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Abstract

We present the solution of the general linear system in n coquater-
nionic variables and m equations, and derive the Kronecker product from
the matrix system AXB in coquaternions. It is shown, that the coquater-
nionic Kronecker product can be computed by means of dyadic coquater-
nionic products. The special matrix case Ax = b is also included. The
one dimensional case, including Sylvester’s equation is solved and there
are several, nontrivial, numerical examples.
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1 Introduction

Coquaternions were introduced, 1849, by Sir James Cockle (1819–1895), [3],
[4], as complex matrices of the form

C :=

[
w z
z w

]
, (1.1)

where the bar indicates the complex conjugate of the quantity under the bar.
The matrix C is very similar to a quaternion (invented by Hamilton, 1843),
which has the complex representation (see v. d. Waerden, [16], p. 55)

Q :=

[
w z

−z w

]
.

In both cases, the products C1C2, Q1Q2 of two coquaternions C1, C2, and of
two quaternions Q1, Q2 form a coquaternion, quaternion, respectively. Thus,
both sets of matrices form a real algebra. This, in particular means that the
center is in both cases the set of matrices αI, α ∈ R, where the center is the
set of elements which commute with all elements and I is the 2 × 2 identity
matrix. There is one decisive difference between C and Q. The inverse of C is

C−1 :=
1

|w|2 − |z|2
[

w −z
−z w

]
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and the inverse of Q is

Q−1 :=
1

|w|2 + |z|2
[

w −z
z w

]
.

The inverse of C exists if and only if |w|2 − |z|2 ̸= 0, whereas a quaternion Q
has an inverse as long as Q ̸= 0. Thus, the algebra of coquaternions has zero
divisors, does not form a field, whereas the algebra of quaternions is free of
zero divisors, it is a field, though not commutative.

It is known, that a quaternion can also be represented by a real (4 × 4) matrix
involving the four real numbers ℜw, ℑw, ℜz, ℑz, where ℜ stands for real part
and ℑ stands for imaginary part of a complex number, see Gürlebeck and
Sprössig, [7], p. 5.

Theorem 1.1 Put
w = a1 + a2i; z = a3 + a4i, (1.2)

and define the matrix

C4 :=




a1 −a2 a3 a4

a2 a1 a4 −a3

a3 a4 a1 −a2

a4 −a3 a2 a1


 . (1.3)

Then, the set of all matrices of the type C4 forms an algebra, and this algebra
is isomorphic to the algebra of coquaternions.

Proof: Let C4, C̃4 be two matrices of type (1.3). Both have block structure,

C4 =

[
A1 A2

A2 A1

]
, A1 :=

[
a1 −a2

a2 a1

]
, A2 :=

[
a3 a4

a4 −a3

]
,

C̃4 =

[
B1 B2

B2 B1

]
, B1 :=

[
b1 −b2

b2 b1

]
, B2 :=

[
b3 b4

b4 −b3

]
,

hence,

C4C̃4 =

[
A1B1 + A2B2 A1B2 + A2B1

A1B2 + A2B1 A1B1 + A2B2

]
,

A1B1 + A2B2 =

[
a1b1 − a2b2 + a3b3 + a4b4 −a1b2 − a2b1 + a3b4 − a4b3

a2b1 + a1b2 + a4b3 − a3b4 −a2b2 + a1b1 + a4b4 + a3b3

]
,

A1B2 + A2B1 =

[
a1b3 − a2b4 + a3b1 + a4b2 a1b4 + a2b3 − a3b2 + a4b1

a2b3 + a1b4 + a4b1 − a3b2 a2b4 − a1b3 − a4b2 − a3b1

]
.

Thus, the product has the same structure as the matrix given in (1.3). If we
compare the product of two coquaternions in the form given in (1.1) with the

product C4C̃4 where (1.2) is used, then, we see, that the products are the same.
�

182



Linear equations and the Kronecker product in coquaternions

Let a1, a2, a3, a4 ∈ R as in (1.2). The algebra of coquaternions is also isomor-
phic to the algebra of all real 2 × 2 matrices (see Lam, p. 52, [12]):

C2 := a1

[
1 0
0 1

]
+ a2

[
0 1

−1 0

]
+ a3

[
0 1
1 0

]
+ a4

[
1 0
0 −1

]
(1.4)

=

[
a1 + a4 a2 + a3

−a2 + a3 a1 − a4

]
=:

[
c11 c12

c21 c22

]
∈ R2×2.

Given the four matrix elements c11, c12, c21, c22 ∈ R, the four components of a
can be recovered by

a1 =
1

2
(c11 + c22), a2 =

1

2
(c12 − c21), a3 =

1

2
(c12 + c21), a4 =

1

2
(c11 − c22).

The inverse of C2 and of C4 (given in (1.3)) can be computed easily by applying
the formula (2.6) for a−1. If we denote the four basis elements in the order of
the equation (1.4) by E,I,J,K, then they obey the same multiplication rules
as 1, i, j,k, respectively, given in Table 2.1 of the next section. An algebra of
this type, is also called a split algebra, in the current case the algebra of split
quaternions, Lam, p. 58, [12].

That coquaternions nowadays are still useful, e. g. in physics is shown by
Brody and Graefe, 2011, [2]. That paper also contains an overview over relevant
properties of coquaternions and 42 references are quoted. There is another, very
subtle investigation mainly on the analysis of coquaternions with application
to physics by Frenkel and Libine, [6].

We will denote the set of real numbers, the set of complex numbers, the set
of quaternions, the set of integers, the set of positive integers by R, C, H, Z, N,
respectively.

2 Coquaternions

In view of the preceding section, coquaternions may be regarded as elements
of R4 of the form

a := a1 + a2i + a3j + a4k, a1, a2, a3, a4 ∈ R

which we also abbreviate by a = (a1, a2, a3, a4) and which obey the multipli-
cation rules given in Table 2.1:

Table 2.1 Multiplication table for coquaternions.

1 i j k
1 1 i j k
i i −1 k −j
j j −k 1 −i
k k j i 1

.

183



Drahoslava Janovská and Gerhard Opfer

The algebra of coquaternions will be abbreviated by Hcoq. As elements of
R4 we have 1 := (1, 0, 0, 0), i := (0, 1, 0, 0), j := (0, 0, 1, 0),k := (0, 0, 0, 1),
which we will abbreviate also by �e1, �e2, �e3, �e4, respectively. Let a =
(a1, a2, a3, a4), b = (b1, b2, b3, b4). For future purposes we note the following
multiplication results:

ab = a�e1b = a1b1 − a2b2 + a3b3 + a4b4 (2.1)

+(a1b2 + a2b1 − a3b4 + a4b3)i

+(a1b3 − a2b4 + a3b1 + a4b2)j

+(a1b4 + a2b3 − a3b2 + a4b1)k,

aib = a�e2b = − a2b1 − a1b2 + a4b3 − a3b4 (2.2)

+(−a2b2 + a1b1 − a4b4 − a3b3)i

+(−a2b3 − a1b4 + a4b1 − a3b2)j

+(−a2b4 + a1b3 − a4b2 − a3b1)k,

ajb = a�e3b = a3b1 − a4b2 + a1b3 + a2b4 (2.3)

+(a3b2 + a4b1 − a1b4 + a2b3)i

+(a3b3 − a4b4 + a1b1 + a2b2)j

+(a3b4 + a4b3 − a1b2 + a2b1)k,

akb = a�e4b = a4b1 + a3b2 − a2b3 + a1b4 (2.4)

+(a4b2 − a3b1 + a2b4 + a1b3)i

+(a4b3 + a3b4 − a2b1 + a1b2)j

+(a4b4 − a3b3 + a2b2 + a1b1)k.

A coquaternion of the form a = (a1, 0, 0, 0) will be called real and will also
be abbreviated as a1. As we see from (2.1) (and former considerations), real
coquaternions commute with all coquaternions. Let a = (a1, a2, a3, a4) be a
coquaternion. The first component, a1, of a, will be denoted by ℜ(a) and
called real part of a. We define the conjugate of a in the notation a or in the
notation conj(a) and abs2 of a by

a := (a1, −a2, −a3,−a4), abs2(a) := a2
1 + a2

2 − a2
3 − a2

4. (2.5)

The quantity abs2 may be negative, it is not the square of a norm. Let b be
another coquaternion. There are the following rules:

aa = aa = abs2(a), abs2(ab) = abs2(ba) = abs2(a)abs2(b),

(ab) = b a, ℜ(ab) = ℜ(ba).

The coquaternion a will be called singular if abs2(a) = 0. If a is nonsingular
(= not singular = invertible), then

aa−1 = a−1a = (1, 0, 0, 0) holds for a−1 =
a

abs2(a)
. (2.6)
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Let the quaternion product (only in this section) be denoted by ⋆, then by
comparing the coquaternion product (2.1) with the corresponding quaternion
product ⋆, we see that

ab = a ⋆ b + 2(a3b3 + a4b4) − 2(a3b4 − a4b3) i.

The third and fourth component of ab and of a⋆b coincide. Thus, the coquater-
nions contain the complex numbers as subalgebra.

3 Linear mappings over R in general

Let L : Rn → Rm be a linear mapping over R. Then it is known that such a
mapping can be represented by a real matrix of size (m × n). See Horn and
Johnson, p. 5, [9]. In order to find this matrix, which we will denote, in this
paper, by M, we define a column operator col by

col(x) :=




x1

x2

...
xn


 ,

where x1, x2, . . . , xn are the components of x. If it happens that x is a matrix,
we put the columns of that matrix from the left to the right into one column
in order to define col for that matrix. By evaluating L at x ∈ Rn and applying
the col operator we obtain

col(L(x)) = Mcol(x), M ∈ Rm×n, col(x) ∈ Rn, (3.1)

where M is unknown so far. Let ej be the standard unit vectors in Rn, j =
1, 2, . . . , n. If we put x := ej we obtain

col(L(ej)) = Mcol(ej) =




µ1j

µ2j

...
µmj


 , j = 1, . . . , n , (3.2)

where µij are the elements of the matrix M and the right hand side of (3.2)
represents the jth column of M. Hence, the matrix M is completely known
by the n values L(ej). We note, that M will be integer if the values of L are
integer.

A typical, nontrivial example is the mapping L : Rn → Rm defined by

L(X) = AXB, A ∈ Rp×q, B ∈ Rr×s, X ∈ Rq×r, (3.3)
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where in this case we have m = ps, n = qr. In order to find the corresponding
matrix we have to set the jth element of X (counted columnwise from the
left) to be one and all other elements of X to be zero, j = 1, 2, . . . , qr, and
compute the corresponding col(L(X)). This gives the jth column of the wanted
matrix M. What comes out is the well known Kronecker (or tensor) product
M = BT ⊗ A, a matrix of size (ps × qr). The notation BT stands for the
transposed matrix of B. For details see Horn and Johnson, pp. 242, 254, [8].

4 Linear systems in coquaternions

Linear equations in coquaternions are formally similar to linear equations in
quaternions. An investigation of linear equations in quaternions exists by the
current authors, [10], [11] and by Niven, [13]. A linear system will always be
a linear system over R. Linearity with respect to C or to Hcoq is in general
not granted. A linear system in n coquaternions xk, k = 1, 2, . . . , n, and m
equations will be defined as follows: Let

lj(u) :=

Kj∑

k=1

a
(j)
k ub

(j)
k , j = 1, 2, . . . ,mn (4.1)

be an arbitrary set of mn linear, coquaternionic mappings in one coquaternionic

variable u, where a
(j)
k , b

(j)
k , k = 1, 2, . . . ,Kj are given coquaternions, and Kj

are given, positive integers, j = 1, 2, . . . ,mn. A system in n coquaternionic
variables xk, k = 1, 2, . . . , n and m equations will then be defined by

L1(x) :=

n∑

j=1

lj(xj),

L2(x) :=
n∑

j=1

lj+n(xj),

...

Lm(x) :=
n∑

j=1

lj+(m−1)n(xj),

where x ∈ R4n consists of one column composed out of x1, x2, . . . , xn. The
mapping L : R4n → R4m will finally be defined by

L(x) :=




L1(x)
L2(x)

...
Lm(x)


 . (4.2)
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L is not a linear mapping over C or Hcoq. However, L is a linear mapping over
R because real coquaternions commute with arbitrary coquaternions. Hence,
a matrix M as in (3.1), (3.2) exists.

In order to find the matrix M which represents L, we put x = ej , where the ej

represent the standard unit vectors in R4n, j = 1, 2, . . . , 4n. Then col(L(ej)) is
the jth column of the wanted matrix. The next lemma will be useful.

Lemma 4.1 Let 1 ≤ j ≤ 4n be given. Then, the following equation including
its restrictions

4(κ − 1) + r = j, 1 ≤ κ ≤ n, 1 ≤ r ≤ 4 (4.3)

determines κ and r uniquely by

0 ≤ 4κ − j ≤ 3, r = j − 4(κ − 1). (4.4)

Proof: If we solve (4.3) for r we obtain r = j − 4(κ − 1) = j − 4κ + 4 and the
given restriction for r implies the first part of (4.4) and the first part admits
exactly one solution κ with the restriction given in (4.3). For this reason, the
second equation in (4.4) (which coincides with the first equation in (4.3)) also
has a unique solution. �

Corollary 4.2 Let L be given as in (4.2). Then the jth column (1 ≤ j ≤ 4n)
of the matrix M representing L is

L(ej) :=




L1(ej) = lκ(�er)
L2(ej) = lκ+n(�er)

...
Lm(ej) = lκ+(m−1)n(�er)


 (4.5)

where κ and r are determined by j applying Lemma 4.1. The first component of
the unit vector ej is the rth coordinate, r ∈ {1, 2, 3, 4}, of the κth coquaternion,
κ ∈ {1, 2, . . . , n}.

The task of solving a linear, coquaternionic system L(x) = γ, where γ consists
of m given coquaternions, can be solved as follows. Compute the (4m × 4n)
matrix M which represents L and solve the real matrix equation Mcol(x) =
col(γ) by standard techniques.

Example 4.3 Let m = n = 3 and

l1(x) := a
(1)
1 xb

(1)
1 + a

(1)
2 xb

(1)
2 + a

(1)
3 xb

(1)
3 , l2(x) := a

(2)
1 xb

(2)
1 + a

(2)
2 xb

(2)
2 , l3(x) := a

(3)
1 xb

(3)
1 ,

l4(x) := a
(4)
1 xb

(4)
1 , l5(x) := a

(5)
1 xb

(5)
1 + a

(5)
2 xb

(5)
2 , l6(x) := a

(6)
1 xb

(6)
1 + a

(6)
2 xb

(6)
2 + a

(6)
3 xb

(6)
3 ,

l7(x) := a
(7)
1 xb

(7)
1 + a

(7)
2 xb

(7)
2 , l8(x) := a

(8)
1 xb

(8)
1 + a

(8)
2 xb

(8)
2 , l9(x) := a

(9)
1 xb

(9)
1 + a

(9)
2 xb

(9)
2 ,

where the needed coefficients a
(j)
k , b

(j)
k are defined in Table 4.4.
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Table 4.4 Table of coquaternionic coefficients for l1 to l9

j a
(j)
1 b

(j)
1 a

(j)
2 b

(j)
2 a

(j)
3 b

(j)
3

1 (0, 0, −1, 1) −(−1, 1, 2, 0) (0, 1, −1, −1) (−1, 2, 2, −1) (0, −1, 1, 1) (−1, 2, 2, −1)
2 (2, 0, 1, 0) (−1, 2, 1, 1) (−2, 0, 1, 0) (−1, 0, 1, 2)
3 (1, −1, 1, −2) (0, 1, 2, 1)

4 (0, 1, 0, 2) (2, 1, 0, 0)
5 (−1, 1, 2, 2) (0, −1, 2, 1) (0, 0, −1, 2) (2, −1, 1, 1)
6 −(2, 0, 1, −1) (0, −1, 0, 1) (−1, 2, 1, 0) (2, 1, −2, 1) (0, 1, 1, 0) (0, 0, −2, 1)

7 −(1, 1, 1, 0) (0, 1, 2, 1) (0, 0, 0, 0) (0, 1, −1, −2)
8 −(2, 1, 1, 1) (1, 1, 2, 0) −(2, 0, 2, 1) (2, 0, 0, −1)
9 (0, 0, −2, 2) (0, 1, 2, 2) (−2, 0, 1, 0) −(1, 1, −2, 0)

The entries of the Table 4.4 are randomly generated integers in [−2, 2]. This is
the reason for the occurrence of a zero element. The matrix M which in this
case corresponds to L, defined in (4.5), is

M =




3 −5 −1 2 2 −7 −2 0 1 −6 3 4
−9 −3 6 −5 1 −2 4 2 −4 1 −2 −1

3 0 −3 1 −2 0 2 7 1 0 3 −2
4 3 −3 3 −4 2 −1 −2 −2 5 −4 −5

−1 −2 −2 4 8 4 1 0 −7 −6 8 5
2 −1 4 2 6 −6 6 −3 4 −1 −1 2
2 4 1 −2 −9 4 −2 8 0 7 −5 −2
4 −2 2 1 6 3 6 0 −11 −2 4 5

−1 2 −3 0 −6 −1 −8 0 4 6 −7 −3
0 3 −2 −3 −7 −4 −8 0 1 0 −3 −1

−1 4 −3 −2 −10 −2 −10 −1 −3 3 −4 2
−2 −1 0 1 −2 2 1 −4 3 −5 −2 8




.

Let x1 = (0, 0, 1, 0), x2 = (−1, 0, 0, 2), x3 = (0, 1, 1, −1) and x = col(x1, x2, x3).
Then,

col(L(x)) := Mx = (−10, 9, 18, 3; −13, −12, 30, −7; 5, 3, 2, −21)T.

4.1 Linear systems in coquaternionic matrices

The general case of a linear system in n unknowns and m equations does also
contain the matrix case

Ax = b, A ∈ Hcoq
m×n, b ∈ Hcoq

m×1, x ∈ Hcoq
n×1, (4.6)

but not vice versa.

Example 4.5 Let

A :=

[
1 i
j k

]
⇒ A−1 =

1

2

[
1 j

−i k

]
, AT =

[
1 j
i k

]
.
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If we multiply the second row of A from the right by j we obtain the first row.
Thus, the right row rank of A is one, and if we multiply the first column from
the left by i we obtain the second column. Thus, the left column rank of A is
also one. Let us compute the right column rank of A. To this purpose let

(
1
j

)
α +

(
i
k

)
β =

(
0
0

)
, α, β ∈ Hcoq.

If we multiply the first equation from the left by j we obtain jα − kβ = 0.
If we add this equation to the second equation we obtain 2jα = 0, and if we
subtract this equation from the second equation we obtain 2kβ = 0. Thus,
α = β = 0 and the right column rank is two. In a similar way one can show
that the left row rank is also two. There is the following well known Theorem:
Let M ∈ Hcoq

m×n. Then, the left row rank coincides with the right column
rank and the right row rank is equal to the left column rank. If m = n and the
right column rank of M is n, then M is nonsingular, which means that there
is a matrix M−1 such that of M−1M = MM−1 = I, where I is the (n × n)
identity matrix. Thus, A is nonsingular, whereas AT is singular. This example
was also used by Zhang, [17], for quaternions.

Rather than specializing the general case to the matrix case, we directly treat
the matrix case (4.6) with the means we have already derived. If we apply the
col operator to (4.6) we obtain

col(Ax) = Mcol(x) = col(b), M ∈ R4m×4n (4.7)

and determine M by replacing col(x) with ej , the jth standard unit vector in
R4n, j = 1, 2, . . . , 4n. Let j = 1 mod 4, j ≤ 4n − 3, k = 1, 2, 3, 4. Then, the
(j + k − 1)th column of M is

M(j+k−1) =




col(a1,(j−1)/4+1�ek)
col(a2,(j−1)/4+1�ek)

...
col(am,(j−1)/4+1�ek)


 . (4.8)

Each entry, col(aℓ,(j−1)/4+1�ek), is a real 4×1 vector, ℓ = 1, 2, . . . , m, where we
denote the jth column of M by M(j). Thus, M of (4.7) is given in (4.8). For
A from Example 4.5 we have

M =




1 0 0 0 0 −1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 −1 0 0 1 0
1 0 0 0 0 1 0 0
0 −1 0 0 1 0 0 0




.
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There are many further questions related to coquaternionic matrices, for in-
stance, what kind of decompositions exist. This is a topic for another investi-
gation.

4.2 The Kronecker product for coquaternions

The coquaternionic Kronecker product is the (real) matrix M which represents
the linear mapping (over R) L : Hcoq

q×r → Hcoq
p×s defined by

L(X) = AXB, A ∈ Hcoq
p×q, B ∈ Hcoq

r×s, X ∈ Hcoq
q×r. (4.9)

It is denoted by M(A,B), for short only M. Since each element in X has
4 real entries, col(X) ∈ R4qr. Furthermore, we have col(L(X)) ∈ R4ps which
implies M ∈ R4ps×4qr. The coquaternionic Kronecker product differs from
the standard Kronecker or tensor product which is BT ⊗ A. See also (3.3),
on p. 185 and the corresponding remarks. In order to find M, we enumerate
the elements of X by ℓ = 1, 2, . . . , qr, using the columns as ordering system
such that (to mention an example) the first element of the second column
will have the number ℓ = q + 1. We denote the so numbered elements of
X by X(1),X(2), . . . ,X(qr). Such an enumeration technique is used in some
programming languages in addition to the conventional enumeration XJ,K ,
which denotes the Kth element in row J . We define the matrix X(ℓ,k) by
putting

X(ρ) =

{
�ek for ρ = ℓ,
0 for ρ ̸= ℓ,

ℓ = 1, 2, . . . , qr, k = 1, 2, 3, 4. (4.10)

In other words, X(ℓ,k) is the matrix which contains �ek at position ℓ, and con-
tains otherwise zero elements. The corresponding columns of M are then

M(4(ℓ−1)+k) := col(AX(ℓ,k)B), ℓ = 1, 2, . . . , qr, k = 1, 2, 3, 4. (4.11)

We will describe an alternative technique to find M. Let us assume that X
contains only zeros, with the exception of the element XJ,K which contains one
of the four unit elements �ek. Then,

M4((K−1)q+(J−1))+k = col(AXB) = col( (4.12)




1 . . . K − 1 K K + 1 r
0 . . . 0 a1J 0 . . . 0
0 . . . 0 a2J 0 . . . 0

0 . . . 0
.
.. 0 . . . 0

0 . . . 0 apJ 0 . . . 0







0 . . . 0 . . . 0
..
.

0 . . . 0 . . . 0
�ekbK1 �ekbK2 . . . �ekbKs

0 . . . 0 . . . 0
.
..

0 . . . 0 . . . 0







.
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Theorem 4.6 Let K ∈ [1, r], J ∈ [1, q], k ∈ [1, 4] be fixed. See (4.9). The
coquaternionic Kronecker product M(A,B) in column [4((K−1)q+(J−1))+k]
is given by the dyadic coquaternionic product col(A( : , J)(�ekB(K, : ))).

Proof: Follows from the representation (4.12). �
Example 4.7 We will treat an example of the form

C = AXB =

[
a11 a12

a21 a22

][
x11 x12

x21 x22

][
b11 b12
b21 b22

]

where we use the data from Example 5.3 in [10]:

a11 = (0, 2, 2, 0), a12 = (4, 5, −1, −5), a21 = (0, 2, 2, −1), a22 = (−3, 3, −3, 2),

b11 = (0, 4, −5, −4), b12 = (−2, 2, 1, −4), b21 = (−3, −5, 2, −1), b22 = (4, 3, −2, 3),

x11 = (1, 1, 1, 1), x12 = (1, 2, 1, 2), x21 = (2, 1, 2, 1), x22 = (2, 2, 2, 2).

These data determine C =

[
c11 c12
c21 c22

]
as

c11 = (28, −1, 44, −65), c12 = (−58, −13, 2, 35),

c21 = (44, −92, 132, −12), c22 = (−76, −79, 32, 89).

An application of (4.11) or of Theorem 4.6 yields the Kronecker product

M(A,B) =


−18 8 −8 18 5 5 −20 5
8 2 −2 −8 37 −45 −13 −60
8 2 −2 −8 −20 45 5 45

−18 8 −8 18 −37 20 13 35
−14 13 −4 18 −5 −10 −5 15

13 −2 −2 −12 −34 −19 −39 11
4 2 −6 −3 35 15 35 −10

−18 12 −3 22 9 19 14 −11
−2 12 −12 2 1 −7 −4 −13

4 −6 6 −4 −11 −37 29 −28
4 −6 6 −4 16 23 −19 17

−2 12 −12 2 1 32 −19 23
2 11 −10 4 −11 2 −13 −1
3 −10 8 −6 −22 11 −19 −17
2 −4 2 −5 19 −13 17 14
0 14 −13 6 17 −1 14 7

. . .

14 8 −8 −14 16 24 −19 6
−4 6 −6 4 −46 10 34 25
−4 6 −6 4 41 4 −44 −14
14 8 −8 −14 16 −15 −4 −30
15 6 −13 −11 16 −5 10 6
−6 5 −3 9 7 32 12 −28

1 9 −7 2 −4 −30 −10 31
17 3 −10 −13 −12 −2 −17 −2

−10 −14 14 10 −12 −19 18 −1
2 −2 2 −2 45 14 −45 −4
2 −2 2 −2 −42 −19 48 −1

−10 −14 14 10 −15 −4 15 14
−13 −12 17 6 −9 2 −3 −4

4 1 −2 −5 8 −33 2 33
−1 −6 5 0 −9 32 −3 −34

−14 −11 16 7 2 3 8 −3




∈ R16×16
.
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A further test shows that Mcol(X) = col(C) for X chosen in the beginning of
this example.

Another interesting example is Sylvester’s equation [15, Sylvester, 1884]:

AX + XB = C, A ∈ Hcoq
m×m,B ∈ Hcoq

n×n,C,X ∈ Hcoq
m×n (4.13)

⇒ col(AX + XB) = (M(A, I) + M(I,B))col(X) = col(C).

It may be that the linear function L has the form

L(X) = AXTB, A ∈ Hcoq
p×q, B ∈ Hcoq

r×s, X ∈ Hcoq
r×q.

In order to find the corresponding Kronecker product for this case one has
to change the order in which the matrix elements are counted. The matrix
elements of X in formula (4.10) have to be counted row-wise.

Let A,B be two coquaternionic matrices. It should be noted, that the relation
(AB)T = BTAT is in general not true. Let us denote by conj(A) the matrix
where all elements of A have been changed to the corresponding conjugate
element. Then, the relation conj(AB) = conj(A)col(B) is in general also not
true. However, (AB)∗ = B∗A∗, is true, where A∗ := conj(AT).

It should be pointed out that the investigations of this paper are not restricted
to equations in coquaternions. With the same technique one could solve linear
systems of equations in tessarines or in cotessarines, algebras defined in R4 and
also introduced by Cockle, [3]. Even more general algebras (finite dimensioal,
real, associative algebras) would allow the application of the same technique.
See Abian, Drozd and Kirichenko, Pierce [1, 5, 14].

5 The one dimensional case

For n = m = 1 the system (4.2) and (4.1) specialize to one equation

L(x) :=
K∑

k=1

akxbk, where ak, bk, x are coquaternions. (5.1)

The simplest cases are

(i) L(x) = ax, (ii) L(x) = xb, (iii) L(x) = axb,

We denote the real 4 × 4 matrices for the three cases, respectively, by

aM, Mb, aMb.

Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4). Then the three matrices are

aM := (a�e1, a�e2, a�e3, a�e4) =




a1 −a2 a3 a4

a2 a1 a4 −a3

a3 a4 a1 −a2

a4 −a3 a2 a1


 , (5.2)
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Mb := (�e1b, �e2b, �e3b, �e4b) =




b1 −b2 b3 b4

b2 b1 −b4 b3

b3 −b4 b1 b2

b4 b3 −b2 b1


 , (5.3)

aMb := [ab, a�e2b, a�e3b, a�e4b], (5.4)

where the four columns are already defined in (2.1) to (2.4). Matrix aM is
identical with the matrix C4, defined in (1.3) and this is clear because C4

represents the coquaternion a = (a1, a2, a3, a4) and the mapping L is defined
by L(x) = ax. A real, square matrix is named singular if it is not invertible,
or in other words if its determinant vanishes.

Theorem 5.1 Matrix aM is singular if and only if a is singular. Matrix Mb

is singular if and only if b is singular. Matrix aMb is singular if a or b is
singular.

Proof: Let L(x) = ax and a ̸= 0. The equation ax = c has clearly a unique
solution if a is nonsingular. If a is singular, we multiply by a and obtain
0 = aax = ac, which does not have a unique solution. The other cases are
similar. �

Example 5.2 We apply the technique described in Section 3 to

L(x) = a1xb1 + a2xb2 + a3xb3, where

a1 = (1, 1, 0, 1), b1 = (1, −1,−1, 0),

a2 = (1, −1, −1, 2), b2 = (2,−1, 1, 1),

a3 = (−1, −2, 0, 2), b3 = (0,−1, 0, 0).

From these data we obtain
a1b1 = (2, −1, −2, 0), a1ib1 = (−1, 2, 2, 0),

a1jb1 = (0, 0, 0, 1), a1kb1 = (2, −2, −3, 0),

a2b2 = (2, 0, −2, 3), a2ib2 = (6, 0, 3, 6),

a2jb2 = (0, 3, 0, 0), a2kb2 = (7, 0, 2, 6),

a3b3 = (−2, 1, −2, 0), a3ib3 = (−1, −2, 0, 2),

a3jb3 = (2, 0, 2, −1), a3kb3 = (0, −2, 1, 2),

and the matrix M which represents the linear mapping L is

M =




2 4 2 9
0 0 3 −4

−6 5 2 0
3 8 0 8


 .
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In order to find the four columns of M, one has to compute

col




3∑

j=1

aj�ekbj


 , k = 1, 2, 3, 4.

5.1 Sylvester’s equation in coquaternions

Sylvester’s equation (see [15]) in coquaternions, a special case of (4.13) and of
(5.1), reads

L(x) := ax + xb = c, a, b, c, x ∈ Hcoq, (5.5)

where we will put a := (a1, a2, a3, a4), b := (b1, b2, b3, b4) ∈ Hcoq. It is clear
that the matrix corresponding to this system is

M := aM + Mb =




s1 −s2 s3 s4

s2 s1 d4 −d3

s3 d4 s1 −d2

s4 −d3 d2 s1


 , (5.6)

where aM,Mb are defined in (5.2), (5.3) and where

sj := aj + bj , dj := aj − bj , j = 1, 2, 3, 4.

Sylvester’s equation will be called singular if the matrix M defined in (5.6) is
singular. We observe that d1 := a1 − b1 is not occurring in (5.6).

Example 5.3 Let a = (1, 1, 1, 2), b = (1, −2, 2, 1). Then,

M :=




2 1 3 3
−1 2 1 1

3 1 2 −3
3 1 3 2


 .

In this case a is nonsingular, b is singular, and M is, nevertheless, nonsingular.

Lemma 5.4 The determinant of M, defined in (5.6) is

det(M) = s2
1

(
s2
1 + s2

2 + d2
2 − (s2

3 + d2
3) − (s2

4 + d2
4)

)
+ (5.7)

(−s2d2 + s3d3 + s4d4)
2.

Proof: Apply the expansion formula to (5.6) and collect terms. �
The singularity of Sylvester’s equation, expressed by the singularity of the
matrix M, is characterized in the next theorem.
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Theorem 5.5 The matrix M, defined in (5.6) is singular if and only if either

s1 := a1 + b1 = 0 and − abs2(a) + abs2(b) = 0, or s1 ̸= 0 and

s2
1

(
−d2

1 + 2 (abs2(a) + abs2(b))
)

+ (−abs2(a) + abs2(b) + s1d1)
2 = 0,

where the definition of abs2 is given in (2.5).

Proof: Use s2
j + d2

j = 2(a2
j + b2

j ) and sjdj = a2
j − b2

j , j = 1, 2, 3, 4 and insert
this into (5.7) of Lemma 5.4. �
An example where the second part of Theorem 5.5 applies is a = (2, 1, 1, 2), b =
(1, 2, 2, 5). In this case a is singular, b is nonsingular, but M is singular.

Corollary 5.6 Let both, a, b ∈ Hcoq be singular. Then, M defined in (5.6) is
singular.

Proof: The assumptions are abs2(a) = abs2(b) = 0. The singularity of M
follows from one of the conditions of Theorem 5.5. �
Conversely, one cannot say, that nonsingular a, b imply a nonsingular matrix
M. A necessary, but not sufficient condition for M being nonsingular is, that
at least a or b is nonsingular.

Example 5.7 Let a = (a1, a2, a3, a4) = (0, 0, 1, 0) = j, b = (b1, b2, b3, b4) =
(0, 0, 0, 1) = k. Then, s1 = a1 + b1 = 0, abs2(a) = −1, abs2(b) = −1, thus, both
a, b are nonsingular, but the first condition of Theorem 5.5 is satisfied, and,
hence M, defined in (5.6), and Sylvester’s equation (5.5) are singular.
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