. [22,23]. It is shown in [23] that pulsations of this kind
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are an important factor for competing communities. Such source pulsations
(that can be caused by climate) can also be found in real systems where they
must have similar effects on the real dynamics.

So we will see that the variability of sources can support coexistence of
consumers or allow some other species to win the competition. Furthermore,
it can be seen that the competition strategies distinguished by population
ecologists are really adapted to the intensity of the oscillations. Besides the
persistence threshold and the maximum growth rate, the hunger resistance of
a species also proved to be a very important factor in our competition models.
The hunger resistance of the ith species is determined by the decrease speed
of the density xi if there is not enough food for survival. Fig. 1 shows the
growth rates r1(y) and r2(y) of two species . The first one has a lower
persistence threshold (λ1 < λ2), the second one has a higher growth rate if
the nutrient is abundant (r2(y) > r1(y) for large y) and also a better hunger
resistance (r2(y) > r1(y) for small y).

3 Dynamics in a constant environment

Theorem 1. If for the system (5) constants a2, · · · , an exist, such that

airi(y) ≤ gi(y)r1(y), i = 2, · · · , n, (9)

then the point P0 = (C(λ1)/g1(λ1), 0, · · · , 0, λ1) is globally asymptotically sta-
ble in the domain S = {(x1, · · · , xn, y) : x1 > 0, x2 ≥ 0, · · · , xn ≥ 0, y ≥ 0}.

Proof. It is easy to see that each solution of the system (5) remains in
the domain S, if the start point P = (x1(0), · · · , xn(0), y(0)) lies in S. The
coefficients a2, · · · , an obviously are positive. We consider a certain Ljapunov
function V on S with the following gradient

∇V = (−C(λ1)

x1
+ g1(λ1), a2, · · · , an, r1(y)). (10)

Due to a2 > 0, · · · , an > 0, from (10) follows immediately that for any real
number α the domain

Sα = {(x1, · · · , xn, y) : V (x1, x2, · · · , xn, y) ≤ α}
is compact. It holds for each solution of (5) that

V ′ =
d

dt
V (x1(t), · · · , xn(t), y(t)) = r1(y)[C(y)− C(λ1)]

+ x1r1(y)[g1(λ1) − g1(y)] +
∑

2≤i≤n

xi[airr(y) − gi(y)r1(y)] ≤ 0,
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since all the summands on the right side are nonpositive. The term
x1r1(y)[g1(λ1)−g1(y)] equals 0 if x1 = 0 or y = λ1. Thus we have V ′ ≤ 0, and
Sα is positively invariant. Then the ω-limit ω(P ) is a non-empty compact
subset of S for any initial point P , P ∈ S, [9]. For (x1, · · · , xn, y) ∈ ω(P ) we
have V ′(x1, · · · , xn, y) = 0. Due to x1 > 0 one obtains y = λ1, and ri(λ1) < 0,
i = 2, · · · , n, yields x2 = · · · = xn = 0. Since y′ = 0 here, the last equation
of the system (5) yields x1 = C(λ1)/g1(λ1). For every orbit starting in S the
ω-limit consists only of the point P0 which is therefore globally asymptoti-
cally stable on S.
Remark. The exact form of the attack rate g1(y) does not matter here. It
only needs to grow strictly (strictly even in λ1).

Corollary 1. The exclusion principle holds for the system (6).
Proof. It must be shown that in this case constants ai, i = 2, · · · , n, do

exist, so that (9) is satisfied. We begin with a simple remark which also will
be useful later.

Let p1(y) be a convex function and let p2(y) be a concave one. Let the
graph of pi(y) intersect the x-axis at the point yi > 0, i = 1, 2, increasing
there strictly. If y1 < y2, then a positive coefficient a exists, such that
ap1(y) < p2(y).

For smooth functions we can determine a > 0, for example, by means of
the parallelity of the tangents at the points (y1, 0) and (y2, 0), i.e. ap′1(y1) =
p′2(y2). Generally we can use the appropriate one-sided tangents. For the
system (6) the function

p1(y) = fiyr1(y) = fiy(
w1y

h1 + y
− m1) (11)

is convex (p′1(y) = 2fiwih
2
i /(hi + y)3 ≥ 0), and

p2(y) = ri(y) =
wiy

hi + y
− mi) (12)

is concave (p′′2(y) = r′′2(y) = −2wihi/(hi + y)3 ≤ 0). Since λ1 < λi, there is
an ai > 0, such that airi(y) < fiyr1(y).

Remarks. 1. We have not used the exact form of ri(y), i = 2, · · · , n in
the proof, so that they can be optional concave functions.

2. The statement holds also if, for example, r1(y) is linear, r1(y) =
by − m1, b > 0. In this case each function p1(y) = fiyr1(y), i = 2, · · · , n, is
convex.

Corollary 2. In (5) let

gi(y) =
fiy

bi + y
, ri(y) =

wiy

hi + y
− mi, i = 1, · · · , n.
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Then the exclusion principle holds if bi ≥ hi, i = 1, · · · , n.
Proof. We must show again the existence of coefficients ai, i = 2, · · · , n,

such that (9) is satisfied, i.e.

ai(
wiy

hi + y
− mi) ≤ fiy

bi + y
(

w1y

h1 + y
− m1), 2 ≤ i ≤ n.

This is equivalent to

ai(bi + y)(
wiy

hi + y
− mi) ≤ fiy(

w1y

h1 + y
− m1), 2 ≤ i ≤ n.

Let
p1(y) = fiy(

w1y

h1 + y
− m1), p2(y) = (bi + y)(

wiy

hi + y
− mi).

p1(y) is convex (see (11)). We have p′′2(y) = −2wihi(bi − hi)/(hi + y)3 ≤ 0
exactly if bi ≥ hi. Then p2(y) is concave. The coefficient ai exists because
λ1 < λi.

Remarks. 1. The exclusion principle holds for the system (8) and
especially for the chemostat model (4). Here we have bi = hi.

2. The exclusion principle holds also if some functions gi(y) are linear
here. In this case the corresponding growth rates ri(y) can be linear, too.

3. Instead of (12) the following forms of attack and growth rates can be
used

gi(y) =
fiφ(y)

bi + φ(y)
, ri(y) =

wiφ(y)

hi + φ(y)
− mi, i = 1, · · · , n.

where φ(y) is an optional strictly increasing function with φ(0) = 0. For
example, φ(y) = yn with n > 1 is used quite often. The existence of the
coefficient ai is obvious, because after the substitution z = φ(y) we obtain
the necessary estimations.

Thus the exclusion principle has been proved for important classes of
competition models. But we still could not find a Ljapunov-function for the
general case. Therefore the question whether exclusion principle holds in
general remains open. The following theorem allows us to take a look at the
dynamics of the system (5) without additional restrictions. We are going to
confine ourselves to a short sketch of the proof.

Theorem 2. Let in the system (5) xi(0) > 0 at least for a single species
with C(λi) > 0. Then y(t) and the sum x1(t) + · · ·+ xn(t) are permanent.
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The permanence of x(t) = y(t) or x(t) = x1(t) + · · · + xn(t) means that
the following estimations hold

lim
τ→+∞ inf

t≥τ
x(t) ≥ τ, lim

τ→+∞ sup
t≥τ

x(t) ≤ D,

and the positive constants do not depend on the initial conditions [9]. Further
we assume C(λi) > 0 for all i = 1, · · · , n. As a general rule, we could consider
the sum of the species xi with C(λi) > 0. All other species go extinct.

Let λ = min{λ1, · · · , λn}, M = max{−r1(0), · · · , rn(0)}, and let K be
the following compactum in Rn+1

+ = {(x1, · · · , xn, y)}
K = {(x1, · · · , xn, y) : x1 ≥ 0, · · · , xn ≥ 0, y ≥ 0,

S1 ≤ x1 + · · · + xn ≤ S2, y1 ≤ y ≤ y2}
The parameters S1, S2, y1 and y2 are chosen so that

S1 < min1≤i≤n
C(λ)

gi(λ)
, S2 > max1≤i≤n

C(λ)

gi(λ)
, y2 > maxλ1, · · · , λn.

and

0 < y1 < λ, S2max1≤i≤ngi(y1) < 0.5C(λ), y1 < 0.5C(λ)
S2 − S1

MS2

.

First we can prove that any orbit X(t) = (x1(t), · · · , xn(t), y(t)) enters the
interior of this compactum K. After that it can be shown that the supremum
return time τ0 for orbits starting in K is finite. Therefore the set

K1 = {X(t) : X(0) ∈ K, 0 ≤ t ≤ τ0}
is compact in Rn+1

+ and separate from y = 0 and x1 = cdots = xn = 0. Any
orbit remains in K1 for large t, and therefore y(t) and x1(t) + · · ·+ xn(t) are
permanent.

The previous theorem confirms that the dynamics of the system (5) shows
realistic traits also in the general case. In this context there is an interesting
statement that we can prove only for models with 2 species.

Theorem 3. In the system (5) let n = 2, λ1 < λ2 and C(λ1) > 0. Then
the species x1 with the lowest persistence threshold is permanent.

Proof. Let x1(0) > 0. Theorem 2 yields that we can assume g2(λ2) > 0
and x2(0) > 0. First we will show that x1 does not go extinct.

Let limt→+∞ x1 = 0. According to theorem 2 the species x2 is permanent
here, and x2(t) ≥ δ2, δ2 > 0, for large t. Obviously, constants a2 > 0 and y0,
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y0 > λ2, exist, such that the inequation r1(y) − a2r2(y) > 0 is satisfied for
0 ≤ i ≤ y0. We consider a certain function V with the following gradient

∇V = (− µ

x1

,−C(λ2)

x2

+ g2(λ2) +
µa2

x2

, r2(y)), (13)

where the constant µ is positive. The function V will serve as Ljapunov
function. We have

V ′ = r2(y)[C(y)−C(λ2)] +x2r2(y)[g2(λ2)− g2(y)]−µ[r1 − a2r2]− x1g1(y)r2.

The terms r2(y)[C(y)−C(λ2)] and x2r2(y)[g2(λ2)− g2(y)] are obviously not
positive, and the last of them equals 0 exactly for y = λ2. For y → ∞ it
tends to −∞.

Since −[r1(y)−k2r2(y)] is negative for 0 ≤ y ≤ y0 and bounded for y ≥ 0,
it holds for sufficiently small µ > 0 that

r2(y)[C(y)− C(λ2)] + x2r2(y)[g2(y) − g2(λ2)] − µ[r1(y) − k2r2(y)] ≤ −2ε

with ε > 0. The term −x1g1(y)r2(y) is negative for y > λ2, and for 0 ≤ y ≤ λ2

we have −x1g1(y)r2(y) ≤ Kx1 with K = sup0≤y≤λ2g1(y)r2(y) < ∞. Then for
x1 < ε/K we obtain limt→+∞ V (t) = −∞. Nevertheless, any orbit remains
for large t in a compactum K1 in Rn+1

+ . Due to (13) V (t) → ∞ on K1 if
x1 → 0. Thus we have a contradiction.

Herefrom follows the existence of a positive threshold δ, such that every
orbit always returns into the domain U = {(x1, x2, y) : x1 > δ}. We define a
function on K1 that determines the time of the return into U ,

τ1(P ) = inf{t : t > 0, X(0) = P ∈ K1, X(t) ∈ U}.
τ1(P ) is an upper semi-continuous function, and its supremum is finite on the
compactum K1. Thus we can conclude the existence of a threshold δ1 > 0
which x1 does not fall below,

lim
t→+∞ inf

τ≥t
x1(τ) ≥ δ1,

and δ1 is independent on x1(0) > 0. The necessary upper estimation follows
from the theorem 2.

4 Dynamics in a variable environment.

Up to now we have viewed systems with constant environments. Now let the
nutrient enter the system in portions. We restrict ourselves to the case n = 2
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and begin with the system (6). It must be replaced by the following

x′
1 = r1(y)x1

x′
2 = r2(y)x2 (14)

y′ = −(f1x1 + f2x2)y

where y changes with the step τ . First we consider the case

y(tk+) = y(tk−) + ∆τ , tk = kτ, k = 1, 2, · · · . (15)

The quotient ∆τ/τ determines the average food supply, corresponding to
a constant food input speed C(y) = C0. We analyse the system (14-15)
numerically.

In the next simulations we will change τ and ∆τ without changing the
average food supply. For higher τ the pulsations of food are stronger and the
periods with low food concentration are longer.

In all cases x1(t), x2(t) and y(t) converge for t → +∞ asymptotically to
periodic oscillations that we denote by x̃1(t), x̃2(t) and ỹ(t). The period of
these oscillations is denoted by T . T is not always equal τ .

Figs. 2–4 represent the results of simulations for different steps τ if f1 = 5,
f2 = 4 and the species grow in the following manner

r1(y) =
2.5y

1 + y
− 1.82, r2(y) =

2y

5 + y
− 0.8. (16)

The graphs of r1(y) and r2(y) are shown in Fig. 1, and we have λ1 < λ2. The
average food supply is constant, ∆τ/τ = 1.25.

For smaller τ the species x1 is the superior competitor due to its lower
persistence threshold λ1. The dynamics of the system (14-15) is still similar to
that of (6). If τ = 4, then x2(t) tends to 0, x1 and y converge asymptotically
to oscillations x̃1 and ỹ, see Fig. 2. Their period T equals τ . The species x2

goes extinct because of competition. If x1 is absent, x1(0) = 0, then x2 does
not tend to 0. Dynamics of this kind is repeatedly shown by the simulations
for τ ≤ 6.

At further increase of τ the result changes in the following way. First the
species x1 and x2 become capable of coexistence, and after that the species
x2 can win in spite of higher persistence threshold. Oscillations x̃1, x̃2 and
ỹ for τ = 7 are shown in Fig. 3. Here we obtain a doubling of the period,
T = 2τ , that will appear in some other cases, too. For τ = 8 the species
x1 goes extinct, x̃2 and ỹ can be seen in Fig. 4. Here the extinction of x1 is
caused by competition; x1 does not go extinct if x2 is absent, x2(0) = 0. For
larger τ we obtain the same dynamics.
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Thus these simulations show that the threshold criterion cannot be the
only decisive factor in oscillating environments. In the last cases we had
m2 < m1 and w2 −m2 > w1 −m1, so that x2 had a better hunger resistance
and a higher growth rate for a higher food concentration. Therefore x2 could
win the competition for higher τ .

In the next example we have m1 = m2 and still f1 = 5, f2 = 4. The other
parameters are chosen so that

r1(y) =
1.48y

2.834 + y
− 0.8, r2(y) =

2y

5 + y
− 0.8. (17)

In this case we still have λ1 < λ2. The dynamics depends again on the
intensity of the fluctuations. Fig. 5 shows the graphs of r1(y), r2(y) and a
single period of the function x̃2 for τ = 10. The simulations yield in this case
that x1 goes extinct. Here the species x2 is the superior competitor because
w2 > w1.

In order to show that hunger resistance is a significant factor, too, we
consider one more example with

r1(y) =
4y

1.35 + y
− 2.8, r2(y) =

2y

5 + y
− 0.8. (18)

We have λ1 < λ2, w1 −m1 = w2 −m2, but x2 has a better hunger resistance,
r2(y) > r1(y) for small y. In the case τ = 8 the simulations yield indeed
that x2 wins. Since r2(y) < r1(y) holds for y > λ1, it is caused only by a
better hunger resistance of x2. The graphs r1(y), r2(y) and x̃2 are shown in
Fig. 6. If other parameters are the same, x1 wins the competition in the case
τ = 2 (i.e. if the oscillations are small), and in the case τ = 4 the species can
coexist.

Simulations also yield analogous results, if the food is reset to the same
level after a certain time span. Then we have instead of (15)

y(tk+) = ∆τ , tk = kτ, k = 1, 2, · · · . (19)

The frequency τ is varied again, the quotient ∆τ/τ remains constant. Oscil-
lations of this kind are used for example in experimental biological studies
of competition [23]. They are produced by periodic replacing of the culture
medium by a fresh food suspension. The results of these simulations are ab-
solutely analogous to the last ones, they have the same sense and biological
cause. This was to be expected, since asymptotical periodic oscillations of the
nutrient concentration have already been found in the previous simulations.

If (8) is used as the basic system for constant environments, then (14)
must be replaced by the following system

12



x′
1 = r1(y)x1

x′
2 = r2(y)x2 (20)

y′ = −(
f1y

h1 + y
x1 +

f2y

h2 + y
x2)

where (15) holds for y. The simulations’ results correspond to the former
ones.

Let f1 = 5, f2 = 4, ∆τ/τ = 1.25, and at first let r1(y), r2(y) be defined
as in (16), see Fig. 1. It still holds λ1 < λ2. Figs. 7-9 show the nontrivial
asymptotical oscillations for τ = 4, τ = 6 and τ = 8, respectively. At the
lowest τ the species x1 wins, for τ = 6 both species can coexist and for τ = 8
the winner is the species x2. This demonstrates again that different strategies
of adaptation to oscillating external conditions are possible.

If in (20) r1(y) and r2(y) are defined as in (17), see Fig. 5, and τ = 10,
then x2 is the superior competitor, too. Fig. 10 shows the periods of x̃2

and ỹ. The species x2 wins because it has a higher growth rate when the
food concentration is high. If r1(y) and r2(y) are defined by means of (18),
see Fig. 8, and τ = 8, then x1(t) → 0. Here the species x2 is the superior
competitor because it has a better hunger resistance. The periods of x̃2 and
ỹ can be found in Fig. 11.

5 Discussion

Our analytic results refer to the case of constant environments. The compet-
itive exclusion principle has been proved for a wide class of models. We have
also taken a look at the dynamics of the system (5) in the general case. It is
significant that the species with the lowest persistence threshold can never
lose the competition in a constant environment. In comparison with this case
the results for oscillating environments demonstrate a decisive change of the
dynamics. For this aim we employ numerical simulations.

The results of our analytical and numerical research can be summarized
in the following way. The outcome of the competition cannot be forecast by
means of a single concept (e.g. gleaner, exploiter or hunger resistance). It
seems more reasonable to distinguish some competition strategies that allow
species an adaptation to the environment’s oscillations. It must be remarked
that ”strategy” does not mean any conscious activity. The gleaner strategy
is better for small oscillations, and if the environment’s variability is low, the
species with this competition strategy is the superior competitor. The other

13



strategies both have some advantages in environments with strong oscilla-
tions, so that they can be successful in environments with high variability.
Furthermore, it can be seen that slight changes in climatic conditions can
have a drastic influence on the dynamics of competing communities.

Acknowledgement. This research was supported by DFG, project
OR82/1-1 Mathematical Methods of Detecting Climatic Ecological Bifur-
cations.
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Fig. 1. Growth rates r1(y) = - - - and r2(y) = —, λ1 < λ2.
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Fig. 2. τ = 4: asymptotical oscillations x̃1 (left) and ỹ (right).
x2 → 0, T = τ .
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Fig. 3. τ = 7: oscillations x̃1 = - - - , x̃2= — (left), ỹ (right), T = 2τ .

15



0 1 2 3 4 5 6 7 8
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

t

x2

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

t

y

Fig. 4. τ = 8: oscillations x̃2 (left) and ỹ (right). x1 → 0, T = τ .
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τ = 10: asymptotical oscillations x̃2 (right). x1 → 0, T = τ .
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Fig. 7. τ = 4: oscillations x̃1 (left) and ỹ (right), x2 → 0, T = τ .
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Fig. 8. τ = 6: oscillations x̃1 = - - -, x̃2= — (left), ỹ (right). T = 2τ .
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Fig. 9. τ = 8: oscillations x̃2 (left) and ỹ (right). x1 → 0, T = 2τ .
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Fig. 10. τ = 10: oscillations x̃2 (left) and ỹ (right). x1 → 0, T = 2τ .
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Fig. 11. τ = 8: oscillations x̃2 (left) and ỹ (right). x1 → 0, T = 2τ .

18



References

1. Armstrong, R. A., McGehee, R., 1980. Competitive exclusion, Am. Nat.,
115: 151-170.

2. Crowley, P. H., 1975. Natural selection and the Michaelis constant, J.
Theor. Biol., 50: 461-475.

3. Cushing, J. M., 1980. Two species in periodic environment, J. Math.
Biol., 10: 385-400.

4. Cushing, J. M., 1986. Periodic Lotka-Volterra competition equatios,
J. Math. Biol., 24: 381-403.

5. Fredrickson, A. G., Stephanopoulos, G., 1981. Microbial competition,
Science, 213: 972-979.

6. Grover, J. P., Resource competition in a variable environment: phyto-
plankton growing according to Monod’s model, Am. Nat., 136: 771-789.

7. Hale, J. K., Somolinos, A. S., 1983. Competition for fluctuating
nutrient, J. Math. Biol., 18: 255-280.

8. Hansen, S. R., Hubbel, S. P., 1980. Single-nutrient microbial competi-
tion: qualitative agreement between experimental and theoretically forecast
outcomes, Science, 207: 1491-1493.

9. Hofbauer, J., Sigmund, K., 1988. The theory of evolution and dynam-
ical systems, Cambridge - New York - New Rochelle - Melbourne - Sydney:
Cambridge University Press.

10. Hsu, S. B., Hubbell, S., Waltman, P., 1977. A mathematical theory
for single-nutrient competition in continuous cultures of micro-organisms,
SIAM J. Appl. Math., 32: 366-383.

11. Hsu, S. B., 1980. A competition model for seasonally fluctuating
nutrient, J. Math. Biol., 9: 115-132.

12. Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat.
95: 137-143.

13. Lampert, W., Gabriel, W., Rothhaupt, K. O., 1992. Ecophysiological
models: A tool for understanding interactions in freshwater communities?,
Verh. Dtsch. Zool. Ges., 85.2: 95-110.

14. Levin, S., 1970. Community equlibria and extension of the competi-
tive exclusion principle, Am. Natur., 104: 413-423.

15. Levins, R., 1979. Coexisistence in a variable environment, Am. Nat.,
114: 765-783.

16. Lotka, A., 1956. Elements of mathematical biology, Dover, New York.
17. McGehee R., Armstrong, R. A., 1977. Some mathematical prob-

lems concerning the ecological principle of competitive exclusion, J. Differ.
Equations, 23: 30-52.

19



18. Monod, J., 1950. La technique de culture continue: théorie et appli-
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