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Mathematische Modellierung und Simulation

Die mathematisch-naturwissenschaftliche Methode, gegriindet auf der Uberzeugung,
dass ,das Buch der Natur in der Sprache der Mathematik geschrieben” sei (Galilei),
findet heute weit Uber ihren urspringlichen Gegenstandsbereich hinaus
Verwendung. Mathematische Modellierung, also der Versuch, das Nachdenken tber
eine Fragestellung in mathematische Termini zu Ubersetzen, verfolgt den Zweck,
sich die Stringenz mathematischer Argumente auch fir die Bearbeitung von
Problemen aufRerhalb der Mathematik zu sichern. Im Begriff der Simulation ist in
diesem Zusammenhang der Anspruch enthalten, dass die Analyse eines
mathematischen Modells oder sein Nachvollzug auf dem Computer immer auch auf
Erkenntnisse zielt, die Uber die Mathematik hinausweisen.

Der Erfolg dieser Methode bei der Behandlung physikalischer und technischer
Systeme hat es nahegelegt, ihr Anwendungsfeld zu erweitern. In den Lebens- und
Sozialwissenschaften geht es bis in Bereiche hinein, die gesellschaftliches Handeln
zum Gegenstand haben und ihrerseits beeinflussen. Dabei werden haufig nur die
wissenschaftlichen Ergebnisse wahrgenommen, wahrend den Methoden, mit denen
sie zustandekommen, blind vertraut wird. Doch die Mathematik als ,hochste Form
der Rationalitat® anzupreisen, wie es auch mathematische Fachwissenschaftler
gerne tun, besagt noch nichts dber ihre Bedeutung fir die Erkenntnis
gesellschaftlicher und natirlicher Ph&dnomene und Zusammenhénge. Zu
hinterfragen ist insbesondere die verbreitete Auffassung, bei mathematischen
Modellen handele es sich in aller Schlichtheit um ,Abbilder der Wirklichkeit*.

Das Zentrum fir Modellierung und Simulation und diese Schriftenreihe haben zum
Ziel, die methodischen Fragestellungen zu behandeln und zu durchleuchten, die die
mathematische Bearbeitung ,realer* Probleme aufwirft. Die Frage nach dem
Jrichtigen” Einsatz mathematischer Modellierung im Einzelfall gehért ebenso dazu
dazu wie die Frage nach Kriterien dafur im Allgemeinen. Gibt es eine ,Methode"” der

Modellierung und Simulation, und worin bestehen ihre Regeln, ihre Mdaglichkeiten,

ihre Grenzen? Es ist klar, dass eine so komplexe Fragestellung mehr als nur einen

Zugang erfordert. Gefragt sind u. a.

- Darstellungen und Untersuchungen von selbst entwickelten ebenso wie die
Auseinandersetzung mit in der Literatur vorgefundenen mathematischen
Modellklassen und Fallstudien,

Untersuchungen zu spezifischen, am Modelltyp orientierten Instrumenten und
Methoden der mathematischen Modellierung,
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Zusammenfassung

For the niche-model, which is described in the form of nonlinear
differential equations, the influence of cannibalism is researched. It is
shown that inner stable states exist only if the inward-directed pre-
datory intensity is great enough compared with the outward-directed
one. For this model the possibility of life boat mechanism is analysed.
Numerical simulations for Neomysis integer and Praunus flexuosus
show that with the increase of cannibalism in the predator-population
the survival-window grows and the oscillations in the system are sup-
pressed.

Keywords: Niche-model, cannibalism, stability, life boat mechanism.

1 Introduction

Models with structured populations are important in studies of different kinds
of ecosystems, for example see [9,16,21,23]. The reason is that only these
models reveal the often very complex interactions of the populations so that
the influence of these interactions on the dynamic of a single population
and of the whole system can be registered and analysed. In the aggregating
models a great part of the specific information relating to each population,
especially concerning its intraspecific relations, may be lost.

Intraspecific interactions can occur in the form of competition or often of
cannibalism. Cannibalism, once regarded merely as a curious phenomenon,
is now considered to be a significant factor in the structure and dynamic of
many populations. R. Fox [10] and G. A. Polis [22], who contributed substan-
tially to understanding the importance of this mechanism and inspired to



further research, have supplied a good survey of this subject in their publi-
cations. Especially cannibalism is wide-spread in marine populations, which
are our main field of interest.

The number of works in which cannibalism is researched and modelled
is still meagre. W. Gabriel has begun a series of publications on the role
of cannibalism as a survival-factor. Since a cannibalistic population bounds
itself, cannibalism in a predatory population can lead to preservation of its
prey and hence to its own survival. On the other hand, different age stages
of this population often have different food sources, so that for the whole
population a new access to sources is gained that a non-cannibalistic popu-
lation otherwise would not have. This phenomenon has often been observed
by biologists. In [2] it is modelled and described as the life boat mechanism.
Thus, cannibalism enables a population to survive when otherwise it may die
out. It means that cannibalism plays a stabilising role for the system on the
whole. Whether cannibalism is a stabilising factor in an exact mathematical
sense is still a question to debate. This problem is the focus of attention in
many papers on the subject of cannibalism.

According to [8] cannibalism is a destabilising factor. In [7,17] different
results are obtained from different models for Tribolium castaneum: Hastings
showed that cannibalism has a destabilising effect, whereas Desharnais and
Liu indicated a largely stabilising effect of cannibalism. In these models iso-
lated cannibalistic populations which do not clash with others have been stu-
died, and in [8] and [17] the following simplified assumptions have been made.
Diekmann et al. substitute the attack-window of the prey stages by a total
loss at low age. In Hastings model reproduction in the McKendrick-equation
is constant regardless of the size of the stages capable of reproduction. These
assumptions may have a crucial influence on the results.

Cushing, [5], showed that different effects may appear in a simple difference-
model of cannibalism. They are the life boat mechanism, oscillations, chaos.
According to [6] the population structure is more responsible than canni-
balism for oscillations. Oscillations in predator-prey systems are well known
and they have already been described in the classic Lotka-Volterra model,
see [18]. The influence of cannibalism on oscillations in such systems has be-
en investigated by Kohlmeier, Ebenhoh [19] and Gabriel et al., [3,4,12]. The
results confirm the stabilising effect of cannibalism.

This wide range of results indicates that cannibalism varies in different
populations. The fact that the model itself is a significant factor should be
taken into consideration as well. Further research into this problem is neces-
sary.

The niche-model of Greve, [14,15], that is represented in the form of
system of differential equations, is the basis of our research. This model



was developed for marine populations and analysed in [20]. The important
stabilising role of cannibalism in the system of a single population was shown
there. In this paper we consider systems covering more populations. Since the
model is very complicated (system of nonlinear differential equations), the
analytical approaches require strict simplifications. For this reson, we use
appropriate numerical simulations in addition.

2 Stability analysis in systems with several
populations

In our research of the niche-model in [20] we dealt mainly with the dynamic
of single populations. We noticed that cannibalism in this model is an im-
portant factor even under these conditions. It can be the natural cause for
the boundedness and the existence of nontrivial stationary points. In the pre-
sent investigation we considered systems comprising several populations. On
comparing the inward-directed predatory intensity with the outward-directed
one, we could confirm the stabilising role of cannibalism. These predatory ac-
tivities affect the system differently, and there is an inner stable point only
if cannibalism is large enough.

2.1 Two populations with two stages each

We begin with the case of two populations. Each of them has two age stages,
and only the youngest representatives can be attacked by the oldest ones
of the two populations. Let 1, x5 be the densities of the stages of the first
population and x3, x4 be the densities of the stages of the second one; x; and
x3 correspond to the youngest. The system of differential equations has the
form, [20],

!
Ty = —onT1 + 01T — f1201T2 — fr1aT124
!
Ty = 0211 — 02272 1
;o (1)
Ty = —033T3+ 03474 — faaT3T4 — f30T37
!
Ty = 043T3 — 04474.

The coefficients have the following meaning:
oi; determines the quitting of the i-th age stage (growth and death by
starvation),
;i1 determines the development from the (i — 1)-th stage to the i-th,
012 and o34 determine the reproduction of the youngest stages by the



eldest.
Generally o;; depend on food suply, [20]. Here we assume that they are
constant. The matrices

Ay = < —011 012 > Y P < —033 O34 >
021  —022 043 —O044
are called Leslie-matrices of populations, [20].

fi; are constant and determine the intensity of x;’s attacking x;.
In the stationary point we have

021 043
To = —, Ty = —T3
0922 044
and therefore
021 043
r{fio—x1 + fu—ax3+ A} = 0
022 044
021 043 2
x3{ fao—11 + fau—x3+ Ay} = 0, (2)
022 044
where
Ay — 1 011 —012 A, — 1 033 —034
1 — o ) 2 — o .
099 021 022 O44 043 044

In case x1 > 0,29 > 0 it is equal to

1121 + c1ox3 = —14\ (3)
%1 + ey = —Ag,
_ J12021 _ J14043 _ J32021 _ J34043
where C11 = , Ci2 = ,  Co1 = ,  Coo = )
022 044 022 044

and we see that A; and Ay must be negative. These are exactly the require-
ments of instability of origin in systems of single populations, [20].
In case A # 0 Cramer’s rule yields

= Am1 T — A$3 A — AN GD) A — ci2 —4
1= = z = 3 —
A s A o —Ay gy |’ " e —Ay |7
A — €11 Ci2 | 021043A Af _ fiz fua (4)
Co1 Ca2 09904y f32 fa




Since z7 and x4 are positive, A,,, A,, and A must have the same signs. From
(4) it follows that A; has the same sign as well.

We examined the stability in the stationary point in case x1 > 0, x5 > 0.
For that purpose we considered the following characteristic polynomial P =

P)

o1 + fiexe + frara + A frorr — 012 0 fraz1
—0921 029 + A 0 0
0 f3213 033 + faomo + faaxa + N faa13 — 034
0 0 —043 O44 + A

By expanding this determinant according to the first two columns, we obtai-
ned

P(A) = di1(N)daa(A) — dar(N)daa(N), (5)
where

on + fi2xe + fuars + A —012 + from
— 091 099 +)\

dll = dll(/\) -

Y

033 + f3oX9 + faaxs + N —034 + f3473
—043 Oaa + A

0 f32553 0 f1456'1
—091 0'22+)\ —043 0'44+)\ ’

dgg()\) —

?

dor(\) =

, dyn(N) =

From fiowe + flazy = —A1 and fyoxs + fyaxz3 = —Ay it follows that for an
inner stationary point it satisfies

0120
dy = NN +r, T =09+ Z . >0, 7= fia00171 >0,
22
0340
dyy = N+ Nh+1y, To=o0u+ 3;1 B 0, 79 = fi209171, (6)
44

dyy = 021f325537 dyp = U43f1456'1~

Thus, we have for the characteristic polynomial in the inner stationary point

P = X4+ a X +a) +agh+ag =
(A2 XN+ 171) (N2 + Ny + 19) — f1209121 f34043T3,
ar =Ty +1T5, ay=TV15+1r1+7ry, ag="Tire+1Tor,

Qg =TTy — f140211'1f320431'3 = A‘1002104?,5C1$E'?,~

(7)



The stationary point is asymptotically stable if the real parts of all the
roots of the characteristic polynomial are negative and it is unstable if at
least one of the roots has a positive real part, [1]. According to the Routh-
Hurwitz criterion, [13], the real parts of the roots of the polynomial P =
M+ @\ + as)\? + az\ + a4 are negative if and only if

a; >0, ajas > az, as(aas —az) > a§a4, as > 0.

Due to (6,7) it is obvious that the first three inequalities hold. In fact, we
have ar=Ti+15 >0 and a1ao = (Tl +T2)(T1T2+’f’1 +T2) > Tiro+Thr; = as.
The third inequality is fulfilled, because

as(arag —as) = (Thirg+ T2T1)(T12T2 +Tyry + ThTy? + Tors)
> Ti2rirg + To?riry + ThTo(r? +15%) > (Th + T)*)rirs

_ 2 2 _ 2
= a f12f340210431'1$3 > ay Af<721<74356'1$3 = a1 Q4.

According to (7), a4 and Ay have the same signs. Hence, the stationary point
is asymptotically stable at Ay > 0 and it is unstable at Ay < 0.

If linear system (3) has solutions at Ay = 0, they form a line segment and,
evidently, they are not stable. In this case, due to (7), we have a, = 0 and
P = A\* + a1 \* + ag\ + a3). It is remarkable that here is a root equal to 0,
and the real parts of the others are negative. By means of the Routh-Hurwitz
criterion we see again for the polynomial A* 4+ a1 A2 + ap\ + as

a, > 0, aias > as, az > 0.

Thus, the asymptotic stability is equivalent to Ay > 0, i.e. A > 0,
A, > 0and A, > 0. From Ay < 0, Ay < 0 it follows that the last two
conditions yield

A
|A2| 327

A
Ji2 > Jaa > ﬁfm- (8)
That means that the inward-directed predatory intensity must be great enough
compared with the outward-directed one. On the other hand, (8) simply leads
to Ay > 0. Hence, A > 0 holds and Cramer’s rule results in a nontrivial solu-
tion of the system (3) in case Ay < 0 and Ay < 0. Therefore, we have an inner

asymptotically stable stationary point. Thus, we come to the following result.
Theorem 1. System (1) with constant Leslie-matrices has an inner asym-
ptotically stable stationary point if and only if

1

022

o —0 o —0
A, = 11 2 20 Ay = — 33 3 0

—021 0922 —043 O4q




[
|A2| 32,

|Ay|

d =2
an fi2 > A

fua

faa >

2.2 Two populations with several stages

We will generalise this theorem partly for systems of several populations and
age stages as well. Since the complete analysis is generally too complicated,
only necessary conditions of stability can be found. Here we consider a system
of two populations with n and k age stages, where only the youngest repre-
sentatives are attacked. The system of differential equations for the densities

x1,- -+, Tnak Of the age stages of these populations has the form
n+k
/
Ty = —onTi 40Tyt + 0Ty — Y fi;011;
=1
/
Ty = 02171 — 0222
/
Ty = Oppn—1Tn—1 — Onndn.
n+k
/
Tpi1 = —Ontin+1Tn+1 + On+1n+2Tn+2 + -+ On+1n+kTn+k — Z fn—}—ljxn—&-lxj
=1
/
Tpio = On42n41Tn41 — On42n4+2Tn42
!
xn+k = On+kn+k—1Tn+k—1 — Ontkn+kTn+k-

We assume again that o;; are constant. Here fi; and f, 1,41 equal 0, but it
is insignificant for the following.
Let p=n+1, ¢ =n + k, and analogous to the preceding

011 —012 —013 Tt —0O1n
1 —0921 029 0 s 0
AN=—— | 0 —0o3 o3 e 0 |,
022" Onn
O Tt 0 —Onn—1 Onn
Opp —Opp+1 —Opp+2 T —Opq
1 —Ont2p  Ong2n42 0 e 0
AQ = O —On+3n+2 On+3n+3 Tt O
On42n+2 " Ogqq
0 T 0 —O0gq—1  Ogq




The following determinants c;1, ¢19, ¢9; and coy arise after the evident substi-
tution of the first rows in A; and Ay. These determinants are not negative.

0 f12 f13 e fln
_0'21 0'22 O .« .. 0
1 0 0
= — —032 033 )
022 Onn
0 o 0 —Onn—1 Onn
fn+11 fn—|—12 fn—|—13 T fn+1n
_0'21 0'22 0 o .. O
1 0 0
Cyy = ——————— —032 033 ,
022" Onn
O e 0 —Onpn—1 Onn
fln—!—l f1n+2 e fln—Hc
1 —Onp+2n+1  On+42n+2 e 0
C12 =
On+2n+2 * * " Ontkn+k
0 e —Optknt+k—1 Ontkntk
0 fn,+1n,+2 e fn,+1n,+k
1 —On+2n+1  On+42n+2 e 0
Co2 =
On+2n+2 * * * Ontkn+k
0 e —On+kn+k—1 On+kn+k
In the stationary point we have
021 Opn—1"""021
Tog = —X1, ", Ly = ———T1,
022 Onn ~ " 022
o On+2n+1 o On+kn+k—1"" " On+2n+1
Tpnt2 = —Tp41, "y Ttk — Tn+1
On+2n+2 Ontkntk """ Ont2n+2

and the substitution leads to the following system for z; and x, 1

$1{611$1 + C19%p41 + A1} = 0

Tpyr{en®r + cotpi1 + Ao} = 0.
When z; # 0, x,,11 # 0 we have the linear system

111 + 12Tt = —4q

€1 %1 + CoTnp1 = —Ag,

whereby A; and Ay must be negative.

8



Let

C11 C12
Co1 (€22

A:

5 A:m:

Then in case A # 0 we obtain
A, A

Tn41

A Tn41 = A

Hence, we see that A, A, and A, ., have the same signs.
Suppose Dq; = Dq1(A) und Doy = Dyy(\) the following matrices

T =

U11+Z?if fijz; + A =012+ froxn —01p + finT1
Dy, = —?‘21 o922 + A .0 e |
0 e —am;_l Opn + A
Opp + Z;;Lf Jrt15%5 + A —0ppr1 + fopr1Tp T —Opq + fogTp
Dyy — _O-]fH-lp Op+ip+1 + A 0 E
0 e —0gq—1 Ogg + A

and dy1(\) = detD11(N), doa(N) = det Doy (M) denote their determinants.
We obtain the following determinants by substituting the first rows in Dy
and Dy respectively

Jot11Tns1 for12Tn e Jnt1nTn1
I () = —?'21 o922 + A .0 e |
6 e _O-n'r.],fl Tpn + A
Jint121 Jintot1 T Jintr
dis(\) = _U{H-lp Optipt1 + A 0 T
0 e —0Ogg—1 Ogq + A
Particularly,

d21(0) = Tp+1022 " OpnC2l, d12(0) = T10n4+2n42 * * * Ontkn+kC12.



In order to be sure that the coefficient at A\"** equals 1, we always use
Q = (—=1)"**P()) instead of the characteristic polynomial P()\),

fln+1$1 ce fln+k$1
Dii(\) 0 . 0
0 0
Q= f .
n—l—llxn—i—l fn—l—lnxn—&—l
0
. DQQ()\)

By expanding the determinant () according to the first n columns we should
take into consideration only two of the determinants: with the rows from
1 to n and with the rows from 2 to n + 1. Otherwise there is a zero-row
either in the matrix with the n first columns or in its adjoint submatrix. The
determinant with the rows from 2 to n + 1 apparently equals (—1)" 'dy;.
Thus, we obtain

Q(A) = sg1 - di1(N)daz(N) + 592 - di2(A)da1 (N),
where sg; = (—1)1Ftntlbotn — gy = (—])bFnd2edntl ()=l — 7
So it holds
QA ="+ a N da, = d11(N)dag(N) — di2(N)dar (M)
and a,, is equal to
Qp = Q(O) = d11(0)d22(0) — T1Tn4+1C12€21022 * * * OnnOn42n4+2 ° ° * Ontkntk-

In the inner stationary point the following condition Z;“:ﬁk fijr; = =4
holds and by expanding dj;(0) according to the first row we obtain

dn(o) =A1099 Opp — D109+ Oppy + £1€11022  * * Oy = C1121092 * ** O
Analog dso(0) = co9Xp 110019042 "+ Ontknak- Finally, we come to

an = {611022 - 612021}$1$n+1022 ©OnnOn42n42 ° * * Ondtkntk

- $15Cn+1A0'22 OnnOn+42n42 ° ° ° Ontknk,

so that a, and A have the same signs. The condition a,, > 0 is necessary
for the positivity of the real parts of the roots of Q(X). This is equivalent to
A >0, and hence A,, >0 and A > (. Immediately we come to

Ay A

|A_2|621’ Cog > ——C12.

| Ay

Tn+1

Al < O, Ag < O, c11 >

10



The last two inequalities indicate that for the existence of an inner asym-
ptotically stable point the inward-directed predatory intensity must be great
enough compared with the outward-directed one. The inequality A > 0 fol-
lows automatically:.

2.3 Several populations

We now turn to the case of several populations in which also only the youn-
gest age stages are attacked. Let m be the number of the populations and
n;, 1 < 1 < m, the number of the age stages of the :—th population. For
the sake of brevity, ¢ = n; + --- + n,, denotes the total number of all the
age stages, p; and ¢; denote the numbers of the youngest and the oldest age
stage of the i—th population, (p; =n1+---+n;1+1, ¢ =ny + -+ + n;),
and r; = p; + 1 as well. We also call y; the density of the youngest stage of
the 1—th population, so that y; = x,,. The system of differential equations
consists of m blocks, which correspond to the populations. The i—th block,
1 <@ <'m, is the following

qi q
, f— - R—
Ty, = —OpipTp; + E : Op;jLj xpz(E :fpzkxk)
J=ri k=1
/
Lpy = Oripilp; = Orirylr;

Ty = 0Ogigi—1Lq;—1 — Ogiq:Tg;

Forl1<i:<mlet v, =0p1ip+1° " Oqa

Op;p; —Opir; “Opipi+2 s “Opigi
Lo - 0 .
Ai = — Opi+2r;  Op;+2p;+2
V; . .
0 e 0 “O0qiqi—1  Oqsqs
and for 1 <i<m,1<j53<m
fpjpf, fpjm: fpjpi+2 fquqz
. —Orip; Orir, 0 e 0
Cji = — 0 “Opi+2r;  Opi+2p;i+2 0
V; . .
0 0 “0qiqi—1 Oqiq;

11




All ¢j; are not negative. We assume that the coefficients o;; are constant and
for each j not all ¢;; equal 0. The latter condition means that each population
is attacked. In the stationary point we have again

Or;p; Orip; """ Ogiq,—1 .
Ly, = yi;"'7xq7;: Yis 1§Z§m; (9)

Orr; Orir; * " " Oqiq

and after substitutions the first equations of the blocks can be simply trans-
formed into the following system

yi{cuiys + -+ cmYm + A1} =0

ym,{cm,lyl + -+ CrnmYm, + Am} = 0.

Particularly, for an inner stationary point y; > 0 for 1 < ¢ < m. Thus, we
obtain the linear system as follows

iy + ot CimYm = — A
(10)
Cm1Y1 + -+ ComYm = _Am
and all the determinants Ay, ---, A,, are negative if an inner stationary point

exists.
On the other hand, let

€11 0 Cim Cim - —A1 0 Cim
A = : #0, A, =
Cm1 ° Cmm Cm1 - _Am, o Cmm
be the determinants of the system (10) and the determinants for y;, 1 < i < m,
in Cramer’s rule. Then y; = A,, /A holds, and therefore A, A, ,---, A, have
the same signs if an inner stationary point exists.

Let P(\) be the characteristic polynomial and Q(\) = (—1)7P(\). The
q X g—matrix for () consists of blocks

Dll T Dlm,
Q= : ;
Dm,l e Drm’n,
Opips T ZZ:I fpikxk + A —Opir; T fpinyi T —Opiq; T fpi%yi
“Orip; Triry + A 0 e
D;; =
0 T “Ogigi—1 Ogiq; T A

12



fmmyi fmqjyi

0 e 0
D»,;j = . for ¢ 7é j
0 e 0
By expanding () according to the m rows with the numbers p; =1,---,p,, or

by induction on the number m of populations (for instance by expanding the
determinant according to the first n; columns at the step of the induction)
we obtain the following equality

dii(A) - dim(N)
QA = : :
dm,l()\) o dmm()‘)
where the elements d;; = d;;(\) equal
fmmyi fmrj Yi s fpiq]' Yi
—Orip; Orpr; T A 0 e
dii = d@tD”', dij = . for 7 # ]
0 e —0q,qi-1 Ogq; T A

At i # j we immediately see that d;;(0) = v;y;¢;; and in the inner stationary
point in consideration of 3} _; fpieTe = —A; we obtain

q
dii(0) = vi{ Ay + D fonn + i} = viyicis.

k=1
Thus,
Ci1 ° Cim
Q(O) =M"YiUmYm =My memA~
Cm1 " Cmm

The condition Q(0) > 0 is necessary for the negativity of the real parts of all
the eigenvalues, i. e. for the asymptotic stability. All v; are positive, y; are also
positive for an inner point in the state space. Thus, A > 0 is necessary for
the existence of an asymptotically stable inner point. Since A,, and A have
the same signs, we obtain the following necessary condition of the existence
of an inner asymptotically stable point

A>0, A;<0, A, >0forl<i<m.

The conditions A; < 0, 1 < ¢ < m, are necessary for the instability of
origins for single populations (which do not necessarily die out), see [20].
The inequalities A,, > 0 are restrictions of the predatory intensities.

13



2.4 Other directions of predatory intensities

Now we also will show the stabilising effect of cannibalism for the systems in
which the predatory intensities focus on the middle age stages. We confine
ourselves to the case of two populations. Each of the populations has three
age stages. To avoid applying unwieldy terms, we assume that only the oldest
stages are predators on the middle ones. The system of differential equations
has the form

Ty = —011T1 + 01202 + 01323
!
Ty = 0T — 00Ty — Ta{ fozxs + fosTe}
!
Ty = 032L2 — 03373 11
;o (11)
Ty = —044%4 + 0455 + 0466
!
Ty = 0544 — 05505 — T5{ f5323 + fr6T6}
!
Tg = 06505 — O66L6

x1,To, x3 are the age stages of the first population, x4, x5, x6 - of the second
one. The coefficients 0;; and f;; are constant. In the stationary point we have

032 012 013 012 013032

T3 = —T2, T1 = —T2 + —x3 = (_ + —)CCQ,
033 011 011 011 011033
065 045 046 045 046065

Tg = —Ts, Ty = —T5 + —Tg = (— + ———) 5.
066 044 044 044 044066

It is clear that for the coordinates x3 # 0 and xg # 0 at an inner stationary
point we obtain the following linear system

fosws + fosrs = —4\

(12)
fosws + foere = —Ag
where
1 011 —012 —013 1 044  —045 —O046
A1 = i —021 022 0 s AQ = . —054 055 0
11033 44066
0 —032 033 0 —065 066

A1 < 0 and As < 0 are necessary for g3 > 0, zg > 0. They are the conditions
of instability for the trivial solutions of single populations again. Let

fas foe —A1 fas Sz —A
Ar = A, = , Ay = : 13
! Jos fse | —Ay f56 ¢ Jsz —Ay (13)
Then in case Ay # 0 we have
JAVER AV



so that Ay, A,, and A, have the same signs. The matrix of the linearized

system is
—011 012
091 —O022 — Zj fQjCCj
. 0 032
A= 0 0
0 0
0 0

013

—f235€2
—033

0

—fssl's

0

0 0
0 0
0 0
—044 045
Osa  —O055 — Zj fijj
0 065

0

—f265€2

0

046

—f565€5

—066

From (12) it follows that the characteristic polynomial has the form

A+on
—021

0

0
0
0

—012
A+ o099 — Ay
—032
0
0
0

—013
J2372
)\ + 033
0

f531'5
0

0
0
0
A + 044
—054

0

0
0
0

—045

)\+0'55—

—065

Ay

0
Jo6T2
0
—046
f56T5
A + 066

(14)

By expanding according to the first three columns we obtain for the constant
term

011 —012 —013 044 —045 —046
P(O) = —091 099 — [\ f23$2 —054 055 — AV f56$5 -
0 —032 033 0 —065 066
011 —012 0 0 044 —045
—| =091 02— Ay f261'2 f535C5 —051 055 — Dy )
0 —032 O 0 O —065
and simple calculations lead to
P(O) = 0'110'440'320'651'2.1}6Af.

P(0) > 0 for the asymptotic stability. If P(0) > 0 is valid, then Ay > 0 must
hold as well and, hence, A,, > 0, A,, > 0. Due to A; < 0 and Ay < 0 we
obtain immediately the following necessary conditions for the existence of an
inner stationary point

Jas > |—|f53, Js6 > |—|f26 (15)

These inequalities mean again that the inward-directed (cannibalistic) pre-
datory intensity is great enough compared with the outward-directed one.

15



If these conditions are valid, then Ay > 0. The inner stationary point
exists if Ay < 0 and Ay < 0 hold. It is obvious that all the coefficients of the
characteristic polynomial are positive here.

Now suppose additionally that fos and f56 (the cannibalistic intensities)
are much higer than fs53 and fo6. Under this condition we can show that the
stationary point is asymptotically stable. In fact, (13) implies that

A A
Af >~ fo3 f56, Axg ~ —A fs6, AxG ~ —Ay fog, T3~ ——1, T =~ __Qa
fos3 I56
033 033f26 066 066f53
JosTo = fos—x3 = —A¢ ~ 0, fs305 = fss—a6 = —As ~ 0.
032 032 f23 T65 065 f56
Thus, we obtain P(\) ~ Py(\)Pa(A),
A+ o1 —012 —013
P\ = —091 A+ 09— A1 foszg |,
0 —039 A + 033
1
Aoy —045 —046 (16)
Py(\) = —051 A+ 055 — Do fr675
0 —065 A + 066

The coefficients of Py(A\) = X* + a1\ +a — 2\ + a3 equal

013021032
ay = 011 +033+—m
011033
2
033012021 + 011013021032 + 033013012091
ay = 011033 + 032 f2372 + )
011033
asz = 032011f23$2.

It is obvious that a; > 0,a3 > 0 and a,as — a3 > 0 hold. Hence, by Routh-
Hurwitz criterion the real parts of the roots of P;(\) are negative. For Py(\)
everything is analogous. Therefore, the inner stationary point is stable at
high inward-directed predatory intensities.

2.5 Inner and boundary stationary points

Beside the inner stationary points, some stationary points can also occur at
the boundary of the state space. These states correspond to the case when
at least one population dies out. We want to investigate the stability of these
points in context of the stability of inner points.

Proposition 1. If several inner stationary points exist, then there are no

16



asymptotically stable ones.

Proof. Indeed, the origin is unstable for each single population, because the
corresponding determinants Ay, - - -, A,, are all negative. From this it follows
that, for example, the first population does not vanish if all the others are
small enough. It means that the origin is unstable for the whole system. The
other stationary points constitute a non-empty connected set and hence they
are not asymptotically stable (see Fig.1).

Proposition 2. If one inner asymptotically stable point exists, then the boun-
dary points without one population are unstable .

Proof. Without restriction of generality we can suppose that the first popu-
lation is absent, i.e.

91:07927&07“';ym7é0;

and s, - -+, Y, are given by the system

CoYo + -+ Com¥Ym = — Ay
: (17)
Cm2Y2 + -+ CnmYm = _Am

Analogously to the preceding, let

C2 -+ Com Com - —QDg o Cip
5= : b, =

1

Cm2 **° Cmm Cm2 - _Am o Cmm

If (17) determines an inner asymptotically stable point, then the determinant
0 of the system does not equal 0 and is positive according to the prorosition 1.
Thus, the solution can be written as follows

5.%‘

yi:(s, 2<i<m. (18)

Further we write Q) x(\) instead of Q(A) in order to emphasise that the
polynomial Q(A) is calculated at the point X. From y; = 0 it follows that at
the point X = (0,---,0,2,,, -+, z,) we have djo =0,---,dy,, =0 and

Rx(A) = Qix(A)Q2x(N).
It is evident that

doo(A) -+ dom(N)
Qix(A\) =din(N), Qax = :
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Due to 2y =0, ---, 2, = 0 we obtain

o1+ by, firtr —012 e —01q,
—021 099 0 e q
Q1x(0) = : . = v{A+ Z firar}
: ) k=p2
0 T T 91 Taa

If xp, po < k < g, are represented by ys, -+ -, Y, by means of (9) we have

Qix(0) = vi{A1 +craya + -+ - + Cl¥Ym }-

Therefore, (18) gives

1%
le(O) = %{Alé + C126y2 + -+ clméym}

Ay e 0 Cim
121 Ay o 0 Com 21
= — _ =-——A, <0,
1) : o6
ATn, Cm2 °*° Cmm

since A,, is positive. That means that the point X is unstable. The first
population increases if the others remain in the state corresponding to the
point X. Figure 2 shows the dynamic in this case. The marked points on the
axes correspond to the unstable boundary points.

Remark. This property is also true for system (11) with two populati-
ons in which the middle age stages are attacked. Indeed, for example let
x4y = x5 = x¢ = 0. For x5 we obtain

fosxs = _Ab €T3 = ——F. (19)

As we see from (14), the characteristic polynomial is equal to P(\) = Py (A)R(A).
Py ()\) is precisely determinant (16) and R(\) is given by

Ao — 045 —046
RN =| —o0s4 A+055+ fosxs  fo6xs
0 —065 )\ + 066

But for R(A) = A* 4+ b1 A% + o\ + b3 it is

by = R(O) = 044055066 — 045054066 — 065054046 + 044066f53$3«
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Thus, (15,19) imply

by = 044066(A2 + f53$3) = 044066(A2 - EAl) <0

s
and the boundary stationary point with x4 = x5 = x4 = 0 is unstable. For
the other boundary stationary points everything is analogous.

For system (1) with two populations and two age stages each, in which only
the youngest representatives are attacked by the oldest ones, this analysis
can be completed as follows.

Proposition 3. If the populations are cannibalistic and the only inner sta-
tionary point of system (1) is unstable, then there exist asymptotically stable
boundary points.

Proof. Let fi» > 0. Since only one inner stationary point exists, then
A} < 0,Ay < 0and A # 0in (3). As we saw in the proof of propositi-
on 1, the instability there is equivalent to A < 0, A,, < 0, A,, < 0. In the
stationary point X = (x1,2,0,0) with 3 = 0 we have

Ay _022A1 02121 Ay

T =———= .
C11 J£12<7217 022 f12

2 — -

At X in (5) we have dy; () = 0. The characteristic polynomial Px () at the
point X has the form Px(\) = di1(A)R2(N). di1(A) is polynomial (6) here.
The real parts of its roots are negative. For

033 + faoxo + X —034 + faaxs
—043 Oaa + A

Ry(\) = =N A+ by

we have b; > 0 and

JESTAN _ 02204

f12 021f12

bQ = O'44{A2 + fgngQ} = O'44{A2 — Aml > 0. (20)

Then the real parts of the roots of Ry(\) are also negative and the point X
is asymptotically stable. Analogously we find another asymptotically stable
boundary point (0,0, z3, x4) if f34 > 0.

Figure 3 illustrates the dynamic in this case. This figure, however, may by
misleading. The real state space is 4-dimensional and no simple conclusions
about the global properties of the system should be made on the basis of this
figure.
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Proposition 4. If the populations are cannibalistic and system (1) has no
inner stationary points, then asymptotically stable boundary points exist.
Proof. Let 71 = —A1/c11 and &1 = —Ag/co1. 71 and 7 may also be negati-
ve. They determine the x-coordinate of the points in which the straight lines
c111 + 1923 = 0 and c9127 + coox3 = 0 intersect the x-axis (see Fig. 4a-4c).
Suppose 77 < z1. We will show the existence of asymptotically stable points
without the second population. In the case z; < 7y, there exist analogous
stable points without the first population. Thus, there are only the following
possibilities:
a)flgo,ilgo, b)f1>0,.§?}1§0, C)CZ'1>0,CZ'1>0,£E'1<£'1.

In case a) A; > 0, Ay > 0 hold. The origin 0 = (0,0, 0,0) is the only sta-
tionary point in the state space. It is even globally attractive, [1,18]. Indeed,
positive ¢, ¢o and g3, q4 exist here, such that it holds

(1 + @rs) = cxn — qan(fraze + fuazs), ¢ <0,
(@33 + qurs) = c3x3 — @aas(faowa + faaxa), 3 <0.

Clearly, this yields z; — 0 for 1 <i < 4 (see Fig. 4a).

In cases b) and ¢) it holds A; < 0. For the stationary boundary point X =
(Z1,T2,0,0) with Ty = 091%1 /099 we obtain Px(\) = dq1(\) Re(A) analogously
to the proof of proposition 3. The real parts of the roots of dy1(\) and Ry(\)
are negative. Therefore, X is asymptotically stable.

In case b) the point X is globally attractive, too. In order to prove it,
we can show first due to Ay > 0 analogously to the case a) that z3 and
x4 vanish, (z3,z4) — (0,0). That yields fisx4s — 0 and from the first two
equations of system (1) we can conclude (x1,23) — (Z1,Z2). The origin is
evidently unstable in these cases. Figures 4b and 4c illustrate the dynamic
in these cases.
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Properties 1-4 show that the dynamic of system (1) is considerably similar to
the dynamic of the so-called Menten-Volterra-models with competition, [18].

3 Life boat mechanism

We now want to show that cannibalism can act as a life boat mechanism in
our model. We also analyse how the change of cannibalistic pressure affects
the system. We consider a system of a single population of two age stages. =1
and x, are the densities of these stages, and the oldest stage is cannibalistic.
The system of differential equations has the form

¥, = —onx + o110 — fro1T

,1 1T 1202 — [122122 (21)

Ty = 021771 — 02T,

where 017 = const, o9 = const, 015 =19Ps, 099 = WPy + Mma(1 — Dy).

®, is the fitness-function of the stage xs,
ho + Oy’

Here O, is the total food supply. Thus, ©y = ey + fio71971, Where e; > 0 is
the external food suply, and fi2y1221 is the profit by cannibalism. Hence,

d, 0<dy < 1.

__© + fi271271
ho + e + fiayi2w1

Dy

From (21) it follows at the stationary point

022
€T = —XT9.
021
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Hence, for the non-trivial solution we have
021 f1201 + 011022 — 012021 = 0,
lL.e. with xy = 2

001 Froz + o11{wa(es + fioyiez) + mahy] B oara(es + fia7122) —0
2 ho + €2 + fi127122 ho + €3 + fi127122 '

For z we come to the quadratic equation
021 o127 42 fr2]o21 (hote2) +o11wav12— o1 mom12] + 011 (Waea+mohy ) —0a1a€5] = 0,
or shorter

021f12271222 + fi2Adz+ B =0, (22)
where the parameters
A = 091(hy + €3) + o11w2Y12 — 09179712 and B = oq1(wees + mohy) — 09179€9

are independent of fi5. Clearly,

B = (h,g + 62) — Oy 0_22(0)

o —0o12(0) = (hy + e3)A(0).

When B > 0 the trivial solution 0 = (0,0) is asymptotically stable, when
B < 0 it is unstable. For the solutions of (22) we have

5 . —A :t \/A2 — 40'21’712B
1,2 — .
’ 2021 f12m12

We mention the most important possibilities for the positive solutions be-
cause only those are interesting.

1. B=0, A <0. In this case there is z; = —A/09 f12712 > 0, 20 = 0 and
z1 decreases if fi5 increases. This case is critical and the question of stability
of 0 = (0,0) cannot be answered by means of the linearized system. From
(21) we obtain

(0211'1 + 0115C2)/ = (012021 - 011022)552 - f120211'1$2-
Due to

oo1ra(es + frav1271) — 011[w2(€2 + fiayi2z1) + mQhQ]

ho + €3 + + fiov1221
09172 — 011W2

= fiayi221
ho + €2 + fiam1201

012021 — 0110922 =
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and A = g91(hotes)+(o11wa—09179) 112 < 0 we have  oywe—09179 < 0.
This means that the origin is unstable and in this case the vector field looks
like Fig. 5.

2. When B < 0 the point 0 = (0,0) is unstable, z; < 0 and

_ —A+ VAT~ doy B

> 0.
2021f12’712

21

z1 decreases if fi5 increases. The vector field is similar to that described
above, see Fig. 6.

3. When B > 0, A < 0 and D = A% — 4091712B > 0 the point (0,0)
is asymptotically stable and z; > 0, 25 > 0, 21 > 2. The vector field is
represented in Fig. 7. In this case the point X; with the coordinate z; = z;
is asymptotically stable. The population can remain in this state by canni-
balism. It would not survive these circumstances without cannibalism. That
corresponds to life boat mechanism. The point X5 with the first coordinate
Zo is unstable. For the nontrivial stable stationary point we have

—A+ VA2 —dyponB K,

021 fr2712 B le7

T =21 =

where K is independent of fi5. Hence, we obtain

e+ fioyrr e+ 7Ky %
2

Dy = Oy(xq) = = —
? 2(1) ho + €2 + fiomior1 ho + €2 + 712K

and &, = K5 does not depend on fi5 either,

- :gx _ oo Iy
? 092 ! Jro[we Ko + mao(l — Ky)]’

so that x; and x5 converge to 0 for fi» — oo. It means that under greater
cannibalistic pressure the population stabilises itself at a lower level, but it
does not die out.

4. When A < 0,B > 0, D = 0 the inner stationary point is unstable, see
Fig. 8.
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4 Numeric examples and final remarks

For the analytic investigations in the preceding part we needed certain as-
sumptions to simplify the system of differential equations. Now we want to
represent a few results of numeric simulations that were carried out without
such simplifications. The system describes the dynamic of two populations:
Neomysis integer and Praunus flezuosus. The experiments for these species
were carried out by G. Winkler (Research Institute Senckenberg, Germany).
Further we use the data which were gained in these experiments.

Each population is subdivided into three age stages. x1, x5 and x3 are
the age stages of Neomysis integer, x4, x5, xg — of Praunus flexuosus, r1 and
x4 are the youngest stages. Only the oldest stages x3 and x4 are capable of
reproduction. The coefficients o;; are dependent here on fitness-functions @,
1 < j <6, [20]. The half-value constants h;, 1 < i < 6, were set at different
levels. We see that they did not change the qualitative results. Further they
are equal to 0.1. The other parameters are:
wy = 0.13412, wy, = 0.0602, wz = 0.0154, w, = 0.1405, ws = 0.00766,
we = 0.0231;
my = 0.0866, my = 0.077, mg = 0.0693, my4 = 0.099, ms = 0.077, mg = 0.693;
f15 = 0.294, f15 = 0.642, fos = 0.266; 113 = 1.0476, r46 = 0.5333;

C, = 0.014, Cy = 0.092, C5 = 1.027, Cy = 0.082, C5 = 0.0703, Cs = 3.345.
Praunus flexuosus is thus predator on Neomysis integer. The cannibalistic
attack rates fis and fs¢ are varied.

The system of differential equations has the form

vy = —onar + o3z — 1{ fi525 + fiewe}
Ilg = 092101 — 022T2 — $2{f26x6}

xé = O0O32%2 — 03313

Ty = —0uTs+ 046T6 — fi6TaTe

Ifr, = 54Ty — O55%5 — [5605T6

x% = 06525 — 06616

In following Fig. 9 the stationary states without cannibalism (f4s = 0,
fs6 = 0) are represented: on the left — for Neomysis integer, on the right —
for Praunus flexuosus. The parameter e is the external food supply. This is
the same for all the age stages. The parameter interval [€min, €maz], Which
lies under the marked points (here e,,;, ~ 0.054, €,,4, ~ 0.183), determines
the survival-window for the whole system.
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The stationary points are asymptotically stable at e, < e < €pae. Ab
e < emin the both populations tend to extinction. At e > e,,;, Neomysis
integer would grow unlimitedly without the predatory Praunus flexuosus.
The predator limit the prey and the former can live through the interval
[€min, €maz) Only thanks to the latter. When e > e, Neomysis integer dies
out and Praunus flezuosus grows unlimitedly. But if later the external food
supply becomes less, the predators disappear as well, because the prey is
absent. If the predator is cannibalistic, it limits itself. The survival-window
becomes larger, because then the upper boundary e,,., increases. e,,;, and
emar are the same for all the stages, so any of the stages can be chosen to
represent the results. In Fig. 10 we see the survival-window for the first age
stage in cases fi5 = 0.5 fos and fig = fos. In comparison with e,,., ~ 0.183
in the case without cannibalism we have e,,,. ~ 0.207 and e,,,. ~ 0.214
respectively.

46=0.5*26 f46=f26
T T T

35

301 i 30
25 25
20 20

=15 =15
10 10

5 5
0 0

-5 I I I I I I I I 5 I I I I I I I I
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.04 006 0.08 0.1 012 014 016 0.18 0.2
e e

Fig. 10 The increase of the survival-window. fis = 0.5fo and fig = fos,
e — external food supply.

If f56 increases, the result is analogous, see Fig.11. When f56 = 0.1f5 and
fs6 = 0.5f56 we find €,,,, ~ 0.2 and e,,,, ~ 0.435 respectively. If the can-
nibalistic terms are great enough, the survival-window can become infinitely
large. The predator does not eliminate its prey and the two populations sta-
bilise themselves at a higher level when the external food supply is larger. In
Fig. 12 we see the stationary states of the youngest age stages x; and x4 in
case fs6 = fo6. The same is true of the other stages.
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Fig. 11 The increase of the survival-window when f55 = 0.1 fog and fsg = 0.5 fog.
e — external food supply.
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Fig.12 The unbounded survival-window (emaz = o0) when fig = fos.

e — external food supply.

The numeric simulations confirm the stabilising role of cannibalism for
the dynamic of the system, so that in this sense cannibalism can be regarded
as a positive factor for the entire system.

Fig. 13 shows the change of the dynamic for the first age stage x; of
Neomysis integer. On the left-hand side fj4 increases, on the right hand fsg
varies. The external food supply equals e = 0.12 in all cases. The deviations
from the stationary points are equal at the beginning as well. We see that
the system stabilises itself faster under the stronger cannibalistic pressure.
For the other age stages the results are analogous.
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Fig. 13 The dynamic of the age stage 1 under different
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