Complex Haar spaces generated by shifts
applied to a single function

Walter Hengartner
Gerhard Opfer

Abstract. Some of the known Haar spaces are generated by shifts of
a single function G. There are examples of two types. In one case the
spaces generated are real spaces defined on compact intervals, in the other
case the generated spaces are also Haar spaces on compact subsets of the
complex plane C. Under the assumption that G is analytic we are able to
characterize those functions G which generate Haar spaces in the plane C.

§1. Background

We denote by N the set of all positive integers, by Z the integers, by R the
real and by C the complex numbers. The letter K stands for either R or C
and II,, denotes the set of all polynomials with degree at most n, where, in
general, complex coefficients are permitted. We will distinguish between the
equality sign = and the sign := (possibly also =:) where the latter stands for a
defining relation. What is defined appears on the side where the colon : is. Let
D be any compact Hausdorff space and X := C(D) the set of all continuous
functions defined on D with values in K. With the norm || f|| := maxsep | f(¢)]
for all f € X, usually called the uniform norm, the space X becomes a Banach
space over K, or since functions can even be multiplied pointwise, a Banach
algebra. The main underlying theorem is the following.

Theorem 1. For a fixed n € N let H C X be an n-dimensional subspace of
X. The following four statements are equivalent:
i. For any selection of n pairwise distinct points t; € D and any set of n
numbers n; € K the interpolation problem

h(tj):’nj, j:1,2,...,n
has a unique solution h € H.
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ii. Any h € H\{0} has at most n — 1 zeros in D.

iii. Let H := {(hy,hg,...,hy), i.e. H is the linear hull of the linearly inde-
pendent functions h; € X, j=1,2,...,n. Then the (n x n) matrix

M = (hj(tk)), j,k:1,2,...,n

is non-singular for any choice of pairwise distinct points t; € D, j =
1,2,...,n.

iv. Any f € X possesses a unique best approximation he H,ie ||f- ilH <
|f — h|| for all h € H\{h}.

Proof: MEINARDUS, [12, 1967, p. 16-17]. O
Definition 2. A finite dimensional subspace H of X with dimension n is
called a Haar space, if it possesses one of the properties given in Theorem 1.

Unfortunately, Haar spaces do not generally exist. This is governed by
the following two theorems.

Theorem 3. Let K = R. An n-dimensional subspace H C X withn > 2 can
only be a Haar space if D is topologically equivalent to a closed subset of the
unit circle C := {z € C : |z| = 1} with at least n points.

Proof: MAIRHUBER, [11, 1956], CURTIS, [5, 1958]. O

This result reduces Haar spaces in the real case essentially to the following
cases: D is a compact interval in R, D is a complete circle, which reduces H
to p-periodic functions on [0,p[C R, D consists of finitely many points (at
least n).

Theorem 4. Let K = C and D locally connected. Ann-dimensional subspace
H C X withn > 2 can only be a Haar space if D is topologically equivalent
to a closed subset of C and contains at least n points.

Proof: HENDERSON & UMMEL, [8, 1973]. O

Historically the first theorem restricting the domain of definition D in the
case of complex Haar spaces H C X to subsets of C was given by SCHOENBERG
& YANG, [16, 1961]. The consequence of Theorem 3 and Theorem 4 is that
Haar spaces for D C K" with n > 2 do not in general exist.

§2. Examples

In the literature there are lists of Haar spaces which are generally not very long.
Standard sources are KARLIN & STUDDEN [9, 1966] and DUNHAM [6, 1974].
One finds two examples where the Haar spaces are generated by shifts applied
to a single function f. These examples are f(t) := 1/t and f(t) := exp(—t?).
In the end of § 3 we will mention another example. The main question of this
paper is whether one can characterize the functions with this property. This
problem was also raised for the real case by CHENEY & LIGHT [4, 2000, p. 76].
Radial basis splines (CHENEY & LIGHT [4, 2000, Ch. 15 & 16]) evolved also
from shifts applied to a single function. Let us first inspect the two mentioned
examples.
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Example 5. Let f = 1/t for all t € C\{0} and let D be any compact set
in C and S := 0D with respect to C, where U stands for the complement.
Let s; € S, j € N any sequence of pairwise distinct points and h;(t) :=
f(t —5;), j € N. Then for all n, the spaces Hy, := (h1, ha, ..., h,) are Haar
spaces with H, C H,;. This is easy to see: A typical element of H,, is of

the form
n
n :Zajhj, a; e C.
i=1

This expression can be given the form

M) = 3 agh (1) = > o L0 =20,

n
=1 Ht_s )I=1 k#

where p € I,,_1,q € II,,. Since ¢ has no zeros in D, 7, is well defined and 7,
has at most n — 1 zeros in D, since p has at most n — 1 zeros in C, provided
p is non-trivial.

In this example f(¢) := 1/t universally generates Haar spaces in the real
and in the complex case.
Example 6. Let f(t) := exp(—t2), t € K. We consider spaces spanned by
h;(t) == f(t — s;) with arbitrary but pairwise distinct shifts s; € K, j € N.
We have h;(t) = exp(—s3) exp(—t?) exp(2s;t). Thus, for all n € N we have

n = (h1,ha, ..., hn) = exp(—t?)(exp(2s1t), exp(2sat), . . . , exp(25nl)).

Since e* has no zeros for all z € C, the problem is reduced to the investigation
of the space

H,, := (exp(s1t), exp(sat), . .., exp(snt)).

If K = R the space H, belongs in the catalogue of well known Haar spaces,
KARLIN & STUDDEN, [9, 1966, Example 1, p. 9-10]. If, however, K = C let
us consider Ho. According to Theorem 1, part iii, Hs is a Haar space if and
only if det M # 0, where M:= (exp(sjtk)), j,k = 1,2 for arbitrary t; # ts.
Now, det M = exp(s1t1 + sata) — exp(sita + sot1). This expression is zero if
and only if s1t1 + soty = s1te + sot1 + 2kmi for some k € Z. This is equivalent
to (t1 — t2)(s1 — s2) = 2kwi. Now it is easy to see, that for k£ # 0 there are
solutions with t; # to for any given s; # sy. One example with k # 0 is

s1 = mi/2,89 = —mi/2; t1 = k,t2 = —k. In the complex case the spaces H,
are no longer Haar spaces for n > 2.
In this example f(t) := exp(—t2?) does not universally generate Haar

spaces in the real and in the complex case.

§3. The complex analytic case

We will denote by D the open, unit disk in C and correspondingly D will
denote the closed, unit disk.
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Definition 7. Let n € N be a fixed natural number. A function G defined on
C\{0} with values in C will be called an n-dimensional Haar space generator, if
for each set of n pairwise distinct points sq, s9, ..., s, € C\D, the functions h;
defined by h;(z) := G(z—s;), j = 1,2,...,n for z € D span an n-dimensional
Haar space.

Example 8. Let G(z) := 2™ ! with m > 1 fixed. Then G is an m-
dimensional Haar space generator but not an (m + 1)-dimensional Haar space
generator. We leave open the case whether it is an /-dimensional Haar space
generator for 2 < / < m.

Definition 9. A function G defined on C\{0} with values in C will be called
a universal Haar space generator, if for each n € N, it is an n-dimensional
Haar space generator. A universal Haar space generator will be abbreviated
by UHG.

Theorem 10. Let G be analytic on C\{0}. Then G is a UHG if and only if
G is of the form
eaz+b

G(z) := o aecC,beC. (1)

Proof: a) Sufficiency of the condition: It is essentially the same proof as in
Example 5. Fix a and b € C. Then the n functions generated by shifts from
G have the form

They are linearly independent since the poles at s; cannot be removed by non-
trivial linear combinations 7, := Y775, pjhj. Now, n,(2) = 375, pihi(2) =

e‘”% where p is a polynomial of degree at most n — 1 and ¢ a polynomial

of degree n, where the zeros of ¢ are not in_ﬁ. Therefore, each non-trivial 7,
has at most n — 1 zeros in C and hence in ID. We conclude that G is a UHG.

b) Necessity of the condition: Suppose G is an analytic UHG. The proof
that G is of the form (1) is separated into several Lemmata.

Lemma 11. G does not vanish on C\{0}.

Proof: Let n = 1, and suppose that G vanishes at zp # 0. If |2| > 1, then
G(z) := G(z + z9) = G(z — (—2p)) vanishes at the origin where —zy ¢ D. If
20 € D\{0}, put s = —2H2l; ) Then s ¢ D and G(z2) := G(z — s) vanishes

2 20|
_2+T|ZO||§_2| which is in . Both cases are hence excluded by the

hypothesis that G is a UHG, and in particular a 1-dimensional Haar space
generator. O

at z =

Lemma 12. G has the form

G(z) :=2me?®)  2e€C, mecZ where ¢ is an entire function.  (2)
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Proof: Define the function

G(z—1t)

F(z,t,s):= Glr—s)

2| <1, [t > 1,|s| > 1,s #t. (3)
This definition is permissible since by Lemma 11, G has no zeros in C\{0}.
We are studying the number of solutions of F(z,t,s) = p with a constant
p € C\{0} since this is equivalent to studying the number of zeros of the linear
combination G(z —t) — pG(z — s) of two shifts, where t # s and ¢,s ¢ D. The
function G has by definition an isolated singularity at the origin. There are
only three possibilities: (a) This singularity is removable, (b) this singularity
is a pole, or (c) this singularity is an essential singularity. We shall now show,
that the case (c) is not possible. Suppose that the origin is an essential isolated
singularity for G. Choose t > 1 and s > t + 10 on the positive real axis such
that G(t — s) is well defined and, according to Lemma 11, G(t —s) # 0. Then,
by Picard’s Theorem, (AHLFORS [1, 1966, p. 297]) there is a u € C such that
F(z,t,s) = p admits infinitely many solutions in z in every neighbourhood of
z = t. Furthermore, there is a cone {z : |arg(z—t) — | < %} ending at ¢ which
contains infinitely many zeros of F(z,t,s) — p. Put t; := —(1 + €)e?, z; :=
z—t+t; and s, := s—t+t;. We may choose € > 0 sufficiently small such that
F(z1,t1,s1) — p vanishes at several points in D. Observe that ¢; and s; are
outside D. Hence, G is not a 2-dimensional Haar space generator. Thus, G
has an isolated singularity at the origin, which is either removable or a pole,
and in addition G has no zeros in C\{0}. In other words, we have shown that
G has to be of the form defined in (2). Furthermore, all F' defined by (3) are
meromorphic on C having at most one pole and F(0,t, s) # 0, F(0,t, s) # oc.
O

Lemma 13. Let p € C\{0} be fixed and let F be defined as in (3). Then
F — p has at most one zero in the disk A(p) := {z : |z — p| < 1} provided
Ip| > |t| + |s|. Furthermore, this zero is simple.

Proof: Fix |s| > 1,[t| > 1, and |p| > |t| + |s| and set z; := z — p, t1 :=
t—p, s1:=s—p. Then F(z,t,s) — p contains at most one simple zero on the
disk A(p). Indeed, F(z,t,s) — u vanishes at a point z* € A(p) if and only if
(setting 2} := z* — p)

F(z],t1,81) —p=F(z* —p,t —p,s —p) —p=0. (4)
We have |21| < L[la] = [p =] = [p[ = [t] > [t| + |s| = [¢] = [s| > 1 and
analogously |s1| = [p — s| > 1 which implies the above statement. O

Lemma 14. F defined in (3) is of the form

G(z—1t) z—tm 2
F t — T\ v _ |2 " a(t,s)z +b(t,s)z+c(t,s). 5
9= al—g = L =) © (5)
Proof: Consider the partition of C by the squares
' +1 Kk kE+1
Ri={my) eR:L<aclio Dy I2 jrezp ()
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and denote by n(r, F') the number of zeros of the function F(z,t,s) — p in the
disk {z : |z| < r} for a fixed p € C\{0}. Fix an o € N with ro > |t|+|s|. Each
closed disk {z : |z] < r}, r € N, is covered by 1672 squares of the form (6).
Moreover, |n(rg, F)] < M < oo uniformly in p. This follows directly from
the argument principle for meromorphic functions, AHLFORS [1, 1966, p. 151].
Hence, by Lemma 13 we conclude that

n(r, F) = n(ro, F)+[n(r, F) —n(ro, F)] < n(ro, F)+16r° = O(r?), as r — oc.

(7)
Observe that (7) holds for all » > ry and all 4 € C. Hence, by the first
and second fundamental theorem of R. Nevanlinna (NEVANLINNA [14, 1953,
p. 168/256]), we conclude that F is meromorphic on C of maximal order two,
which implies that exp(¢(z —t) — ¢(z — s)) is an entire function of maximal
order two. The same conclusion may also be obtained by Cartan’s theorem
(CARTAN, [2, 1928; 3, 1929]). Therefore, ¢p(z — t) — ¢(z — s) must be a
polynomial of degree d < 2. In other words, F' has to be of the form given
in (5). O

For more details of this proof, see Section 4: Appendix.

Lemma 15. G is of the form
G(z) = 27meA° tBZ*+C4D 7 A B ,C,D e C. (8)

Proof: We evaluate the constants a(t,s), b(t, s), c(t,s) occurring in (5) of
Lemma 14. Let us define a polynomial (in z with parameters ¢, s) by

p(zit,s) = ¢(z—t) —p(z — s) = alt, s)2> + b(t, s)z + c(t, s).

This form is motivated by the proof of the previous Lemma 14. The poly-
nomial p has the simple property p(z;s,t) = —p(z;t,s), which implies the
relations a(t,s) = —a(s,t), b(t,s) = —b(s,t) and c(t,s) = —c(s,t) for all ¢, s.
If we compute the derivatives of p with respect to z,t, s we obtain

¢ (z—1t)— ¢'(z — s) = 2a(t, s)z + b(t, s),
—¢'(z —t) = as(t, 8)2% + be(t, 8)z + et ),
¢' (2 — 8) = as(t, s)2> + bs(t, 8)z + cs(t, 5).
If we compare the negative of the first equation with the sum of the second
and third equation we obtain (omitting the arguments)
ar+as =0, by + by = —2a, ¢; + ¢c5 = —b.
Computing the second derivatives with respect to z,t, s we obtain
#"(z ) = ¢'(z — 5) = 2a(t, 5),
¢ (z —t) = aw(t, s)2> + byu(t, s)z + cu(t, s),
—¢" (2 — 8) = ass(t, 8)2% + bss(t, 8)z + css(t, 8).

Comparing the sum of the last two equations with the first equation yields
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att + Gss = 0; bt + bss = 0; Ct + Css = 2a.
Combining these equations we obtain the partial differential equations:
att = 0, Uss = 0, btt = _2at, bss = _2(15’ Ctt — _bta Css — _bs-
Taking the above mentioned symmetry into account, we find the solutions to

be
a(t,s) = a(t — s), b(t,s) = —a(t* — s*) + B(t — s),

c(t, s) = %(t?’ _ ) - g(ﬁ — ) +y(t—s),

with arbitrary factors «,8,7. In (5) put z := 0 and fix s := sg. Then we
obtain

F(O, —t, —80) = g(gto)) — [%] e_%(ts—sg)—%(tQ—sg)—ry(t_SO)’

from whence we conclude that G is of the form (8). O

We summarize our results so far.

Proposition 16. Let G be simultaneously an analytic one- and two-dimen-
sional Haar space generator. Then G has to be of the form given in (8).

Proof: This is a consequence of Lemma 11 to Lemma 15 where only Haar
space generators up to dimension two were used. O

Lemma 17. In G of (8) we have A = 0.

Proof: Suppose that the analytic function G of (8) has the property that
A # 0. We shall show in this case that G is not even a 2-dimensional Haar
space generator. Indeed, we have F(z,s,t) — 1 = 0 is equivalent to

(z . t)meA(z—t)3+B(z—t)2+C(z—t)—|—D — (Z . s)meA(z—s)3+B(z—s)2+C’(z—s)+D

or for k € Z to

zZ—S8

m log [z_t] + 2mkmni

A(t* +ts+5%)—(34z+B)(t+s) + (342 +2B2+C) = -

We choose s := s(t) in such a way that A(t> +ts + s?) — B(t + s) (regarded
as a quadratic polynomial in s) vanishes. This yields (as one possible choice)

1_ /1_ 4 At
At — B

Observe that s(t) is close to e2™/3¢ if ¢ is very large. We have F(z,5,t)—1 =10
if and only if

At—B
s(t) = — 54

. 9)

3422 +2Bz+¢C mlog [—zf;(tt)] + 2mkmi

3A(t + s(t)) SA( — 2(0) 0, ke (10)
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3422+ 2Bz +C mlog[ (t)}+2mkm

3A(t+ s(t)) 3A(2 — s2(1)) , ke

fk(z) =

Then, for large ¢, we have t 4+ s ~ t(1 + e?™/3) and t2 — s ~ t2(1 — e~271/3),
Furthermore, log [ S(t)} will be close to —27i/3. Now, choose kg € N. Then

for t very large, the functions fx,0 < k < kg, are analytic in the closed unit
disk D and 0 < |fx(2)| < 1 on D. Applying Rouché’s theorem (AHLFORS |1,
1966, p. 152]) to f(z) := z and fr we conclude that for each k,0 < |k| < ko,
the function f — fi vanishes exactly once in D. Therefore, we obtain several z
of the form (10) which belong to the unit disk. This contradicts the fact that
G is a 2-dimensional and hence UHG. Therefore, A has to be zero in (8). O

Lemma 18. In G of (8) we have B = 0 and hence ¢(z) := Cz + D.

Proof: We proceed the same way as in Lemma 17 assuming that A = 0.
Suppose to the contrary, that B # 0 in (8). Then F(z,s,t) —1 = 0 is
equivalent to

(Z _ t)meB(z—t)2+C(z—t)—|—D — (Z _ S)meB(z—s)2+C(z—s)+D

or to

mlog [ } + 2mkmi

B(s+1t)—(2Bz+C) + P =0, keZ. (11)

Choose s(t) := & —t. Then (11) is equivalent to

m log [ ] +2mkri  mlog [ . c} + 2mkmi
= = : 12
? 2B(t — 5) 2B(2t — 9) (12)

Now, choose ky € N. Then for t sufficiently large, the functions

m log [ } + 2mkmi

- g
2B(2t— %)

.fk:(z) = ) Os‘k|§k0a

are analytic in the closed unit disk D and 0 < [fx(2)| < 3 on D. Applying
Rouché’s theorem (AHLFORS [1, 1966, p. 152]) to f(z) := z and fj we conclude
that for each k,0 < |k| < ko, the function f — fi vanishes exactly once in D.
Therefore, we obtain several z of the form (12) which belong to the unit disk.

This contradicts that G is a 2-dimensional and hence, a UHG. O
Lemma 19. The exponent m of the representation (2) is m = —1.

Proof: So far, we have shown that an analytic UHG has to be of the form

G(z) = 2me** % meZ, a,beC. (13)
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Our aim is to show that m = —1. If m > 0, then for n > m + 1, the functions
v;(2) 1= (z — s5) eI 1< j <

form a linearly dependent set. Therefore, m has to be a negative integer.

If m = —2, the linear combination
1
ha(z) := eat—b ea(z—t)—l—b
3(2) (z—t)2
+ eae27’i/3t—b—47ri/3 1 a(z—e 2"/3¢t)+b
(z — e~ 2mi/31)2
+ eae_2”i/3t—b+4ﬂ'i/3 1 ea(z—e2’ﬁ/3t)+b

(z — e27i/31)2

vanishes exactly at the points z where

1 1 1
. - = 0.
(z —t)? + (e271/3; — 1)2 - (e=27i/37 — {)2
This is the case if and only if 22 = _Tt?’ For ¢t := 1.1 we have three zeros in
the unit disk which shows that the case m = —2 is excluded.

Now let m be a negative integer, m < —3 and fix ¢ on the real axis, ¢t > 1.
Then the linear combination

ho (z) — e—(b+at) (Z + t)mea(z—l—t)—i-b + (_1)me—b+at(z _ t)mea(z—t)—HJ (14)
vanishes if and only if (¢t + 2)™ + (t — z)™ = 0 or, equivalently, if and only if

_t+z
T t—z

b(2) : — (—D)Y™ =T TRl 0 <k < |m|— 1. (15)

Observe, that 1) is a univalent (conformal) mapping from the unit disk D to

the disk
t? 41 2t

Q:= { s lw — } 16
w |w t2_1‘<t2_1 ( )
Fix t := 1.05. Then € contains the two points wj 2 := ei“i”m', m < —3.
In other words, hy vanishes at the two points 2 := Y~ (e™/ ™) and 2z :=
¢p~Y(e~™/I™) = —z which belong to D. Therefore, the cases m < —3 are
also excluded. The only remaining case is m = —1. O

Combining all Lemmata we have shown that an analytic UHG is of the
form (1), which ends the proof of the main theorem. O

We can prove much more. In particular, we obtain the following striking
result.
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Theorem 20. Let G be an analytic n-dimensional Haar space generator for
n=1,2,3 and 4. Then G is a UHG. This result is best possible in the sense
that 4 cannot be replaced by a smaller number.

Proof: Suppose that G is an analytic n-dimensional Haar space generator
for n =1,2,3 and n = 4. From n = 1, we conclude that G does not vanish
on C\{0}. The next section for n = 2 in the above proof, shows that G is
of the form (13). The exclusion of the cases m < —2 and m = 0,1,2 are
based on the same reasoning as before and uses only n = 2,3 and n = 4. The
only modification we have to add is for the cases m > 3. We can use the
same arguments as for the cases m < —3. The linear combination hy already
defined in (14) vanishes if and only if (¢ + 2)™ + (¢t — 2)™ = 0 or, equivalently,
if and only if

27ik

= (—DYm =Rt 0<k<m-L.

Y

t
W) =

Then %) is a univalent (conformal) mapping from the unit disk D to the disk
2 defined in (16). Fix ¢ := 1.05. Then 2 contains the two points w; o =
eEm/m m > 3. In other words, ho vanishes at the two points z; := ¢~ (e™/™)
and zy := 9~'(e~™/™) = —z; which belong to I. In all the arguments we
used only the fact that G was an analytic n-dimensional Haar space generator
with n = 1,2, 3 and 4.

It remains to show that this result is best possible. Consider G(z) = 22.
We shall see that G is an analytic n-dimensional Haar space generator with
n =1,2,3 but not with n = 4 (compare Example 8).

Since G(z) # 0 for z # 0 we conclude that G is a 1-dimensional Haar
space generator. Next, suppose that G is not a 2-dimensional Haar space
generator. Then there must be a [t| > 1, an |[s| > 1 and a p € C such that
there are at least two points z; and z9 with

_t—z

k(z) := = +,/p. (17)

s§—Z

Since w = 0 and w = oo are not in the closure of the image k(D) we conclude
that k(D) is a disk which cannot contain g and —u. Therefore, G is a 2-
dimensional Haar space generator. Next, observe that any linear combination
of (z — )%, (z — s)? and (2 — u)?, where t,s and u are mutually distinct,
cannot have more than two zeros in . Hence, G is a 3-dimensional Haar
space generator. Finally, any four functions (z —t;)?, j = 1,2, 3, 4 are linearly
dependent and hence, GG is not a 4-dimensional Haar space generator. O
Theorem 20 may be given the following form.

Corollary 21. Let G be analytic in C\{0}. For arbitrary pairwise distinct
points s; € CD and for arbitrary pairwise distinct t; € D we define the matrix

M := (mjk) = (G(tk —Sj)), jk=1,2,...,n.
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If M is non singular for n = 1,2,3,4, then it is non singular for all n € N
and G has necessarily the form given in (1). The number n = 4 cannot be
replaced by a smaller number.

Proof: Application of Theorem 1, part iii. to Theorem 20. U
If in the definition (1) of G the constant a vanishes, the above matrix M
is a so-called Cauchy matrix, see KNUTH [10, 1969, p. 36, 473].

Corollary 22. Let m > 4 and g(z) == 2™ 1, s; € (D, j =1,2,....,m+1,
sj # sy for j # k. Define the spaces H; on D by

H;:=<g(z—s1),9(z—5s2),...,9(z—s;) >, j=12,....m+1. (18)

Then Hy and H,, 41 are not Haar spaces.

Proof: For H, we use the proof of Theorem 20 again, in which it is shown
directly, that Hy for m > 4 is not a Haar space. Since H,,; has (at most)
dimension m, it cannot be a Haar space. [l
It should be remarked that in the situation of Corollary 22 the spaces
H, :=< (z—s1)™ > and H,,(=1I1,,_1) are always Haar spaces.
Since the sufficiency proof of Theorem 10 does not depend on any specific
domain of definition, we have the following corollary.

Corollary 23. Let D C C be any compact set, S := 0D, G defined as in (1),
and n € N. Then for any selection of n mutually disjoint points s; € S the
space H, :=< hy, ho, ..., h, > is a Haar space with domain of definition D,
where h;(z) := G(z — s;), provided D contains at least n points.

Proof: A direct repitition of part a) of the proof of Theoem 10. Ul
By Theorem 10 we also can identify many non-Haar spaces. One set of

examples is produced by g(z) := -L, m > 2 and the corresponding spaces

generated by shifts. For m = 2 thiszwas shown by RAHMAN & RUSCHEWEYH
[15, 1983]. In the real case, the spaces H, =< g(z — $1),9(z — s2),...,
9(z — s,) > defined on I := [—1, 1] are Haar spaces for all m > 2, provided,
|sj| > 1 and the points s1,s2,..., s, are mutually distinct. Actually, in the
mentioned literature and in the forthcoming book by MEINARDUS & WALZ

[13, > 2002, p. 104] the spaces spanned by

1

1_ww)’”, 0<|z;| <1, ze€[-1,1] (19)
J

v;(z) == (

were considered. But if we put s; := 1/z;, then

~ I \m
v;(z) = ( ) . lsil >1, ze[-1,1] (20)
T — 8
and v; of (19) span the same spaces. We could even admit s; := oo which
would lead to v; := 1 corresponding to x; = 0. It is actually not so easy,

to show that v; of (19) generate real Haar spaces on [—1,1], MEINARDUS &
WaLz [13, > 2002, section 3.5].
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Though the final result (Theorem 20) is at a first glance surprising, there
is another result mentioned by HAYMAN [7, 1964, Theorem 2.6, p. 48], say-
ing that two meromorphic functions fi, fo in the complex plane coincide, if
{z: fi(z) = a} = {z : fa(2) = a} for five different values of a, where five
cannot be replaced by a smaller number.

84. Appendix: Some details with respect to Lemma 14

Let us recall that G analytic on C\{0} has no zeros (Lemma 11) and that the
origin is possibly a pole of G, but not an essential singularity (Lemma 12).
In (3) we defined the function F', which played an important role at various
places as follows:

G(z—1t)

F(z,t,s):= Gl s’

2] <1, [t > 1,[s| > 1,5 # ¢ (3)
Since G may be regarded as a meromorphic function on all of C this applies
to F, too. In addition, we have F'(0,t,s) # 0, F(0,t,s) # oo.
Now, let f be any meromorhic function on C with f(0) # 0, f(0) # oo.
We define the following quantities:
(1.) log™ o := max(0,log ) for all o > 0, in particular, log™ 0 = 0,
(2.) M(r, f) == max, = |f(2)], 7 > 0,
(3.) n(r, f) :=#{z: f(2) =0, |z| < r} multiplicities counted, where # stands
for number of,
(1) N )= Jy wohdo,
(5.) m(r, f) =& [, log™" |f (Te‘t)ldt
(6.) T(r, f) :=m(r, f) + N(r, ) the so-called Nevanlinna characteristic,
(7.)

let h be positive on the non negative real axis. Then
o(h) = lim, logloghr(r) is called the order of h. This number may be
infinite, e. g. h(r) := exp(e”), or finite, e. g. h(r) = rP,p € Z yields

T logtr? _ ) P for p > 0,
o(h) = limy 00 50— = 0 for p<O.

If the order is finite, then one can show that there are constants C, D
such that
o(h) = inf{A : h(r) < Ce”" + D for all r > 0}.

(8.) o(f) := o(T(r, f)) is defined as the order of a meromorhic function f
on C.

(8.1) If f is entire, then o(f) := o(m(r, f)), since in this case n(r, —) =0,
and therefore also N(r,
this case
T(r,f) <logM(r,f) < g7 T(R,f), R >r.

(8.2) As an easy exercise we ﬁnd g(zp) =0 for all p e N.

(8.3) In the case f(z) := z7P, p € N we have m(r, f) = 0, N(r, %) =

N(r, zp) = plogr and thus, Q(f) = lim, l_gﬁg_r = 0.

(8.4) For the entire function f( ) = exp(z?), p € N we have o(f) :=
o(m(r, f)) and m(r, f) = fo log™ | exp(fr‘pe‘pt)\ dt = log™ e’ cospt

= 0. In addition, one can show that in

:U Hsln—l
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= rP cos™ pt, where cos™ a := max(0,cos ). Now, fo% cosT ptdt =
+ pP P ogin &

2psin 3, and therefore p(exp(2P)) = lim,_, 00 W =p.

(9.) The first fundamental theorem by R. Nevanlinna says:
T(r, f) =T(r, ﬁ) +O(1) for all a € C.
If we apply the above results to f(z) := F(z,t, s) we obtain:

(L) n(r,F(z,t,s) —p) < M + 1612 = N(r, F(z,t,s) — u) is of order at most
two for all p,

(IL) Cartan: T(r, f) = o= [ N(r, f(re'*) —e'*) dt +log™ | £(0)| = F(z,t,5) is
of order at most two,

(III.) the function

(z—35)" G(z—t)

Hit,) = E= D (et ) = E2 T EE 2

(z =)™

is an entire, non vanishing function of order p < 2= p=0o0r p=1 or

0=2= F(z,t,s) is of the form (5).

More details can be found in the beginning two chapters of the book by
HAYMAN [7, 1964].
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