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Mathematische Modellierung und Simulation

Die mathematisch-naturwissenschaftliche Methode, gegriindet auf der Uberzeugung,
dass ,das Buch der Natur in der Sprache der Mathematik geschrieben” sei (Galilei),
findet heute weit Uber ihren urspringlichen Gegenstandsbereich hinaus
Verwendung. Mathematische Modellierung, also der Versuch, das Nachdenken tber
eine Fragestellung in mathematische Termini zu Ubersetzen, verfolgt den Zweck,
sich die Stringenz mathematischer Argumente auch fir die Bearbeitung von
Problemen aufRerhalb der Mathematik zu sichern. Im Begriff der Simulation ist in
diesem Zusammenhang der Anspruch enthalten, dass die Analyse eines
mathematischen Modells oder sein Nachvollzug auf dem Computer immer auch auf
Erkenntnisse zielt, die Uber die Mathematik hinausweisen.

Der Erfolg dieser Methode bei der Behandlung physikalischer und technischer
Systeme hat es nahegelegt, ihr Anwendungsfeld zu erweitern. In den Lebens- und
Sozialwissenschaften geht es bis in Bereiche hinein, die gesellschaftliches Handeln
zum Gegenstand haben und ihrerseits beeinflussen. Dabei werden haufig nur die
wissenschaftlichen Ergebnisse wahrgenommen, wahrend den Methoden, mit denen
sie zustandekommen, blind vertraut wird. Doch die Mathematik als ,hochste Form
der Rationalitat® anzupreisen, wie es auch mathematische Fachwissenschaftler
gerne tun, besagt noch nichts dber ihre Bedeutung fir die Erkenntnis
gesellschaftlicher und natirlicher Ph&dnomene und Zusammenhénge. Zu
hinterfragen ist insbesondere die verbreitete Auffassung, bei mathematischen
Modellen handele es sich in aller Schlichtheit um ,Abbilder der Wirklichkeit*.

Das Zentrum fir Modellierung und Simulation und diese Schriftenreihe haben zum
Ziel, die methodischen Fragestellungen zu behandeln und zu durchleuchten, die die
mathematische Bearbeitung ,realer* Probleme aufwirft. Die Frage nach dem
Jrichtigen” Einsatz mathematischer Modellierung im Einzelfall gehért ebenso dazu
dazu wie die Frage nach Kriterien dafur im Allgemeinen. Gibt es eine ,Methode"” der

Modellierung und Simulation, und worin bestehen ihre Regeln, ihre Mdaglichkeiten,

ihre Grenzen? Es ist klar, dass eine so komplexe Fragestellung mehr als nur einen

Zugang erfordert. Gefragt sind u. a.

- Darstellungen und Untersuchungen von selbst entwickelten ebenso wie die
Auseinandersetzung mit in der Literatur vorgefundenen mathematischen
Modellklassen und Fallstudien,

Untersuchungen zu spezifischen, am Modelltyp orientierten Instrumenten und
Methoden der mathematischen Modellierung,
wissenschaftstheoretische und -historische Abhandlungen zur gesellschaftlichen
Bedeutung von Mathematisierungsprozessen.
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Zusammenfassung

Within the framework of the analysis of ecological systems W. Greve
developed a model of marine populations. This model is expected to
allow a wider embracement of the ecological niches’ potential and, the-
refore, also of the whole system’s one. This niche-model employs age
stages structures and complex relations of populations. We analyse
qualitative features of this model which is described by a system of
differential equations. The main themes of this paper are either the
conditions of extinction, boundedness, permanence or the conditions
of existence and uniqueness of stationary points. This analysis gives
both a notion of the model’s conduct and a mathematical appreciation
of this complex model. The appreciation of the system can be valued
as positive and encouraging.

Keywords: niche-model, system ecology, marine populations, perma-
nence, stability analysis

1 Introduction

In the first mathematical population models by Maltus (1798), Lotka (1925)
and Volterra (1926) populations were regarded as homogeneous, and so they
could be described by a single variable quantity (e.g. population’s size, den-
sity etc.). The populations’ unrealistical, unbounded exponential growth was
restricted by a logistic term which was originally analysed by Verhulst (1845),
see [17]. This term represents in an implicit way the effects of intraspecific
interactions. Here the population’s internal dynamic is a kind of black-box.
For an exacter understanding of these interactions, physiological backgrounds
and their influence on the dynamic, the models must include population
structures.



Population structures can be built on different bases (age, size, discrete,
continuous, ...), and the kinds of internal relations of different stages can be
many and various for different populations. Mathematical approaches (sy-
stems of differential or difference equations, partial differential equations,
delay differential equations, ...) differ very much, too. All these circumstan-
ces require the wide spectrum and the great number of papers that belong
to the theme of modelling structured populations, [5,9,15,19,20,22].

Within the analysis of ecological systems W.Greve designed a niche-
model of marine populations, [12-14], based on the following ideas:

1. The hierarchical structure of the food chain is replaced by a food web.
Since the trophical relations between marine populations are not unilateral,
the development stages and their interactions must be included in the analysis
of population dynamic. Complicated trophical relations are typical of many
populations, and they cannot be treated as exceptions. Interesting results
about Calanus helgolandicus and Pleurobrachia pileus which both play a
very important role in the North Sea can be found, for example, in [14].

2. Stage-specific parameters (rates of reproduction, growth and mortality)
are functions of metabolism rates on these stages, so that the food supply
regulates the dynamic of the stages, being a regulating element of the whole
system. The metabolism rates are described for all stages in a uniform way
by Michaelis-Menten-terms.

3. Trophical relations and other parameters of the system have physiolo-
gical reasons, and they can be registered empirically.

A survey of the interdependences in the model can be given by the follo-
wing diagram.

| external food | | growth |
\ 7

l food |—>| fitness H reproduction |
/ T

| internal food | mortality |
R 7

other age stages/species

This model should allow to cover the functional potential of a single eco-
logical niche as well as that of the whole system. At present, necessary data
are being collected in extensive experiments (W. Greve et al., Research Insti-



tute Senckenberg, Germany), and an extension of the model is being worked
on.

Further we describe the model in the form of differential equations and
analyse some of the model’s qualitative properties. Generally we analyse
conditions of extinction, boundedness, permanence and stable states. Since
we are dealing with a complicated system of nonlinear differential equations,
considerable restrictions must be assumed for various kinds of questions.

Nevertheless, this analysis with exact methods provides an insight into
the model’s conduct in a quality which cannot be reached just by simulations.
Furthermore, these results must be regarded as a mathematical assessment
that is necessary for such a complicated system. This model has already been
analysed by C.Bente [2], but there have been other mainpoints.

The niche-model by W. Greve was designed to analyse the dynamic of
marine populations. Nevertheless, it includes structures of age stages and
complex trophical relations which are important not only in this case, e.g.
[22]. Thus, this model can also be of interest in the investigation of other
ecosystems.

The following results show among other things cannibalism’s extraor-
dinary role in the self-restriction and stabilization of a single population.
Cannibalism is really a very wide-spread phenomenon among marine popu-
lations which are the main object of our analysis. But also for many other
populations cannibalism is a very important factor which is worth analysing,
see [3,4,6-8,10,11,16,18,21]. At present there are interesting results on the
stabilizing role of cannibalism in systems with several populations. As this
theme can be regarded as a considerably independent one, these results will
be prepared for a further paper.

2 The model, Leslie-matrices

Let’s denote the densities of different age stages of all populations regarded
in the model by x4, ..., x,, and number the stages of every population in a
way corresponding to the ages. For every age stage x; a metabolism rate ®;
is defined which we will further call fitness-function,

O.
P, =—L—
Here h; is a half-value constant and ©; is the whole food supply for a par-

ticular individual of the stage x;. The fitness-function satisfies 0 < ®; < 1
and the rates of growth, reproduction and mortality have the form

w;®;, @y, my(l— ®y),



where wj, r; and m; are the constant growth, reproduction and mortality
rates on this stage. Thus, an increase of ®; corresponds to a better condition
of ;.

We describe the mathematical model as a system of differential equations

:Ell = gl(‘rl? sy "Em)

= gn(T1, ey Ton).

Due to the functional differences between the youngest stage and the other
ones, different equation forms are achieved. Let xy, - - -, 2; be all the age stages
of the population. Then we have for the youngest stage

4
Tp = —OpkTi + Okkt1Tkr1 + - + O — Z TriTrT;
J

and for the other ones
Ty = 041051 — Ol — Zfijxixjy k+1<:i:<1
J
The coefficients in the equations have the following meaning:

oi; determines the quitting of the i-th age stage (growth and death by
starvation),

i = wi®; +m(1—®;), kE<i<IL

The growth rate of the eldest stage x; must be understood as the rate of
death through old age.

Okkil, ", 0k determine the reproduction of the youngest stage x by the
stages X1, -+, and are given by

O-kj:Tj@jy k+1§]§l
oii—1 determines the development from the (i — 1)-th stage to the i-th,
Oji—1 = wi—1Pi—1, kE+1<0 <1

fi; are constant and determine the intensity of x;’s attacking z;. In [12,13]
they are called negative ARE-value.

The total food supply ©; for a single individual of the stage z; is given by
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ej > 0 is the external food supply, the term p;;z; determines the food supply
of stage z;. The coefficients

C;
DPij = fij%’ja Yij = E’
J

where C; and C; are the carbon contents of individuals from z; and x;, are
called positive ARE-values in [12,13].

If the first population has n age stages, the following matrix corresponds
to it

—011 012 013 O1n
0921 —099 0 cee 0
0 032 —033 0
0 te 0 Onn—-1 —Onn

The elements of the matrix satisfy
07 >0,1<t<n, 04-1>0,2<:<n, 01, 20,1<7<n,

all other elements equal 0. Matrices of this kind are called Leslie-matrices.
By analogy, Leslie-matrices for the other populations are to be defined. If
Tnal, "> Tnim are , for example, the age stages of the second population, it
is corresponded by a (m x m)-matrix

—Onp+1n+1 On+1n+2 On+1n+3 e On+1n+m
On+2n+1 —On+42n+2 0 e 0

0 On+3n+2 —On+3n+3 T O

0 e 0 O-n—‘,—m,n—&-m,fl _Un,+m,n,+m,

Further we will use the following properties of Leslie-matrices which can
be easily proved.

1. By expanding the determinant det(—A) according to the first row we
obtain immediately for any (n x n)-Leslie-matrix

—a11 Q12 ce Q1n
A1 —A22 te 0
A=
0

0 Appn—1 —0nn

n n 7 n
det(—A) = H Q5 — Z ai; H Akk—1 H Akk
i=1 k=2

j=2 k=j+1
= a11a22" " App — 12021433 * * " App — *°* — A1p021032 * * * Qpp—1-



2. If Ay, 1 < k < n, are the leading principal submatrices on the first &
rows and columns, then

det(—Ags1) = aprrprrdet(—Ag) — G1r11021032 - - - Qg

From this, it follows that all det(—A;) for kK +1 < j < n are negative if
det(—Ay) is negative.

Here we are going to prove two lemmas which are necessary later. Aj is
still the leading principal submatrix of A with £ first rows and columns,
and m(A) = max{j : ay; # 0} is the number of the eldest stage which
is capable of reproduction. For a Leslie-matrix det(—A) < 0, let us denote
s(A) = min{k : det(—A;) < 0}. In order to emphasize that we assume
independence of a Leslie-matrix on parameters let us call it a constant one.

Lemma 1. For a constant Leslie-matriz A with m = m(A) the following
properties hold

1. Suppose det(—A) > 0, then positive numbers ¢ > 0,---,q, > 0 exist
such that (q1 -+ q.)A = (a1---a,), and a; <0,---,a, <0.

2. Suppose det(—A) < 0, then positive numbers ¢ > 0,---,qs > 0
exist such that (q1---qs0---0)A = (a;---ay,), and a3 > 0,--- a5 > 0,
asy1 >0, a, > 0.

Proof. Further let ¢; =1 and let zy,-- -, z, be the rows of A,

21 —a11 a2 a3 T A1n

Z9 a921 —a929 0 cee 0
A= zZ3 = 0 aso —Aass 0

Zn O T 0 Apn—-1 —0pn

It is clear that (g1 qn)A = @121 + -+ + @uzn.

We start with the first case. First we eliminate in turn ay,,,---, a2 by
means of the Gauss method. Here we add rows p,,z,,, - - -, p222 to the row z;
and show that p,,,-- -, ps are positive.

Let b,, = a1, so that
Z1 = (an cee alm_lme tee O), bm > 0.

Then
pm=—">0, 21 +Pmzm = (@11 @120y _10---0),



and b,_1 = Gim-1 + PmGmm-1 > 0 is positive, too. Therefore, p,,_1 =
bim—1/m—-1m—1 > 0, and it can be continued in an analogous way. Thus,
we obtain p,, > 0,---,ps > 0, so that

21+ pozat o+ pmzm = (0:10---0)

and the matrix with the rows 21 + pozo + -+ - + Pm2m, 22, - -+, 2 18 a triangle
matrix.
These operations with the rows of the matrix A do not change its deter-
minant, and obviously det(—A) = —bjass - - - a,, > 0, which yields b < 0.
In the same manner we find by means of the matrix

0 1 1 cee 1
ao1 —0a99 0 ce 0
B=| 0 azx -—ay 0
0 T 0 Apn—1 —0nn

positive 75 > 0, -+, r, > 0, such that (01---1)+ryz0+- 47,2, = (¢;0---0),
and since det(—B) < 0, ¢; > 0.

Let ¢; = p; + er;, 2 < i < n, with € > 0. In this case all ¢; are positive,
and

q1zl+"'+QnZn:Zl +p2z2+"'+pn2n+r222+"'+TnZn:
=(00---0)+e(cr—1---—=1)=((by +e€c1) —€---—¢)=(ar-,a,).

Thus, a; = —e are negative for 2 < ¢ < n. With a sufficiently small ¢ > 0
ay is negative, since by < 0, a; = by +€ec; < 0. The first part of the statement
is proved.

Now let det(—A) < 0. First we remark that a;, > 0 is satisfied. In fact,
a;s = 0 implies det(—A;) = assdet(—As_1), and so det(—As_1) < 0, which
contradicts the definition of s = s(A).

Let Z;,---,Z; be the rows of A,. Now we look at the matrix A, and
determine by means of A, positive p, > 0,---,ps > 0, so that

ZitpeZat o+ P = (0104 0).

Since det(—As) = —bjage - --ass < 0 by > 0 holds here. After that we find
by means of the matrix

BS _ a921 —a99 0--- 0
0--- 0 Ass—1 —OQgs



positive g > 0,---,ry > 0, such that
(01"‘1)+7’2§2+"‘+T5§5 = (0100) with ¢; > 0.
For small € > 0 all ¢; = p; — er;, 2 < i < s are positive and

(@1, - as) =21+ (p2 —€ra)Za+ - + (D, — €7) 2 =
(bl 00) —6<Cl —1—1): (61—661 6"'6).

Thus, as well a; = € for 2 < ¢ < s are positive as a; = by —ecy is for sufficiently
small € > 0 due to b; > 0. It is clear that in this case

Q121+ Gszs = (a1 AsQisgrc Arn),
and the second part of the statement holds. m
Lemma 2. Let A be a constant Leslie-matriz, m = m(A), k < m and
det(—Ai_1) > 0. In this case positive qy,- -, qm do exist, such that
(1 gm0---0)A=(0---0c0---0)

with ¢, = 0 when det(—A) =0, and ¢ > 0 when det(—A) < 0.

Proof. The proof of this lemma is analogous to that of lemma 1. First we
eliminate in turn aqp,, - -, a1pp1- So we find positive p,, > 0, prr1 > 0,
such that

Z1 =21+ Pry12kg1 T+ D = (@11 @160 -+ 0).

Then we eliminate in the following turn aqq,-- -, ax_1. For this aim we add
the rows pozo, - -+, przi to the row z;. The coefficients ps, - - -, pi. are all posi-
tive. Indeed, let by = —aq;. We can write Z; in the form

z = (biarg - - - a1—10k0---0)  with by < 0.
After the first step with py = —b;/as; > 0 we obtain
Z1+poezo= (0 by ajz---ajp_1b50---0).

In case k > 2 the operations with the rows have not changed the determinant

of the matrix Ay, and so det(—Ay) = —byag > 0. Thus, by < 0, and we can

continue by ps = —by/azs > 0. In an analogous way we obtain for any i < k

det(—A;) = —bjas - - a; 1 > 0 and therefore b; < 0, p;i1 = —b;/a;11; > 0.
All these operations with rows do not change det(—A), and

det(—A) = —crao -+ Agk—10k41k+1 " * Qo

So, from det(—A) = 0 follows ¢, = 0 and det(—A) < 0 implies ¢ > 0. m



3 Simple development modes

The questions this part deals with have been partly analysed in [2]. With this
aim in view a system with just one population has been analysed, and only
the elder stages could attack the younger ones. Some results of this work
will be represented without great changes. However, most of them will be
essentially generalized and completed an proved by other methods.

Further we will use following terminology.
Definition: Let x = z(t) be a function.

1. We call x asymptotically bounded if constants C' < oo and ty < oo
exist, such that |x(t)| < C is satisfied for all t > t,.

2. We call x infinitely high if limx(t) = 400 for t — +o00.

3. x is vanishing if limx(t) = 0 for t — +oo.

4. x 1is recurrently bounded if a constant C, C' < oo, and a sequence t;
exist, such that t; — 400 and |z(t;)| < C.

5. x 1s recurrently vanishing if a sequence t; exists, such that t; — +00
and x(t;) — 0.

6. x is permanent if constants C' > 0 and ty < oo exist, such that z(t) > C
15 satisfied for all t > ty.

We examine a system with a free number of populations. The directions of
trophical relations are not restricted, unless it is not explicitly emphasized.
The system of differential equations has the form

/4
ZEl = —0111 + 012792 + s + O1nTn — L1 Zfljxj
J

!/
Ty = 02171 — 0222 — X2 vazjl'j
J

/
LTp = Onn—1Tn—1 — Opndn — Tn Z fnjxj~
J

(1)

"E;H—l = —On+1n+1Tn+1 + On+1n+2Tn+2 + -+ On+1n+mLnt+m — Tp41 Z fn—l—ljxj
J
Further x4, ---,x, are the age stages of the first population, the stages
ZTnit1, -+ belong to the other populations of the system, A is the Leslie-



matrix of the first population,

—011 012 013 ce O1n
0921 —099 0 e 0
A= 0 O3y  —033 0
0 e 0 Onn—1 —Onn

A depends on X,, = (21, -+, 2,) and Y = (2,41, - -). We write A(X,,,Y) to
emphasize, at which point A is calculated. If there are no other populations
at all or A does not depend on them, we write A(X).

Let further A(0,,0) be this matrix at X,, =0, = (0.---,0), Y = (0,---).
A(0,,, 00) denotes the limit of A for X,, =0,, and x; — oo if j > n + 1. The
limit of A is defined by the limits of its elements. Analogously let A(co,,, o)
be the limit of A for ; — oo, 7 > 1. The existence of these limits is obvious.

The terms ®;(X,,,Y) and 0,;(X,,Y) are self-explaining.

Theorem 1. On the condition det(—A(0c0,,0)) >0 xy---,z, are vanis-
hing, 1. e. the first population necessarily dies out.
Proof. Let ¢; > 0,---,¢q, > 0 be the positive constants for A(co,,0) from

Lemma 1. Then
(ql...qn)A<oon7o_o):(al...an)’ a1<0’..-’an<o.

For any X,, and Y let (¢ - ¢n)A(Xp,Y) = (by---b,). We estimate the
coefficients by, -+, b,.

If &, depends on X,, or on Y in an untrivial way, then ®;(c0,,c0) = 1
and hence

01i(005,,30) =1,  04(00,,30) = w;,  0i41,(00,,30) = w;,
a; =1; — qw; + giw; < 0 for 1 <1 < n,

a1 = —w +qpu, <0, a,=r,— qgw, <O.

At the point (X,,Y), using the designation ®; = ®;(X,,,Y), 1 <i < n, we
have

by = a1®1 — (1 — @), by = an @y — gumn(1 — @)
and for 1 <j <n
bi = qri®; — qi(w;®; + mi(1 — ®;)) + gir1wi®i = a;P; — gimi(1 — @;).
Hence, b; < ¢; = maz{a;, —qm;} < 0 for 1 <i < n.
Otherwise, if ®; is independent of X,, and Y, it is merely b; = a;.

10



Therefore, we obtain by a linear combination of the first n equations of (1)
(14 + quwy) = (w4 -+ bawn) — Y Gx Y fijxy
1<i<n j
< (az+ -+ epty) < —alqer + -+ gutn), a>0.
Hence,
Q1+t G < CeT™ Qo F g — 0,

and z1 — 0,---, 2, = 0fort — oco. m

Theorem 2. On the condition det(—A(0,,50)) > 0 a small first popula-
tion dies out.

Proof. Let ¢; > 0,---,¢, > 0 be again the positive constants for A(0,, o)
from lemma 1, such that

(ql...qn)A(on’o_o):(al...an)’ a1<0’...7an<0.

Let us estimate the product (qi---¢,)A(X,,Y) = (by---b,) if X, lies
near 0,,.
If ®; depends on Y in an untrivial way, then ®;(X,,c0) =1,

01i( Xy, 00) = 13, 03i(Xp, 0) = Wi, 0541,i(Xy, 00) = wy,
and for any X,, and Y we obtain as before with ®; = ®;(X,,,Y)
bi = a;®; — gmi(1 — ®;) < ¢, ¢ = max{az» _Qimi} <0.

Otherwise both ®; and, consequently, b; are continuous functions of only
X, Then, obviously, b; — a; for X,, — 0,, and for | X,,| < € with € > 0 suffi-
ciently small it is b; < 0.5a,. By a linear combination of the first n equations
of (1) we obtain in case |X,| < € for small ¢ > 0 and d; = min{c;, 0.5a;},
1 <1 <n,

(4 -+ ) < (g + -+ + bpay) — Z QiT; Z Jij;
1<i<n j (2)
<(dhwy + -+ dywn) < =@+ @),

where a > 0.
If for t =0 a(t), -, z,(t) are sufficiently small, the tetrahedron

qrr+ -+ @ < a(0) + -+ ¢, (0), x>0, 2, >0,

is situated within the sphere |X,,| < e. Then the inequality also holds for all
t > 0, and from this it follows again that

QT+ g, <Ce ™, 21 —=0,---,2, = 0fort —oco. m
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Remarks. The age stages z;, 1 < i < s(A(o0,,x0)), are always necessary
for the population’s survival. The population would necessarily die out if one
of these stages were constantly eliminated.

The stages z;, 1 < i < s(A(0,,0)), are necessary for a small population
to survive.

For a system with just a single population the theorems 1 and 2 mean
respectively that the origin is globally and locally attractive.

Lemma 3. If the age stage x; is asymptotically bounded, then its succes-
sor stage x;11 1n the same population also is asymptotically bounded.
If x; is vanishing, then x;y 1 1s vanishing, too.
Proof. Let x; < C for t > 0. Then we obtain from the (i+1)-th equation of
1)

$;+1 = 0i+1i%i — Oi41i+1Li+1 — Ti41 Z fi+1j$j <MC — (OHER |

J

with

M =max o1 < w; < 00, «=min o101 > min {wi, mig} > 0.

Then for ¢t >t

M 2MC
Ti < — 4 Ke @U=%) and for sufficient large ¢ holds z;4; < ——. m
a o'

The idea of proof for the following lemma is largely taken from [2].

Lemma 4. Let x1,---,x be the first population’s age stages which are
not attacked by all other stages xy.1,---, and within this group let the stages
only be attacked by the elder ones. If xy is recurrently bounded, then the sum
1+ -+ is also recurrently bounded. If xy is recurrently vanishing, then
1+ - - + x% 15 recurrently vanishing, too.

Proof. Let Sk = I, Sk,1 = X1 + Tk, -, 51 = x1 + - + T
We start with the proposition’s first part. Thus, Sj is recurrently bounded.
If S; = x; + - -+ + x is recurrently bounded for ¢ < k, then it is obvious that
for any € > 0 a constant C; < oo and a sequence t,, v > 1, do exist, such
that t, — +oo and S;(t,) < Cj, Si(t,) < € hold for any v > 1. Si(t) is the
derivative of S;(t).

From (1) we obtain as the sum of the suitable equations

S; = w4+, =w P mi —m(1— @)z — - — my(1 — Py —
—x; Y firi— T Y firit — o — T fenT
i<j<k 1)<k

12



This leads to z;_1(t,) < L;_y for sufficiently large v with

1
Ly = wiflq)ifl(oruﬁ) {e+ Z Cp (mp + Z fm’Cj}-

i<p<k i<j<k

Then S;_1(t,) < Ciy = Li1 +C; < 00, j > 1, 1i.e. S;_j is recurrently
bounded.

In the second case t, can be chosen so, that S;(t,) — 0, and Si(t,) — 0
for v — o0. x; 1(t,) — 0 can be derived from S;(t,) — 0 by estimations
which are analogous to the last ones. Then S; ; is recurrently vanishing. m

Remark. If the upper bound C' for the asymptotical boundedness can
be chosen regardless of the initial conditions for the system of differential
equations, there is a global asymptotical boundedness. The global recurrent
boundedness can be defined in an analogous way. It is easy to see in the
proofs that the lemmas 3 and 4 are also valid for global estimations.

Theorem 3. Let A = A(0,,0), det(—A) < 0 and let none of the first
s = s(A) age stages be an object of the trophic relations in the system. If
in the beginning there is at least one of the first m = m(A) age stages, then
X1, -+, Xs increase unboundedly.

Proof. Let ¢ > 0,---,qs > 0 again be the corresponding constants for A
from lemma 1. Then

(qr---qs0---0)A(0,,0) = (ay -+ an), a; >0,---,as > 0,as1 >0,---,a, > 0.
Let ®; = ®;(X,,,Y) for any X,, and Y, and
(bl e bn) = (Q1 e QSO' o O)A(Xnay)

It is obvious here that

bi = —qumq + [—qrwr + ma + g | Py,

bi = —qim; + [ — qwi + gmy + ¢ wi] Py, 2 <1 <s—1,
bs = —qsms + [C]1T’S — qsWs + qus]CDsa

b =r;®;, 1>s.

Due to a; > 0,---,as > 0 and —¢;m; < 0 the terms in square brackets are
positive and it can be seen that all coefficients b; grow monotonously if ®;
increases. Since ®;(X,,,Y) > ®;(0,,0), we have

blza17”'absza57 bs_t'_lZO,“‘,anO.
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Because there is at least one of the first m(A) age stages, a moment exists
when not all reproductive age stages equal 0. At this moment z; > 0 or
x} > 0 and x; grows. Therefore, we can assume that ¢z + - -+ + gszs = C,
C > 0 holds at the moment ¢ = 0.

By means of linear combinations of the first s equations of (1) we obtain

(@@ + -+ q,) = bz + o bz > @@+ au,
> a(qxy + -+ + gsxs), where a > 0.

Hence,
@y + g > Ce™, qury + -+ g, — 0o for t — o0. (3)

Now we show that all z;,1 < ¢ < s, are infinitely high. It is true for x,,
because otherwise, according to lemma 4, the sum x; + - - - + x5 would have
been recurrently bounded as well as x,, which would have contradicted (3).

From the first equation of (1) it follows

) > —onm + o155 > —axy + f(1)

with a = max 017 = max {wy,m1}, f(t) = min o125 = r®4(0,,0)xs(t),
®,(0,,,0) > 0. Then f(t) — oo for t — oo, and hence

t
xi(t) > Ce " + / e~ U= f(u)du — oo for t — oo.
Jo

The sum x1 + --- + x5, 1 < k < s, is infinitely high, and so, according to
lemma 4, x; must also be infinitely high. m

For a system with an only one population this theorem means that the origin
is unstable.

Theorem 4. Let A = A(0,,0), det(—A) < 0, and let none of the first
s = s(A) age stages be attacked by the stages of all other populations.

1. If in the beginning there is at least one of the first m = m(A) age
stages, then at least the youngest reproductive age stage is not vanishing.

2. If, furthermore, x1,---,xs are attacked only by reproductive elder sta-
ges, then 1 + - -+ 4+ x5 1s permanent.
Proof. Analogously to the proof of theorem 3 we obtain with
q1 > 0,---,qs > 0 the inequality

(o + -+ qsxs) > axr+ -+ agzs —
—X Z Jijxg — - — @ Z fsjj- (4)

1<j<n 1<j<n

14



Let the youngest reproductive stage be vanishing. According to lemma 3
this implies that all reproductive stages of the first population are vanishing.
Then one can easily see that x; is vanishing, too. Therefore all zq,---, x,
vanish. For large ¢ we obtain the following estimations

Z fijx; < =, forevery i, 1<1i<s,
1<j<n
a as .
(g + -+ qsas) > 311'1 +-+ 5 Ts > a(qay + -+ + gss) with a > 0.

Hence, qiz1+ -+ gsxs — 00, and we come to a contradiction. Thus, the
youngest reproductive age stage is not vanishing.

Now let every z;, s +1 < 57 <n, be reproductive, if x; attacks any of the
stages x1,- -+, Zs. In this case (4) can be replaced exacter as follows

(1 + -+ qxs) > a1+ Qs + Orey1Toqr + 0+ Ol —

Yo fyr = —as Yo fin

1<j<n 1<j<n

For p > s we obtain o1, > a, = 1,9,(0,,0) > 0 if f;, > 0 holds for any 4,
1 < s. A simple transformation leads to

Yo fymitetas Y fyri=a1 Y, furitotas Yo fon;

1<j<n 1<j<n 1<j<s 1<j<s
+Tsq1 Z fis1j 4+ xp Z finxj.
7<s i<s

We can choose 6 > 0 so small that ¢1z1 + - - - + g5 < 6 implies

Zfljmj—2 T Zfsgm]_2

1<5<s 1<5<s
as+1
Z Jjst1m5 < 5 0 T Z fin@; S o
1<5<s 1<5<s

Then, for g1z1 + - + qsxs < 0,

a Qg .
(rzr + -+ gszs) > 51:1:1 o s 2 alqiry + - - + qers) with a > 0.

Hence, q1z1 4+ - -+ + qsx5 > 6 holds for large ¢, and the sum z; + -+ - + z, is
permanent. m

By means of some exacter estimations we can also find a lower bound of
permanency for z; + - -+ + .

15



In the following theorems we assume that in the system there is only one
population with n age stages x1,---,x, where only the elder stages can at-
tack the younger ones, i.e. f;; = 0 for 7 > j.

Theorem 5. For the Leslie-matriz A = A(oco,,) let det(—A) < 0, s = s(A),
m = m(A) and let x, be the eldest stage that attacks another one which is
always necessary.

1. If xy, -+, xp are not attacked by xpi1, -,y and for p < m the stages
1, Tm are also not attacked by xTyiq,- -+, x,, then the whole population
15 asymptotically bounded.

2. If furthermore det(—A(0,)) < 0 and in the beginning there is at least

one of the age stages x1,- -+, T, then x1 + --- + x5 is permanent.

Proof. Let x; be the always necessary stage, which is attacked by z,, ,
i.e. K < sand fi, > 0. Let us denote v = maxz{p, m}, so that z1,---,x, do
not depend on x,41,-- -, z,.

First we remark that the stage z, is recurrently bounded. Indeed, let
q1, -, qm be the coefficients from lemma 2. Then

(1 gm0 0)A=(0---0¢,0---0),

and at any point X,, it holds that

(‘h;cl 4.+ qum)’ = Z b;x; — Z qiZ; Z fijxj

1<i<m 1<i<m i<j<n

with b; < 0 for ¢ # k and b, < ¢y.
Thus, we have

(o + -+ gmam)" < p(cr — Up frpTp),

and x, cannot be infinitely high because x, > ar/qyfrp implies
(q1x1 + -+ + @uxy,) < 0. This means that z; and all other age stages are
bounded. So z), is recurrently bounded, and, according to lemma 4, the sum
x1 + - - + x, is recurrently bounded, too.

Now let us show that x; + --- + x, is recurrently bounded. In the case
p > m it is clear, and hence, we assume p < m = v. In this case there are
C < o0 and t;,t; — 00, such that in the points ¢; the following conditions are
satisfied: 21 +--- 4+ 2, < C and (21 4+ --- 4+ x,)" < 1. From the system’s first
p equations follows

(4 +a) >= D (wi+mi)zi— > x> fiyrj+ Mpx,  (5)

1<i<p 1<i<p—1 1<5<p
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with M, = r;,®,,(0,) > 0. Now the recurrent boundedness of z,, can be
easily derived from (5). By means of lemma 4 we obtain that x; + -+ + x,,
is recurrently bounded as well.

Further, let C' denote the corresponding upper bound for x; + --- + z,.
Since x1, - --,x, are independent of x,,1,---,x,, we consider the part of the
system of differential equations for x,---,z,. From the last it follows that
every orbit necessarily reaches into the tetrahedron

K={(zy, - ,2,): x4+ -+, <C, 2,>0,--,2,>0}

Let X, = (z1,---,x,) be a boundary point of K, where x;+---+x, = C
is satisfied. In this case we define a function F'(X,) as follows:

F(X,) = C if the orbit starting in X, goes into the tetrahedron,

F(X,) = maz{z(t) + -+ + z,(t), 0 < t < T} if the orbit leaves the
tetrahedron at the instant ¢ = 0 and comes back into there for the first time
at the moment 7.

X, determines the initial conditions for the system of differential equa-
tions and F(X,), obviously, is a continuous function of X,. Then F(X,)

is bounded above at the compact {(z1---,2,) : a1+ -+ 2z, = C,
x1 > 0,---,x, > 0}. Le. 2y + -+ 4+ x, is asymptotically bounded. The
asymptotical boundedness of x,.1, - - -, z, follows from lemma 3.

Finally, we show the permanence of x; 4+ --- + x,. As in the proof of
theorem 4 there exist 6 > 0, such that the projection (z1,---,xs) of every
orbit (z1,- -+, x,) leaves necessarily the tetrahedron

Kg:{(ajl’..-’xs)i $1+---+x5§6’ leO,"‘,fESZO}

if there is one of the stages zy,---,x,,. We can assume that z;(0) > 0,
because otherwise x1(t) > 0 holds for some ¢ > 0, and we need just to
make a shift of time. Let X; = (21, -+, %), so that for ¢ = 0 the condition
21(0) + -+ + 25(0) = 6 > 0 is satisfied. Let Y = (z541,---,2,) be freely
choosable. We define G(X§,Y") as follows:

G(Xs,Y) = 6 if the projection (xy, - -, x,) of the orbit starting in (X5, Y)
leaves the tetrahedron K,

G(Xs,Y)=min{ x,(t) + - -+ x5(t), 0 <t < T} if the orbit reaches into
this tetrahedron at ¢ = 0 and leaves it for the first time at t = T, T" > 0.
The function G(X,Y) is continuous, and for X and Y are varied on the
compacts, it reaches its minimum. This minimum is positive because x; is
not vanishing and is a lower bound in the permanence condition. m

Remark. From the last proof and the remark on lemma 3 it can easily
be deduced that in the first case the whole population is indeed globally
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asymptotically bounded. The lower bound of permanence in the second part
also has a global character.

The next two theorems give other sufficient boundedness conditions. The
first theorem is taken over from [2].

Theorem 6. If every reproductive age stage is cannibalistic regarding the
youngest one, then the population is asymptotically bounded.
Proof. From the first equation of (1) we obtain

oy < —ona+ Y (o — fiyxn) < —onwi 4+ Y a(ry — fijz).
1<j<n 1<j<n

For xy > max r;/fi; this yields 2} < 0, and therefore z; is asymptotically
bounded. m

Definition. The function x(t) is bounded on average, if a constant C', C' <
00, exists, such that fort > 0

1 st
— < :
t|(/0 (w)du| < C

Theorem 7. If the age stage xy is bounded on average, then all the next
ones are bounded on average, too. If in this case x1,- - -,z are attacked only
by the elder stages, then the whole population is asymptotically bounded.
Proof. We show that average boundedness of z; implies average bounded-
ness of xy1. Let C, be a finite bound of ;. The x,1-th differential equation
from (1) is

/
Tpi1 = Ok+1kTk — Ok+1k+1Tk4+1 — Tht1 Z fk+1j$j-
J

We come immediately to

20'k
/ +1k
|5Ck+1| < Okg1kThy  Thp1 < Tk
Ok+1k+1
and therefore
1 t . 2ka]¢
< / Tpy1(u)du| < Cpyq with Cryy = — < Q.
t'Jo min{ w1, My41

Thus, the age stages x, £x11, - - -, x, and, hence, their sum Sy = xx+-- -+,
are bounded on average. With C' < oo we have

1 t
— < X
t|/0 S(w)du| < C
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We define the subset of [0, ]
K(t,2C)={u: 0<u<t, Sp(u)<2C}.

The last inequality for the integral implies that the measure p of KC(¢,2C)
satisfies u(KC(t,2C)) > 0.5t. Hence, on the interval [0,¢] there are many
points u, such that Si(u) < 2C. This implies particularly that the sum
Sk is recurrently bounded.

Indeed, let t > 0. Then KC(6t, 2C') satisfies u(IC(6t,2C)) > 3t, K(6t,2C) &
[0, 2t] and hence, KC(6t,2C) N [2t, 6t] # 0. Thus, for every ¢, 0 < t < oo, there
is to, to > 2t, such that Si(ty) < 2C. Therefore, an infinite sequence t;,
t; — 00, obviously exists, such that Si(t;) < 2C.

As before in the proof of lemma 4, it can be easily be shown that all
sums S; = x1 + -+ + x,, ¢ < k, are recurrently bounded. The asymptotical
boundedness can be followed in the same way as in theorem 5. m

4 Stationary points

In the next two theorems the question of existence and uniqueness of nontri-
vial stationary points is analysed. In this context the following is remarkable.
For an asymptotically bounded system the existence of a stationary point can
be proved by means of Brouwer’s theorem, [1,17]. Nevertheless, since we do
not assume the boundedness and emphasize the uniqueness, another way of
proof is chosen.

Theorem 8. Let the Leslie-matriz of the system be constant and the origin
instable. If the youngest stage of prey x, is always necessary for the survival,
then exactly one nontrivial stationary point exists.
Proof. The instability of the origin is equivalent to A = det(—A) < 0, and
the stage x, is always necessary for the survival if A, | = det(—A, 1) >0
holds.

For a stationary point we have

—011X1 + 01202 + -+ + 01Ty, — X1 Z fljxj =0
7>1

O0ii—1%i—1 — 04T — T4 Z fijxj =0 (6)

J>i

Onn—1Tn—-1 — Opndn = 0.
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Let z, = z and p, = 1, so that x, = zp,. Beginning with it, we want to
write in turn x,_q, - -, x; in the form x; = zp;, where p; is a polynomial.
From the last equation of (6) follows

= 2p,—1 with p,_1 =p,

nn—1 Onn—1 nn—1

0 Jij Oii J
T = qu‘,( (X (%] ZEj) — 5 7( 2 +ZZ J p]) = Zpi_1,
Oii—1 55 Tii—1 Oii—1 j>i Fii—1
pici = pi(——+= “—p;).
Oii—1 j>i Tii—1

For any polynomial p let deg(p), LC(p), C'T(p) denote the degree, the
leading coefficient and the constant term respectively. From the definition
of pn,--+,p1 we obtain easily that these are polynomials with nonnegative
coefficients. It is obvious that

deg(pi—1) > deg(p;), and deg(p;i 1) = deg(p;) & Y f;; = 0.
7>

This means that x; is no stage of prey. Substituting x;,- - -, x, into the first
equation of (6) we obtain an equation p(z) = 0, if z # 0. p = p(z) is the
following polynomial

]9(2) = —011p1 +012P2 + -+ 0P — 2D1 Zfljpj'
j>1

We calculate the sign of LC(p) and CT'(p). For the youngest stage x, let
u > 1. Then

deg(pu-1) = -+ = deg(p1),
Oy—1lu—1 022 Oy—1u—1
a=LC(py_1) > 0,LC(py_2) = a, -, LC(p1) = a.
Oy—1u—2 021 " Oy—1u—2
From this we obtain easily
022 Oy 1u— 033 Oy—1u—
LC(p) = —on 22 ! 1a—|—012 33 ! 1a—|—---01u_1a:
021" Oy—1u—2 032 Oy—1u—2
_A'u,fl
a=ay <0

021 Oy—1u—2

Also if z7 is the youngest stage of prey, there is still

LC(p) = —LC(p1)LC(Y_ fijp;) = ao < 0.

j>1
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The constant terms obviously satisfy

CT(p,) =1,CT(p;_ 1) =

Oii " " Onn .
forl<i<n
Oii—1 """ Onn—1
and therefore

0922 Onpn 033" Onpn
CT(p) = —0j———————————— + 0 p————————————+ -+ O1p =
021" Opn—1 032" " Onn—1

—A
— =a; > 0.
021" Onn—1

Thus, the polynomial p(z) has the form
p(z) = ap?" + a12" 1+ - 4 ay, with ag < 0,ar > 0.

Then an untrivial solution z of the equation p(z) = 0 exists, and z determines,
obviously, an untrivial stationary point (Z1, - -, Z,). Now we must show that
this stationary point is the only one.

Since the coefficients of p;(z) are nonnegative, p;(z) grows monotonously,
if 2, z > 0, increases. Then the representation x; = zp;(z) yields that all the
coordinates x; grow monotonously if the last coordinate x, = z increases.
Let (Z1,--+,Z,) be the stationary point with the smallest coordinates and
xi =1y +;, 1 < i < n. For the new variables y;, 1 <7 < n, we have
i = —ouly o)+ Y oy +35) = D0 fily + 3)(y + 7))

2<j<n j>1
= —(onn + Zfljfj)yl + oY+ Ol — Zflj(yl + 1)y +
j>1 j>1
[—011%1 + 012T9 + -+ + 01Ty, — Z f1;7175]
i>1
= —onY1+ oyt -+ 01mYn — Z fijlyi +Z1)y;, o611 =0 + qufj-
i>1 j>1
The term in square brackets equals 0 here. Analogously we obtain for ¢ > 1
Y = ou1Yior — Ouyi — 3 Jii(Yi + Ti)y; with 05 = 0u + Y fi;75.
J>i j>i

Finally, we come to the system

yi = —5’11y1 + 012Y2 + -+ O1nlYn — (jl + yl) Z fljyj
7>1
Yi = OicWio1 — 0y — (Ti + Y)Y, fijyi (7)
7>
y; = Onn-1Yn—1 — OnnlYn.
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If A is the Leslie-matrix of the system (7), then at the origin Yy = (y1, -+, yn) =
(0,--+,0) we have detA(Yy) = 0. This follows from the fact that X =
(Z1,-++,%,)" is an untrivial solution of the linear system A(Yp)X = 0.

Let m be the eldest reproductive age stage. Then, obviously, detA,, =
detA(Yy) = 0 and det(—A,, 1) > 0.

According to lemma 4, positive ¢; > 0,---, ¢, > 0 exist, such that

(Q1a"'7Qma07"'7O)A:(07"'70)'

This leads immediately to

V= (g + - Qmym) = — Z ¢(Zi + i) Zfijyj <0

1<i<m G>i

fory; > 0,--+,y, > 0. Thus, the points (yi, - - -, y,) with positive coordinates
are not stationary. m

Remark. In case of a constant Leslie-matrix with detA = 0 it can be imme-
diately shown by estimations, which are analogous to the last ones, that

1) the origin is asymptotically stable if at least one of the reproductive
age stages functions as prey.

2) the origin is stable and the population bounded in the other case.

Theorem 9. Let A be the system’s Leslie-matriz. If det(—A(0,)) < 0 and
the youngest stage of prey x, is always necessary, i.e. u < s(A(co,)), then
an untrivial stationary point does exist.

Proof. We denote

q)Oi = @Z(On) and q)li = ®i<oon)7 1 S { S n.

In particular, ®; = &y = Py; is constant if the stage x; is not predatory.
Otherwise, 0 < ®¢; < ®1; = 1. In this case K = [®g1, 11| X - - - X [Pop, P1s] C
R™ is the state space of the fitness-functions.

Let us determine a constant Leslie-matrix B = A(®) for any value ¢ € K.
The elements of the matrix B are continuous functions of ®, and B satisfies
the conditions of the last theorem. Indeed, &y < ® and det(—A(0)) < 0 yields
det(—B) = det A(®) < 0. Analogously, from ® < &, and det(—A, 1(c0)) >0
we obtain det(—B, 1) > 0.

For the system of differential equations with B as the Leslie-matrix, and
the same coefficients f;; as in the original system, we can define as in the

last theorem the polynomials pi,- -+, p, and p(z) = apz® + a12" '+ - + ay
with ag < 0 and a; > 0. It is clear that the coefficients of all polynomials
P1,- -, Pn, P are continuous functions of .
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Since the polynomial p(z) always has exactly one positive root z, Z is a
continuous function of the coefficients ag, - - - , a, and therefore of ®, too. The
stationary point X, corresponding to Z, is also continuously dependent on .
If we calculate the new values of the fitness-function ® = (®1(X),---, ®, (X))
at the point X, we obtain by F'(®) = ® a continuous map F : K — K. Ac-
cording to Brouwer’s theorem, [1], F" has a fixed point ®*. It is clear that the
stationary point which is determined as before by ®*, is an untrivial statio-
nary point for the system with a nonconstant Leslie-matrix. This completes
the proof.
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