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Linear equations in quaternionic variables

By Drahoslava Janovská & Gerhard Opfer

Abstract

We study the quaternionic linear system which is composed out of terms of the
form ln(x) :=

∑n

p=1
apxbp with quaternionic constants ap, bp and a variable

number n of terms. In the first place we investigate one equation in one variable.
If n = 2 the corresponding equation, which is normally called Sylvester’s equa-
tion will be treated completely by using only quaternionic algebra. For larger n
a transition to the isomorphic (4 × 4) real matrix case is investigated. Sufficient
conditions for non singularity will be obtained by using results from fixed point
theorems. Connections to the Kronecker product are presented. The general case
of a linear quaternionic system is treated, where each unknown is contained in a
sum of the form mentioned above. As a tool the so-called column operator and
its properties are used. An analogue of the Kronecker product for quaternionic
systems involving terms of the form AXB is given.

Keywords: Linear equations in quaternions, Sylvester’s equation in quaternions,
Kronecker product for quaternionic matrices
AMS Subject classification: 11R52, 12E15, 12Y05, 65F40

1 Introduction

Because of the non commutativity of the (skew) field of quaternions, which we will
denote by H, the simplest one dimensional linear functions ln : H → H already have
the form

ln(x) :=
n∑

p=1

apxbp, ap, bp, x ∈ H, apbp 6= 0, p = 1, 2, . . . , n, (1.1)

where n may be an arbitrary, positive integer. The additional conditions apbp 6= 0 for
all 1 ≤ p ≤ n ensure that the sum does not reduce to a sum with less terms.
The set of positive integers will be denoted by N, the set of integers by Z, and R, C
will denote the real and complex numbers, respectively. The set of matrices with m
rows and n columns and with elements from F will be denoted by Fm×n, where F is
either R or C or H.
It should be noted, that ln is a linear function over R but not over H. As a function over
H it is just additive, i. e., ln(x+y) = ln(x)+ ln(y). We will call ln singular if there is
x 6= 0 with ln(x) = 0. Or in other words, ln is singular, if the homogeneous equation
ln(x) = 0 has a non zero solution. If ln is non singular, it is clear that ln(x) = c has
a unique solution for all c ∈ H.
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Throughout this paper we shall use the well known fact, that a linear mapping
l : Rn → Rm is expressible by a unique matrix A ∈ Rm×n in the sense that
l(x) = Ax, x ∈ Rn, which is the ordinary matrix times vector product. See [5, Horn
& Johnson, Section 0.2], [6, Horn & Johnson, Lemma 4.3.2]. In particular, the
mapping ln defined in (1.1) may be taken as a linear mapping ln : R4 → R4 over R.
We will come to the matrix representation later. A form very similar to that given in
(1.1) is known in real matrix theory. Define the linear mapping L : Rk×l → Rj×m by

L(X) := A︸︷︷︸
j×k

X︸︷︷︸
k×l

B︸︷︷︸
l×m

. (1.2)

This map L may also be regarded as a linear map of Rkl → Rjm by putting x :=
col(X) where x consists of one column formed by all columns of X from the left to
the right. We note, that the column operator col is linear over R. According to the
general theory there must be a matrix P(A,B) ∈ Rjm×kl such that

col(L(X)) = P(A,B)col(X).

The matrix P(A,B) is known in the literature as Kronecker product (see [6, Horn
& Johnson, Section 4.3]) and it is defined by

P(A,B) :=


b11A b21A · · · bl1A
b12A b22A · · · bl2A

...
...

...
b1mA b2mA · · · blmA

 ∈ Rjm×kl. (1.3)

This implies that a matrix equation of the form

Ln(X) :=
n∑

p=1

ApXBp = C, (1.4)

Ap ∈ Rj×k,Bp ∈ Rl×m,C ∈ Rj×m,X ∈ Rk×l, p = 1, 2, . . . , n,

can be transformed into the ordinary matrix equation( n∑
p=1

P(Ap,Bp)
)
col(X) = col(C). (1.5)

This system has jm equations in kl unknowns. The pattern (1.4)⇒(1.5) gives some
guideline for the quaternionic case.

2 Sylvester’s equation in one quaternionic variable

Let us consider the equation ln(x) = c with given c ∈ H, and where ln is defined in
(1.1). We will see that for n ≤ 2 a solution can be found just by applying quaternionic

224



Linear Quaternionic Systems

algebra, but that for n ≥ 3 this seems not to be possible. For n = 1 we have l1(x) :=
axb and it is clear that l1 is singular if and only if ab = 0. For n = 2 we have

l2(x) :=
2∑

p=1

apxbp = c, a1b1 6= 0, a2b2 6= 0.

By premultiplication from the left by a−1
1 and by b−1

2 from the right the equation takes
the form

xb1b
−1
2 + a−1

1 a2x = a−1
1 cb−1

2 .

We simplify the notation to

Ax + xB = C; A := a−1
1 a2 6= 0, B := b1b

−1
2 6= 0, C := a−1

1 cb−1
2 . (2.1)

This equation is usually called Sylvester’s equation. The notion of equivalence of two
quaternions is very helpful and will be introduced in the next definition.

Definition 2.1 Two quaternions a, b are said to be equivalent if there is an invertible
quaternion h such that

h−1ah = b.

In this connection, algebraists (see [13, v. d. Waerden, 1960, p. 35]) usually use
the term conjugate, which, however, for quaternions is not a good choice. By this
definition, two real numbers are equivalent if and only if they coincide. A complex
number z is equivalent to its complex conjugate z. The general situation is governed
by the following lemma.

Lemma 2.2 Two quaternions a, b are equivalent if and only if

|a| = |b| and <a = <b,

where <z refers to the real part, the first component of z ∈ H.

Proof: [9, Janovská & Opfer]. �

Theorem 2.3 Sylvester’s equation l2(x) := Ax+xB = C; A,B,C, x ∈ H, AB 6= 0,
is singular if and only if A and −B are equivalent. If it is non singular, its solution is

x = f−1
l (C + A−1CB) = (C + ACB−1)f−1

r where (2.2)
fl := 2<B + A + |B|2A−1; fr := 2<A + B + |A|2B−1. (2.3)

Proof: Let A,−B be equivalent, i. e. there is an h 6= 0 such that B = −h−1Ah.
Thus, l2(x) = Ax− xh−1Ah and l2(h) = 0, hence l2 is singular. Let l2 be singular,
i. e. there is an x 6= 0 such that l2(x) := Ax + xB = 0. Multiplying from the left by
x−1 shows that A,−B are equivalent. For the remainder we show that fl = 0 if and
only if A,−B are equivalent. Put q2 := |B|2/|A|2 and A := (A1, A2, A3, A4), B :=
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(B1, B2, B3, B4). Let 0 = fl = 2<B + A + |B|2A−1 = 2<B + A + q2A =
(2B1+(1+q2)A1, (1−q2)A2, (1−q2)A3, (1−q2)A4). If q2 = 1 we have |B|2 = |A|2
and 2B1 + 2A1 = 0. According to Lemma 2.2, A,−B are equivalent. Let q2 6= 1.
Then, 2B1 + (1 + q2)A1 = 0, A2 = A3 = A4 = 0. Thus, A is real and A1 6= 0.
Then, 0 = 2B1 + (1 + q2)A1 = 2B1 + (1 + |B|2/|A1|2)A1. Multiplying by A1 we
obtain (A1 + B1)2 + B2

2 + B3
3 + B2

4 = 0 and therefore, B is also real and A1 =
−B1, implying q2 = B2

1/A2
1 = 1, a contradiction. Let A,−B be equivalent. Then,

fl = −2<A + A + |A|2A/|A|2 = −2<A + A + A = 0. A very similar proof works
for fr. The first solution formula follows from A−1l2(x)B + l2(x) = flx and from
l2(x) = C. For the second solution formula we form Al2(x)B−1 + l2(x) = xfr. �

In (2.2) we have two solution formulas for the same x, the solution of Sylvester’s
equation. Nevertheless, for numerical purposes we should make a difference. If
|A| > 0 but close to zero, then the first formula involving A−1 should be avoided.
More generally, we should compare |A| and |B|. If |A| ≤ |B| we should use the
second formula, otherwise the first one. This would allow the inclusion of the cases
A = 0 or B = 0 (not both).
In a paper by [11, R. E. Johnson, 1944] we find a treatment of an equation of
type Ax + xB = C over an algebraic division ring. However, the solution formula
(2.2) was not given. The same equation with quaternionic matrices was treated by [7,
Huang, 1996]. We return to this paper a little later.

3 Linear equations of general type in one quaternionic variable

We will treat equation (1.1) without a restriction on n, the number of terms. We
introduce two mappings ı1, ı2 : H → R4×4. The first one, ı1, is the well known
isomorphism between H and R4×4 and the other one is obtained by introducing a new
multiplication in H namely a ? b = ba, where ba is the standard quaternion product.
These mappings are

ı1(a) :=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 ∈ R4×4, (3.1)

ı2(a) :=


a1 −a2 −a3 −a4

a2 a1 a4 −a3

a3 −a4 a1 a2

a4 a3 −a2 a1

 ∈ R4×4. (3.2)

Let us denote the set of matrices of the form ı1(a) by HR and the set of matrices of the
form ı2(a) by HP. Both sets constitute skew fields. The elements of HP will be called
pseudo quaternions. The essential properties of ı1 and ı2 are given in the next lemma.
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Lemma 3.1 Let a = (a1, a2, a3, a4) ∈ H and col(a) := (a1, a2, a3, a4)T, the column
vector consisting of the four components of a. For a, b, c ∈ H we have

ı2(ab) = ı2(b)ı2(a), (3.3)
ı1(a)ı2(b) = ı2(b)ı1(a), (3.4)

col(ab) = ı1(a)col(b) = ı2(b)col(a), (3.5)
col(abc) = ı1(a)ı1(b)col(c) = ı2(c)ı2(b)col(a), (3.6)
col(abc) = ı1(a)ı2(c)col(b). (3.7)

Proof: A comparison of both sides of (3.3) and (3.4) yields the desired result. For
(3.5) to (3.7) see [4, Gürlebeck & Sprössig, Lemma 1.23, p. 6] and [2, Ara-
manovitsch, Appendix A No. 8., p. 1252]. �

Since [2, Aramanovitsch, 1995] gives the formulas (3.5) to (3.7) without any quo-
tation and explanation, we assume that these formulas belong to a class of formulas
which are already known for a longer time.
Formula (3.7) is now the key for transforming any equation of the form ln(x) = c into
a standard matrix equation.

Theorem 3.2 Let ln(x) :=
∑n

p=1 apxbp with quaternionic entries be given. Then
ln(x) = c is equivalent to the (4× 4)-matrix equation

( n∑
p=1

ı1(ap)ı2(bp)
)
col(x) = col(c). (3.8)

Proof: Follows immediately from formula (3.7). �

Corollary 3.3 The linear function ln defined in Theorem 3.2 is singular if and only if
det

( ∑n
p=1 ı1(ap)ı2(bp)

)
= 0.

Proof: Follows from the isomorphic representation (3.8) in Theorem 3.2. �

What happens, if we apply the Kronecker product to l(x) := axb = c in the isomor-
phic matrix form

ı1(a)ı1(x)ı1(b) = ı1(c).

Applying (1.5) we obtain

P(ı1(a), ı1(b))col(ı1(x)) = col(ı1(c)), (3.9)

and, using (1.3), we obtain

P(ı1(a), ı1(b)) =


b1ı1(a) b2ı1(a) b3ı1(a) b4ı1(a)

−b2ı1(a) b1ı1(a) b4ı1(a) −b3ı1(a)
−b3ı1(a) −b4ı1(a) b1ı1(a) b2ı1(a)
−b4ı1(a) b3ı1(a) −b2ı1(a) b1ı1(a)

 ∈ R16×16.
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Since the second, third, and fourth four components of col(ı1(x)) are essentially per-
mutations of the first four components of x := (x1, x2, x3, x4)T, the first four rows of
the Kronecker product can be (essentially) expressed by column permutations of the
matrix ı1(a). More precisely, define I1 = diag(1, 1, 1, 1), the identity matrix and

I2 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ; I3 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ; I4 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

Then, the first four rows of P(ı1(a), ı1(b))col(ı1(x)) take the form(
b1ı1(a)I1 + b2ı1(a)I2 + b3ı1(a)I3 + b4ı1(a)I4

)
x. (3.10)

Theorem 3.4 Let a, b ∈ H be given. Then l1(x) := axb ∈ H and ı1(l1(x)) =
ı1(a)ı1(x)ı1(b) ∈ R4×4 are isomorphix expressions in H, R4×4, respectively. Let
x = (x1, x2, x3, x4)T. Then, the first four rows of the corresponding equation (3.9)
defined by the Kronecker product have the explicit form given in (3.10) and this form
coincides with ı1(a)ı2(b)x according to (3.8).

Proof: According to Theorem 3.2 one has to show that b1ı1(a)I1 + b2ı1(a)I2 +
b3ı1(a)I3 + b4ı1(a)I4 = ı1(a)ı2(b). This is a little tedious and left out here. �

For Sylvester’s equation we were able to characterize the singular cases. This seems
to be impossible for the general case. However, by applying some results from fixed
point theorems, it is possible to find a sufficient condition for non singularity.

Theorem 3.5 Let ln :=
∑n

p=1 apxbp with n ≥ 3, ap, bp ∈ H and apbp 6= 0 for all
p = 1, 2, . . . , n. If there is a 1 ≤ p0 ≤ n such that

κ :=

∑n
p6=p0

|ap||bp|
|ap0 ||bp0 |

< 1, (3.11)

then, ln is non singular.

Proof: Choose 1 ≤ p0 ≤ n. We multiply ln(x) = c from the left by a−1
p0

and from
the right by b−1

p0
. Then we obtain x +

∑n
p6=p0

a′pxb′p = c′ where a′p = a−1
p0

ap, b
′
p =

bpb
−1
p0

, p 6= p0, c
′ = a−1

p0
cb−1

p0
. Put x = c′ −

∑n
p6=p0

a′pxb′p := f(x). This is a linear
fixed point equation and

f(x)− f(y) =
n∑

p6=p0

a′p(y − x)b′p = a−1
p0

( n∑
p6=p0

ap(y − x)bp

)
b−1
p0

.

Going to absolute values and applying the triangle inequality yields

|f(x)− f(y)| ≤ κ|x− y|,

where κ is defined in (3.11). If one of the posible κs is less than one, Banach’s fixed
point theorem [1] gives the desired result. �
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Corollary 3.6 Let ln :=
∑n

p=1 apxbp with n ≥ 3, ap, bp ∈ H and apbp 6= 0 for all
p = 1, 2, . . . , n. If there is a constant k > 0 and an index 1 ≤ p0 ≤ n such that
|ap||bp| ≤ k for all p 6= p0 and |ap0 ||bp0 | ≥ k2, then, ln is non singular if k > n− 1.
For k := n− 1 this is not necessarily true.

Proof: Under the stated conditions we have

κ ≤ (n− 1)k
k2

=
(n− 1)

k
< 1.

The result follows from Theorem 3.5. In order to prove the last part, let n = 3,
and a1 := (1, 1, 1, 1), b1 = 1, a2 := (1, 1, 1,−1), b2 = (−1, 1, 1, 1), a3 = 1,
b3 = (1, 1,−1,−1) and choose p0 = 2. We have |a1||b1| = k = n−1 = 2, |a2||b2| =
4 = k2, |a3||b3| = 2 = k. But, the linear function l3(x) := a1x + a2xb2 + xb3 is
singular. In order to find that out apply Corollary 3.3 and compute

det
(
ı1(a1) + ı1(a2)ı2(b2) + ı2(b3)

)
.

The second column of the involved matrix is zero, thus, det = 0. �

We derived some sufficient conditions for non singularity by applying Banach’s fixed
point theorem. However, this does not imply that we advocate the use of fixed point
iterations. The linear function ln is treated in more detail for the case n = 3 in [10].

4 Linear systems in quaternionic variables

Let A be a quadratic matrix with quaternionic entries. Then, the system Ax = b
and the eigenvalue problem Ax = xλ (observe, the position of λ) have very much in
common with their real and complex relatives. See [14, Zhang, 1997]. In particular,
the quadratic system could be solved by elimination, or in other words, there is an LU
decomposition (under certain conditions). However, determinants do not exist which
in particular implies that there are no characteristic equations. See [3, Fan, 2003].
Consider the simple example

xa + by = f,

cx + dy = g.
(4.1)

This system already creates problems if we would use only quaternionic algebra. See
also [8] for systems of this type. Instead we apply the column operator col to the
system (4.1) and use its properties collected in Lemma 3.1. We obtain

col(xa) + col(by) = ı2(a)col(x) + ı1(b)col(y) = col(f),
col(cx) + col(dy) = ı1(c)col(x) + ı1(d)col(y) = col(g).

(4.2)
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Define

A :=
(

ı2(a) ı1(b)
ı1(c) ı1(d)

)
, z :=

(
col(x)
col(y)

)
,h :=

(
col(f)
col(g)

)
.

Then (4.1) reads in real terms
Az = h. (4.3)

Example 4.1 For problem (4.1) choose a := k, b := j, c := i, d := 1 + k, f :=
(−11, 11, 3,−5), g := (−5, 0, 9, 16), where i, j,k have the standard meaning. The
right hand side is chosen such that x = (1, 2, 3, 4), y = (5, 6, 7, 8) is the solution
which will also be reproduced by solving (4.3).

The technique described for the (2× 2) system can be applied in a very general situ-
ation. Define

l(jk)
njk

(xk) :=
njk∑
p=1

a(jk)
p xkb(jk)

p ; a(jk)
p , b(jk)

p ∈ H\{0}, 1 ≤ j, k ≤ n, njk ∈ N (4.4)

and consider the quaternionic n× n system

n∑
k=1

l(jk)
njk

(xk) = c(j), j = 1, 2, . . . , n. (4.5)

Theorem 4.2 Let ı1, ı2 be defined as in (1.2), (1.3), respectively. The quaternionic
(n× n) system (4.5) is equivalent to the real (4n× 4n) system

Az = c, (4.6)

where

A := (ajk ) , j, k = 1, 2, . . . , n, z :=


col(x1)
col(x2)

...
col(xn)

 , c :=


col(c(1))
col(c(2))

...
col(c(n))

 ,

and where

ajk :=
njk∑
p=1

ı1(a(jk)
p )ı2(b(jk)

p ) ∈ R4×4.

Proof: Apply the column operator col to (4.5) and use Theorem 3.2. �

5 The Kronecker product for quaternionic systems composed out of AXB

Let L(X) := AXB with the same dimensions as defined in (1.2) where, however, all
matrices should have quaternions as entries and the dimensions will be set in capital
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letters. Thus, L : HK×L → HJ×M . Again, L may be regarded as a linear real
mapping L : R4KL → R4JM . According to the general theory there must be a real
matrix Π(A,B) ∈ R4JM×4KL such that

col(L(X)) = Π(A,B)col(X). (5.1)

We have to extend the definition of the column operator col to quaternionic matrices
X ∈ HK×L as follows: First replace X by a quaternionic column vector of size
KL × 1 by putting all columns of X into one column going from left to right. Then,
replace all quaternions by a real 4 × 1 column. Eventually, col(X) ∈ R4KL×1. The
Kronecker product P(A,B) introduced in (1.3) does not coincide with Π(A,B). In
order to see this let J = K = L = M = 1 and, correspondingly,

L(x) := axb, a, b, x ∈ H.

Here we have P(a, b) = ab but P(a, b)x 6= L(x) = axb. Applying formula (3.7)
of Lemma 3.1 yields the correct formula Π(a, b) = ı2(a)ı1(b). The question is, how
Π(A,B) has to be defined in general. The already mentioned paper by [7, Huang]
does not give information in this direction. We have to extend the definitions of ı1, ı2
given in (3.1), (3.2) to matrices. Let A ∈ HJ×K and A = (aj,k), j = 1, 2, . . . , J,
k = 1, 2, . . . ,K. Then, put

ı1(A) = (ı1(aj,k)) ∈ R4J×4K , ı2(A) = (ı2(aj,k)) ∈ R4J×4K . (5.2)

In the first place we present an analogue of Lemma 3.1 for matrices. For this purpose
we introduce block transposition for real matrices A ∈ R4J×4K denoted by AB where
four by four blocks remain together. Let A = (ajk) consist of the (4× 4) blocks

bjk := a(4(j−1)+1:4(j−1)+4,4(k−1)+1:4(k−1)+4), j = 1, 2, . . . , J ; k = 1, 2, . . . ,K.

Then, we define

AB :=


b11 b21 . . . bJ1

b12 b22 . . . bJ2
...

... . . .
...

b1K b2K . . . bJK

 ∈ R4K×4J . (5.3)

It should be noted that the ordinary transposition and the block transposition do not
have the property (AB)T = BTAT, (AB)B = BBAB. As an example take two
arbitrary (4 × 4) matrices A,B. Then the block transposition does not change the
matrix, and (AB)B = AB, and BBAB = BA which is in general different from
AB. On the other hand, A = (AT)T, A = (AB)B are valid.
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Lemma 5.1 Let A ∈ HJ×K ,B ∈ HK×L,C ∈ HL×M . For integers m,n we use the
notation m : n := {m,m + 1, . . . , n}. Then, for j = 1, 2, . . . , J,
k = 1, 2, . . . ,K, l = 1, 2, . . . , L,m = 1, 2, . . . ,M we have

ı1(AB) = ı1(A)ı1(B), (5.4)

ı2(AB) =
(
ı2(BT)ı2(AT)

)B
, (5.5)

ı1(A)ı2(B) =
(
ı2(BT)ı1(AT)

)B
, (5.6)

col(AB)4J(l−1)+1:4Jl = ı1(A)col(B)4K(l−1)+1:4Kl, (5.7)

col(AB)[j;L] = ı2(BT)col(AT)4K(j−1)+1:4Kj , (5.8)
[j;L] := j, j + J, j + 2J, . . . , j + (L− 1)J, (5.9)

col(ABC)4J(m−1)+1:4Jm = ı1(AB)col(C)4L(m−1)+1:4Lm, (5.10)

col(ABC)[j;M ] =
(
ı2(BC)

)B
col(AT)4K(j−1)+1:4Kj . (5.11)

The abbreviation [j;L] in (5.8) means that the numbers of the elements of col(AB)[j;L]

do not follow the same scheme as on the right side, where the numbers are running
consecutively. It means, that the first four computed components are
col(AB)4(j−1)+1:4(j−1)+4, the second four computed components are actually
col(AB)4(j−1+J)+1:4(j−1+J)+4, and the last four computed components are
col(AB)4(j−1+(L−1)J)+1:4(j−1+(L−1)J)+4.
Proof: Combine matrix multiplication rules with the results of Lemma 3.1. �

Finally, we come to the still missing Kronecker product.

Theorem 5.2 Let A ∈ HJ×K ,B ∈ HK×L,C ∈ HL×M and b := col(B) ∈
R4KL×1. The elements of A are denoted by Ajk, j = 1, 2, . . . , J ; k = 1, 2, . . . ,K
and correspondingly for the other matrices. Define

Ijm(kl) := ı1(Ajk)ı2(Clm) ∈ R4×4, j = 1, 2, . . . , J, etc. (5.12)

Ijm := (Ijm(1), Ijm(2), . . . , Ijm(KL)) ∈ R4×4KL. (5.13)

We have enumerated Ijm(kl) columnwise with respect to k, l in the form Ijm(1),
Ijm(2), . . . , Ijm(KL). Thus, the order is (1, 1), (2, 1), . . . , (K, 1); (1, 2), (2, 2), . . . ,
(K, 2); . . . , (1, L), (2, L), . . . , (K, L). In the same way we enumerate Ip. Then,

col(ABC)4(p−1)+1:4(p−1)+4 = Ipb, p = 1, 2, . . . , JM,

and the Kronecker product is

Π(A,C) =


I1

I2
...

IJM

 ∈ R4JM×4KL. (5.14)

Proof: Use the matrix multiplication rules for ABC and apply (3.7). �

It is clear that also systems of type
∑P

p=1 ApXBp = C could be treated in the same
fashion.
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Example 5.3 We solve the (2× 2) system AXB = C for the following data:

A :=




0
2
2
0




4
5

−1
−5


0
2
2

−1



−3

3
−3

2




,B :=




0
4

−5
−4



−2

2
1

−4


−3
−5

2
−1




4
3

−2
3




,

C :=




80

−51
146

−187



−178

77
−12

29


32

152
68

−20



−40
−65

28
89




,X :=




1
1
1
1




1
2
1
2


2
1
2
1




2
2
2
2




.

Then, the Kronecker product Π(A,B) is



2 -8 8 -18 -45 -37 20 -5 6 4 8 14 10 46 19 -6
-8 -18 2 8 -5 5 13 60 -8 14 6 -4 -24 16 -34 -25
8 2 18 8 -20 45 35 -13 -4 6 -14 8 41 4 -30 4

-18 8 8 -2 -37 20 -45 5 14 8 -4 -6 16 -15 14 -44
-2 -13 4 -18 -19 34 5 -15 5 6 13 11 32 -7 -10 -6

-13 -14 2 12 10 -5 39 -11 -6 15 3 -9 5 16 -12 28
4 2 22 3 35 15 -11 -14 1 9 -13 10 -4 -30 -2 17

-18 12 3 -6 9 19 10 35 17 3 -2 -7 -12 -2 -31 -10
-6 -4 12 -2 -37 11 4 13 -2 -2 -14 -10 14 -45 -18 1

-12 -2 -6 4 7 1 -29 28 14 -10 -2 2 19 -12 45 4
4 -6 2 12 16 23 23 19 2 -2 10 -14 -42 -19 14 -15

-2 12 4 6 1 32 -17 -19 -10 -14 2 2 -15 -4 1 48
-10 -3 10 -4 11 22 13 1 1 -4 -17 -6 -33 -8 3 4
-11 2 -8 6 -2 -11 19 17 12 -13 2 5 -2 -9 -2 -33

2 -4 6 13 19 -13 7 -14 -1 -6 7 -16 -9 32 -3 -8
0 14 5 2 17 -1 -14 17 -14 -11 0 5 2 3 34 -3


and, by applying MATLAB, the numerical solution of Π(A,B)col(X) = col(C) is
col(X), where X is given above.
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