Geometrical insights from supergravity constructions

Malte Dyckmanns

PhD seminar Hamburg 28th of May 2013

Introduction
Motivation
Geometries that we will
encounter
Outline
References
Completeness in
supergravity
constructions
One-loop deformation of
the c-map and
HK/QK-correspondence

Introduction

Motivation

Introduction

Motivation

Geometries that we will encounter

Outline

References

Completeness in supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence The **scalars** in **field** theories take their values in a differentiable manifold \mathcal{T} , called the *target space*.

$$\phi = (\phi^{\mu}) : \Sigma \to \mathcal{T}$$

The kinetic energy term of the scalars in the Lagrangian \mathcal{L} of the theory defines a **metric on the target space**.

$$S = \int_{\Sigma} \mathcal{L} = \int_{\Sigma} -g_{\mu\bar{\nu}}\partial_a \phi^{\mu}\partial^a \bar{\phi}^{\nu} + \dots$$

- Supersymmetry leads to restrictions on the target space metric depending on the (dim. of the) space-time manifold Σ and on the number of supersymmetry generators, e.g.: $g_{\mu\bar{\nu}} = \frac{\partial^2 K(\phi,\bar{\phi})}{\partial \phi^{\mu} \partial \bar{\phi}^{\nu}}$.
- Dimensional reduction relates supersymmetric theories of different space-time dimensions and hence their corresponding scalar geometries.

Geometrical insights from supergravity constructions - 3 / 30

Introduction			
Motivation Geometries that we will encounter		global $\mathcal{N}=2$ SUSY	local $\mathcal{N}=2~\mathrm{SUSY}$
Outline	5d vector multiplets	ASR	PSR
References	4d vector multiplets	ASK	PSK
Completeness in supergravity constructions	3d (4d) hypermultiplets	НК	QK
One-loop deformation of the c-map and HK/QK-correspondence	S=special K=Kähler R=real A=affine P=projective H=hyper Q=quaternionic		

Outline

Introduction Motivation Geometries that we will encounter Outline References Completeness in supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence Completeness in supergravity constructions: Local r-map: From PSR to PSK manifolds Local c-map: From PSK to QK manifolds r- and c-map preserve completeness!

Classification of complete PSR surfaces

 \Rightarrow 1-parameter family of complete 16-dimensional QK manifolds

One-loop deformation of c-map and HK/QK correspondence Rigid c-map:

From ASK to HK manifolds

Local c-map:

From PSK to QK manifolds

HK/QK correspondence relates rigid and local **c-map+one-loop** deformation

Geometrical insights from supergravity constructions - 5 / 30

References

Introduction Motivation

encounter

References

supergravity constructions

the c-map and

Completeness in

One-loop deformation of

HK/QK-correspondence

Outline

Geometries that we will

Completeness

- [CHM] V. Cortés, X. Han, T. Mohaupt,
 Completeness in supergravity constructions,
 Comm. Math. Phys. **311** (2012), no. 1, 191–213.
- [CDL] V. Cortés, M. D–, D. Lindemann, Classification of complete projective special real surfaces, arXiv:1302.4570.

HK/QK correspondence

[ACM] D. V. Alekseevsky, V. Cortés, T. Mohaupt,
 Conification of Kähler and hyper-Kähler manifolds,
 Comm. Math. Phys. (accepted) (2013).

[ACDM] D. V. Alekseevsky, V. Cortés, M. D–, T. Mohaupt, *Quaternionic Kähler metrics associated with special Kähler manifolds*,

arXiv:1305.3549.

Geometrical insights from supergravity constructions - 6 / 30

Introduction	•
Completeness in supergravity constructions	•
Completeness	•
Projective special real (PSR) geometry	•
Conical affine special Kähler (CASK) geometry	•
Projective special Kähler (PSK) geometry	•
The local r-map	•
The local c-map	•
Completeness	•
Classification of complete PSR surfaces	•
Complete QK metrics	•
One-loop deformation of the c-map and HK/QK-correspondence	
	•

Completeness in supergravity constructions

Completeness

Dimensional reduction of $\mathcal{N}=2$ supergravity $5d \rightarrow 4d \rightarrow 3d$ Introduction Completeness in \Rightarrow supergravity constructions r-map c-map Completeness PSK PSR QK Projective special real (PSR) geometry Conical affine special Kähler (CASK) geometry Theorem 1 [CHM] **Projective special** Kähler (PSK) geometry Let (M_1, g_1) be a complete Riemannian manifold and $(g_2(p))_p$ a smooth The local r-map family of G-invariant Riemannian metrics on a homogeneous manifold The local c-map Completeness $M_2 = G/K$, depending on a parameter $p \in M_1$. Then the Riemannian Classification of metric $g = g_1 + g_2$ on $M = M_1 \times M_2$ is complete. Moreover, the action complete PSR surfaces **Complete QK metrics** of G on M_2 induces an isometric action of G on (M, g).

[CHM] Cortés, Han, Mohaupt,
 Completeness in supergravity constructions,
 Comm. Math. Phys. **311** (2012), no. 1, 191–213.

One-loop deformation of

HK/QK-correspondence

the c-map and

Geometrical insights from supergravity constructions -8/30

Projective special real (PSR) geometry

Introduction

Completeness in supergravity constructions

Completeness

Projective special real (PSR) geometry

Conical affine special Kähler (CASK) geometry

Projective special Kähler (PSK) geometry

The local r-map

The local c-map

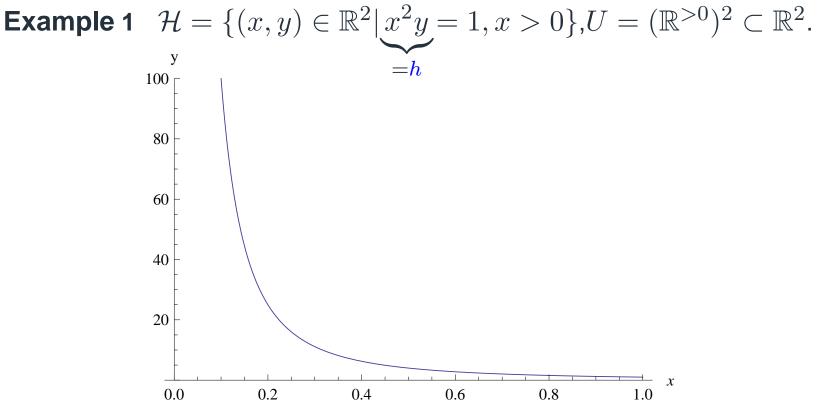
Completeness

Classification of

complete PSR surfaces

Complete QK metrics

One-loop deformation of the c-map and HK/QK-correspondence **Definition 1** Let h be a homogeneous cubic polynomial in n variables with real coefficients and let $U \subset \mathbb{R}^n \setminus \{0\}$ be an $\mathbb{R}^{>0}$ -invariant domain such that $h|_U > 0$ and such that $g_{\mathcal{H}} := -\partial^2 h|_{\mathcal{H}}$ is a Riemannian metric on the hypersurface $\mathcal{H} := \{h = 1\} \subset U$. Then $(\mathcal{H}, g_{\mathcal{H}})$ is called a **projective special real** (PSR) manifold.



M. Dyckmanns

Geometrical insights from supergravity constructions – 9 / 30

Conical affine special Kähler (CASK) geometry

Introduction

Completeness in supergravity constructions

Completeness

Projective special real (PSR) geometry

Conical affine special Kähler (CASK) geometry

Projective special Kähler (PSK) geometry

The local r-map

The local c-map

Completeness

Classification of

complete PSR surfaces Complete QK metrics

One-loop deformation of the c-map and HK/QK-correspondence

Definition 2 A conical affine special Kähler manifold

 (M, J, g_M, ∇, ξ) is a pseudo-Kähler manifold (M, J, g_M) endowed with a flat torsionfree connection ∇ and a vector field ξ such that

i)
$$\nabla \omega = 0$$
, where $\omega := g_M(J \cdot, \cdot)$ is the Kähler form,

ii)
$$(\nabla_X J)Y = (\nabla_Y J)X$$
 for all $X, Y \in \Gamma(TM)$,

- iii) $\nabla \xi = D\xi = \text{Id}$, where D is the Levi-Civita connection,
- iv) g_M is positive definite on $\mathcal{D} = \operatorname{span}\{\xi, J\xi\}$ and negative definite on \mathcal{D}^{\perp} .

Locally, there exist so-called *conical special holomorphic coordinates* z^{I} , I = 0, ..., n and a holomorphic function F(z), homogeneous of degree 2 such that

$$g_M = N_{IJ} dz^I d\bar{z}^J, \quad \xi = z^I \partial_I + \bar{z}^I \partial_{\bar{I}},$$

where $N_{IJ} := 2 \text{Im} F_{IJ}(z)$. The Kähler potential is $K := r^2 := g_M(\xi, \xi) = z^I N_{IJ} \overline{z}^J = i(z^I \overline{F}_I - \overline{z}^I F_I).$

Projective special Kähler (PSK) geometry

Introduction

Completeness in supergravity constructions

Completeness

Projective special real (PSR) geometry

Conical affine special Kähler (CASK) geometry

Projective special Kähler (PSK) geometry

The local r-map

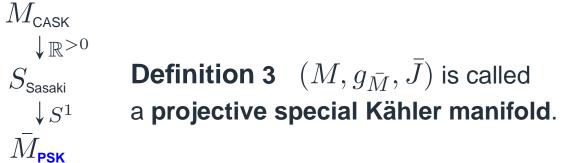
The local c-map

Completeness

Classification of

complete PSR surfaces Complete QK metrics

One-loop deformation of the c-map and HK/QK-correspondence Let (M, J, g_M, ∇, ξ) be a CASK manifold. Then $J\xi$ is a holomorphic Killing field and the Kähler reduction of (M, J, g_M) w.r.t. $J\xi$ with the choice of level set $S := \{g_M(\xi, \xi) = 1\}$ gives a Kähler manifold $\{\bar{M} = S/S^1_{J\xi}, -g_{\bar{M}}, \bar{J}\}.$



If z^{I} , I = 0, ..., n are conical special holomorphic coordinates on M, then $X^{\mu} := \frac{z^{\mu}}{z^{0}}$, $\mu = 1, ..., n$ define a local holomorphic coordinate system on \overline{M} . The Kähler potential for $g_{\overline{M}}$ is $\mathcal{K} := -\log X^{I} N_{IJ}(X) \overline{X}^{J}$, where $X := (X^{0}, ..., X^{n})$ with $X^{0} := 1$.

The local r-map

Introduction

Completeness in supergravity constructions

Completeness

Projective special real (PSR) geometry

Conical affine special Kähler (CASK) geometry

Projective special Kähler (PSK) geometry

The local r-map

The local c-map

Completeness

Classification of

complete PSR surfaces Complete QK metrics

One-loop deformation of the c-map and HK/QK-correspondence Let $(\mathcal{H}, -\partial^2 h|_{\mathcal{H}})$ be a projective special real manifold. Then $U = \mathbb{R}^{>0} \cdot \mathcal{H}$ and $-\partial^2 h$ is a Lorentzian metric on U.

We define $M := \mathbb{R}^n + iU \subset \mathbb{C}^n$ with holomorphic coordinates $(X^{\mu}) = (y^{\mu} + ix^{\mu}) \in \mathbb{R}^n + iU$ and endow it with a Kähler metric $g_M = \frac{\partial^2 K}{\partial X^{\mu} \partial \bar{X}^{\nu}} dX^{\mu} d\bar{X}^{\nu}$ defined by the Kähler potential

$$\mathcal{K}(X,\bar{X}):=-{\rm log}\,h(x)=-{\rm log}\,h({\rm Im}\,X).$$

Definition 4 The correspondence $(\mathcal{H}, g_{\mathcal{H}}) \mapsto (M, g_M)$ is called the **local r-map**.

$$(M, g_M) \approx (\mathcal{H} \times \widetilde{\mathbb{R} \times \mathbb{R}^n}, g_{\mathcal{H}} + dr^2 - \frac{\partial^2 \log h(x)}{\partial x^{\mu} \partial x^{\nu}} dy^{\mu} dy^{\nu}).$$

In terms of the prepotentials h and F, the local r-map is given by

$$h(x^{\mu}) \mapsto F(z^{I}) = \frac{h(z^{\mu})}{z^{0}}.$$

Geometrical insights from supergravity constructions - 12 / 30

The local c-map

Introduction
Completeness in
supergravity
aanatrustiana

Completeness

Projective special real (PSR) geometry

Conical affine special Kähler (CASK) geometry

Projective special Kähler (PSK) geometry

The local r-map

The local c-map

Completeness

Classification of

complete PSR surfaces Complete QK metrics

One-loop deformation of the c-map and HK/QK-correspondence

$$g_{G} = \frac{1}{4\rho^{2}}d\rho^{2} + \frac{1}{4\rho^{2}}(d\tilde{\phi} + \sum(\zeta^{I}d\tilde{\zeta}_{I} - \tilde{\zeta}_{I}d\zeta^{I}))^{2} + \frac{1}{2\rho}\sum\mathcal{I}_{IJ}(p)d\zeta^{I}d\zeta^{J} + \frac{1}{2\rho}\sum\mathcal{I}^{IJ}(p)(d\tilde{\zeta}_{I} + \mathcal{R}_{IK}(p)d\zeta^{K})(d\tilde{\zeta}_{J} + \mathcal{R}_{JL}(p)d\zeta^{L}),$$

where $(\rho, \tilde{\phi}, \tilde{\zeta}_I, \zeta^I) \in \mathbb{R}^{>0} \times \mathbb{R}^{2n+3}$. $\mathcal{N}_{IJ} := \mathcal{R}_{IJ} + i\mathcal{I}_{IJ} := \bar{F}_{IJ} + i\frac{\sum_K N_{IK} z^K \sum_L N_{JL} z^L}{\sum_{IJ} N_{IJ} z^I z^J}, \ N_{IJ} := 2\mathrm{Im}F_{IJ}.$

Definition 5 Let $(\overline{M}, g_{\overline{M}})$ be a 2n-dim. projective special Kähler domain. The correspondence

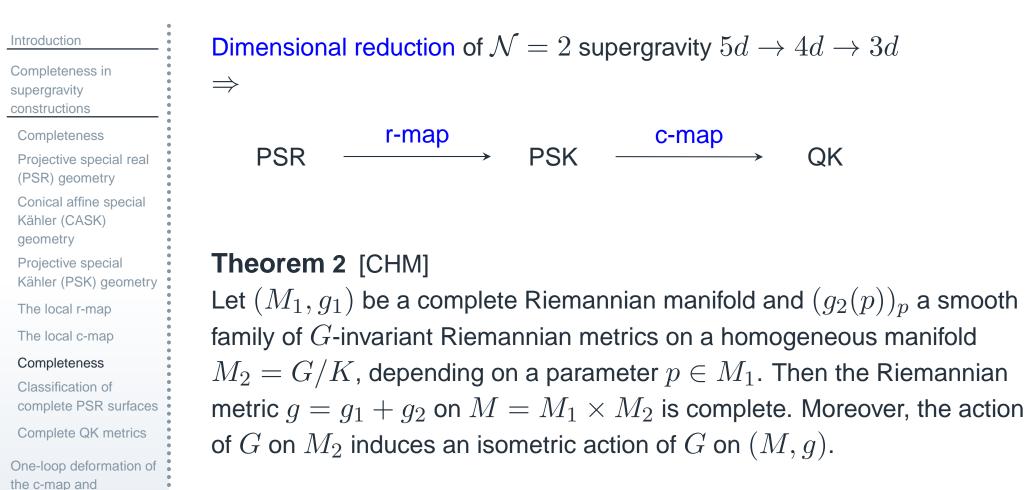
$$(\bar{M}, g_{\bar{M}}) \mapsto (\bar{N} = \bar{M} \times \mathbb{R}^{>0} \times \mathbb{R}^{2n+3}, g_{\bar{N}} = g_{\bar{M}} + g_G)$$

is called the local c-map.

 (N, g_N) is quaternionic Kähler [FS].

[FS] Ferrara, Sabharwal, Nucl. Phys. B332 (1990), 317–332.

Completeness



[CHM] Cortés, Han, Mohaupt,
 Completeness in supergravity constructions,
 Comm. Math. Phys. **311** (2012), no. 1, 191–213.

M. Dyckmanns

HK/QK-correspondence

Geometrical insights from supergravity constructions – 14 / 30

Completeness

Introduction Completeness in supergravity constructions	Dimensional reduction of $\mathcal{N}=2$ supergravity $5d \rightarrow 4d \rightarrow 3d$
Completeness	complete ^{r-map} complete ^{c-map} complete
Projective special real (PSR) geometry	PSR PSK QK
Conical affine special Kähler (CASK) geometry	
Projective special Kähler (PSK) geometry	Corollary 1 [Cortés, Han, Mohaupt 2012]
The local r-map	Combining the supergravity r- and c-map, one obtains a comple
The local c-map	And the supergravity r- and C-map, one obtains a complete the supergravity r- and C-map, one obtains a complete the supergravity r- and C-map.

Completeness

Classification of complete PSR surfaces Complete QK metrics

One-loop deformation of the c-map and HK/QK-correspondence

4m + 8-dimensional quaternionic Kähler manifold from each complete m-dimensional projective special real manifold.

Classification of complete PSR surfaces

Introduction

Completeness in supergravity constructions

Completeness

Projective special real (PSR) geometry

Conical affine special Kähler (CASK) geometry

Projective special Kähler (PSK) geometry

The local r-map

The local c-map

Completeness

Classification of complete PSR surfaces

Complete QK metrics

One-loop deformation of the c-map and HK/QK-correspondence

Theorem 3 [CDL '13]

There exist precisely five discrete examples and a one-parameter family of complete projective special real surfaces, up to isomorphism:

a)
$$\{(x, y, z) \in \mathbb{R}^3 \mid xyz = 1, \ x > 0, \ y > 0\},$$

b)
$$\{(x, y, z) \in \mathbb{R}^3 \mid x(xy - z^2) = 1, \ x > 0\},$$

c)
$$\{(x, y, z) \in \mathbb{R}^3 \mid x(yz + x^2) = 1, \ x < 0, \ y > 0\},$$

d)
$$\{(x, y, z) \in \mathbb{R}^3 \mid z(x^2 + y^2 - z^2) = 1, \ z < 0\},$$

e)
$$\{(x, y, z) \in \mathbb{R}^3 \mid x(y^2 - z^2) + y^3 = 1, \ y < 0, \ x > 0\},$$

f)
$$\{(x, y, z) \in \mathbb{R}^3 \mid y^2z - 4x^3 + 3xz^2 + bz^3 = 1, \ z < 0, \ 2x > z\},$$

where $b \in (-1, 1) \subset \mathbb{R}.$

[CDL] Cortés, D-, Lindemann,

Classification of complete projective special real surfaces, arXiv:1302.4570.

Complete QK metrics

Introduction Completeness in supergravity constructions Completeness Projective special real + local r-map (PSR) geometry Conical affine special + local c-map Kähler (CASK) geometry **Projective special** Kähler (PSK) geometry The local r-map The local c-map Completeness Classification of complete PSR surfaces Complete QK metrics One-loop deformation of the c-map and HK/QK-correspondence

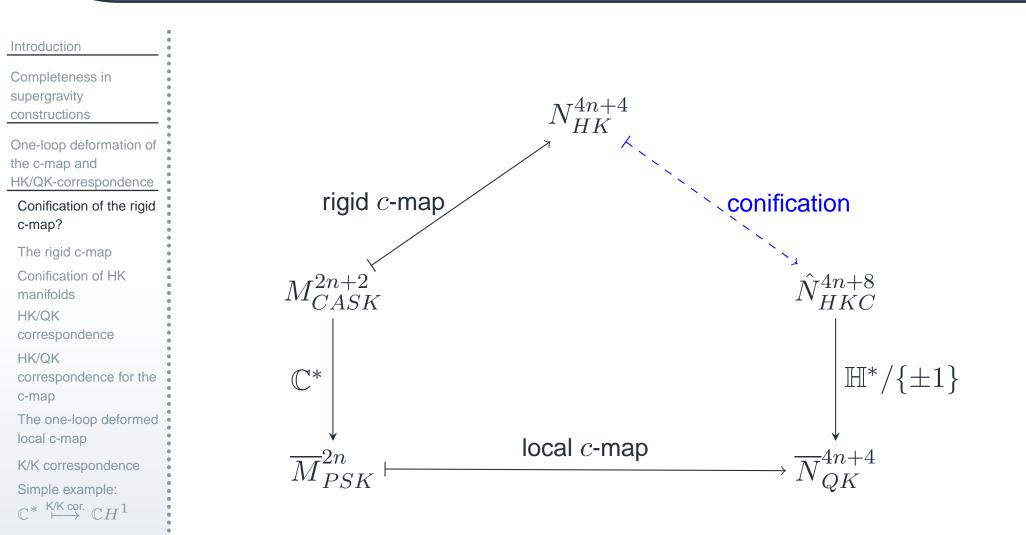
Classification of complete PSR surfaces

⇒ Explicit 1-parameter family of complete 16-dim. quaternionic Kähler metrics!

Completeness in supergravity constructions One-loop deformation of the c-map and HK/QK-correspondence
the c-map and
Conification of the rigid c-map?
The rigid c-map
Conification of HK manifolds HK/QK
correspondence
HK/QK correspondence for the c-map
The one-loop deformed local c-map
K/K correspondence
Simple example: $\mathbb{C}^* \stackrel{K/K \ cor.}{\longmapsto} \mathbb{C}H^1$

One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?



M. Dyckmanns

Geometrical insights from supergravity constructions – 19 / 30

The rigid c-map

Int	ro	du	oti	on
пπ	IU	uu	ωu	

Completeness in supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence Conification of the rigid c-map?

The rigid c-map

Conification of HK manifolds HK/QK correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence

Simple example: $\mathbb{C}^* \xrightarrow{K/K \text{ cor.}} \mathbb{C} H^1$ Let $(M \subset \mathbb{C}^{n+1}, J, g_M, \xi)$ be a CASK manifold, globally described by the holomorphic prepotential F(z).

The real coordinates $(q^a) := (x^I, y_J) := (\operatorname{Re} z^I, \operatorname{Re} F_J(z))$ on M are ∇ -affine and fulfill $\omega_M = -2dx^I \wedge dy_I$.

Let $(p_a) := (\tilde{\zeta}_I, \zeta^J)$ be real functions on $N := T^*M$ such that (q^a, p_b) is a system of canonical coordinates.

Proposition 1 In the above coordinates $(z^I, \tilde{\zeta}_J, \zeta^K)$, the hyper-Kähler structure on $N = T^*M$ obtained from the rigid c-map is given by

$$g_N = \sum dz^I N_{IJ} d\bar{z}^J + \sum A_I N^{IJ} \bar{A}_J,$$

$$\omega_1 = \frac{i}{2} \sum N_{IJ} dz^I \wedge d\bar{z}^J + \frac{i}{2} \sum N^{IJ} A_I \wedge \bar{A}_J,$$

$$\omega_2 = -\frac{i}{2} \sum (d\bar{z}^I \wedge \bar{A}_I - dz^I \wedge A_I),$$

$$\omega_3 = \frac{1}{2} \sum (dz^I \wedge A_I + d\bar{z}^I \wedge \bar{A}_I),$$
where $A_I := d\tilde{\zeta}_I + \sum_J F_{IJ}(z) d\zeta^J \ (I = 0, \dots, n)$ are complex-valued one-forms on N and $\omega_\alpha = g_N(J_\alpha \cdot, \cdot).$

M. Dyckmanns

Geometrical insights from supergravity constructions - 20 / 30

Conification of HK manifolds

Introduction

Completeness in supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?

The rigid c-map

Conification of HK manifolds

HK/QK correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence Simple example: $\mathbb{C}^* \xrightarrow{K/K \text{ cor.}} \mathbb{C} H^1$ Let (N, g, J_1, J_2, J_3) be a 4m-dim. (pseudo-)hyper-Kähler manifold with a J_1 -holomorphic Killing vector field that fulfills $\mathcal{L}_Z J_2 = -2J_3$. Then one can (locally) construct a conical 4m + 4-dim. hyper-Kähler manifold \hat{N} such that N is obtained from \hat{N} via a hyper-Kähler quotient [ACM] (see also [Ha]). This constructions depends on a real parameter c.

Using the Swann-bundle construction of a hyper-Kähler cone as a $\mathbb{H}/\{\pm 1\}$ -bundle over a quaternionic Kähler manifold, we get a correspondence between a HK manifold and a 1-parameter family of QK manifolds which is called HK/QK correspondence.

[ACM] Alekseevsky, Cortés, Mohaupt, *Conification of Kähler and hyper-Kähler manifolds*, Comm. Math. Phys. (accepted) (2013).
[Ha] Haydys, J. Geom. Phys. 58 (2008), no.3, 293–306.

Geometrical insights from supergravity constructions - 21 / 30

HK/QK correspondence

Introduction

Completeness in supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?

The rigid c-map

Conification of HK manifolds

HK/QK correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence

 Let (M, g, J_1, J_2, J_3) be a pseudo-hyper-Kähler manifold, Z a time-like or space-like J_1 -holomorphic Killing vector field with $\mathcal{L}_Z J_2 = -2J_3$ and $f \in C^{\infty}(M)$ such that $df = -\omega(Z, \cdot)$ and such that f and $f_1 = f - \frac{g(Z,Z)}{2}$ are non-vanishing. Let $\pi : P \to M$ be an S^1 -principal bundle with a connection η having curvature $d\eta = \omega - \frac{1}{2}d\beta$, where $\beta := g(Z, \cdot)$. We endow P with the pseudo-Riemannian metric, vector field and

one-forms

$$g_{P} := \frac{2}{f_{1}}\eta^{2} + g \qquad \qquad Z_{1}^{P} := Z + (f_{1} - \eta(Z))X_{P},$$

$$\theta_{0}^{P} := -\frac{1}{2}df \qquad \qquad \theta_{1}^{P} := \eta + \frac{1}{2}\beta,$$

$$\theta_{2}^{P} := \frac{1}{2}\omega_{3}(Z, \cdot) \qquad \qquad \theta_{3}^{P} := -\frac{1}{2}\omega_{2}(Z, \cdot).$$

HK/QK correspondence

Theorem 4 The tensor field

$$\tilde{g}_P := g_P - \frac{2}{f} \sum_{a=0}^3 (\theta_a^P)^2$$

on P is invariant under Z_1^P and has one-dimensional kernel $\mathbb{R}Z_1^P$. Let M' be a submanifold of P which is transversal to the vector field Z_1^P . Then

$$g' := \frac{1}{2|f|} \tilde{g}_P|_{M'}$$

is a (pseudo-)quaternionic Kähler metric on M'.

Introduction

Completeness in supergravity

constructions

One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?

The rigid c-map

Conification of HK

manifolds

HK/QK correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence

Simple example:

 $\mathbb{C}^* \stackrel{\mathsf{K/K cor.}}{\longmapsto} \mathbb{C}H^1$

Introduction Completeness in

supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?

The rigid c-map

Conification of HK

manifolds

HK/QK

correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence Simple example: $\mathbb{C}^* \xrightarrow{K/K \text{ cor.}} \mathbb{C} H^1$ There exists a canonical vector field Z on any HK manifold (N, g_N, J_1, J_2, J_3) obtained from the rigid c-map that fulfills the assumptions of the HK/QK correspondence [ACM].

Theorem 5 [ACDM '13]

The Ferrara-Sabharwal metric and its one-loop deformation can be obtained from (N, g_N, J_1, J_2, J_3) by applying the HK/QK-correspondence with respect to Z.

This gives a new (mathematical) proof that the Ferrara-Sabharwal metric and its one-loop deformation are indeed quaternionic Kähler.

[ACDM] Alekseevsky, Cortés, D–, Mohaupt, Quaternionic Kähler metrics associated with special Kähler manifolds, arXiv:1305.3549.

Geometrical insights from supergravity constructions - 24 / 30

The one-loop deformed local c-map

Introduction Completeness in

supergravity

constructions

One-loop deformation of the c-map and HK/QK-correspondence

- Conification of the rigid c-map?
- The rigid c-map
- Conification of HK
- manifolds
- HK/QK
- correspondence
- HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence Simple example: $\mathbb{C}^* \xrightarrow{K/K \text{ cor.}} \mathbb{C}H^1$

Deformed Ferrara-Sabharwal metric:

$$g_{FS}^{c} = \frac{\rho + c}{\rho} g_{\bar{M}} + \frac{1}{4\rho^{2}} \frac{\rho + 2c}{\rho + c} d\rho^{2} + \frac{1}{2\rho} dp_{a} \hat{H}^{ab} dp_{b} + \frac{1}{4\rho^{2}} \frac{\rho + c}{\rho + 2c} (d\tilde{\phi} + \sum (\zeta^{I} d\tilde{\zeta}_{I} - \tilde{\zeta}_{I} d\zeta^{I}) + cd^{c} \mathcal{K})^{2} + \frac{2c}{\rho^{2}} e^{\mathcal{K}} \left| \sum (X^{I} d\tilde{\zeta}_{I} + F_{I}(X) d\zeta^{I}) \right|^{2},$$

where $(X^I, \rho, \tilde{\phi}, \tilde{\zeta}_J, \zeta^K) \in \bar{M} \times \mathbb{R}^* \times \mathbb{R}^{4n+3}$ and

- * g_{FS}^c is positive definite for $\rho > \max\{0, -2c\}$, * g_{FS}^c is of signature (4n, 4) for $-c < \rho < -2c$, c < 0, * g_{FS}^c is of signature (4An) for $-c < \rho < 0$, c > 0
- * g_{FS}^c is of signature (4, 4n) for $-c < \rho < 0$, c > 0.

K/K correspondence

Introduction

Completeness in supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?

The rigid c-map

Conification of HK

manifolds

HK/QK

correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence

Simple example: $\mathbb{C}^* \xrightarrow{K/K \text{ cor.}} \mathbb{C}H^1$ Let (M, g, J) be a pseudo-Kähler manifold, Z a time-like or space-like holomorphic Killing vector field and $f \in C^{\infty}(M)$ such that $df = -\omega(Z, \cdot)$ and such that f and $f_1 = f - \frac{g(Z,Z)}{2}$ are non-vanishing. Let $\pi : P \to M$ be an S^1 -principal bundle with a connection η having curvature $d\eta = \omega - \frac{1}{2}d\beta$, where $\beta := g(Z, \cdot)$. We endow P with the pseudo-Riemannian metric, vector field and one-forms

$$g_{P} := \frac{2}{f_{1}}\eta^{2} + g$$

$$Z^{P} := Z + (f_{1} - \eta(Z))X_{P}$$

$$\theta_{0}^{P} := -\frac{1}{2}df$$

$$\theta_{1}^{P} := \eta + \frac{1}{2}\beta.$$

K/K correspondence

Introduction

Completeness in supergravity constructions

One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?

The rigid c-map

Conification of HK

manifolds

HK/QK

correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence

Simple example: $\mathbb{C}^* \stackrel{\mathrm{K/K \ cor.}}{\longmapsto} \mathbb{C}H^1$

$$\tilde{g}_P := g_P - \frac{2}{f} \sum_{a=0}^{1} (\theta_a^P)^2$$

on P is invariant under Z^P and has one-dimensional kernel $\mathbb{R}Z^P$. Let M' be a submanifold of P which is transversal to the vector field Z^P . Then

$$g' := \frac{1}{2|f|} \tilde{g}_P|_{M'}$$

is a (pseudo-)Kähler metric on M'.

Simple example: $\mathbb{C}^* \xrightarrow{\mathsf{K/K cor.}} \mathbb{C}H^1$

Introduction Completeness in supergravity constructions One-loop deformation of the c-map and HK/QK-correspondence

Conification of the rigid c-map?

The rigid c-map

Conification of HK

manifolds

HK/QK

correspondence

HK/QK

correspondence for the c-map

The one-loop deformed local c-map

K/K correspondence

Simple example: $\mathbb{C}^* \xrightarrow{K/K \text{ cor.}} \mathbb{C} H^1$ Here, we consider $M = \{z = re^{i\phi}\} = \mathbb{C}^*$ with its standard complex structure and metric $g = dz \, d\overline{z} = dr^2 + r^2 d\phi^2$, endowed with the holomorphic Killing field $Z := 2(iz\partial_z - i\overline{z}\partial_{\overline{z}}) = 2\partial_{\phi}$. The Kähler form is given by $\omega = \frac{i}{2}dz \wedge d\overline{z} = rdr \wedge d\phi$. We have $\omega(Z, \cdot) = -2rdr \stackrel{!}{=} -df$ and choose $f = r^2 > 0$. Then $f_1 = f - \frac{g(Z,Z)}{2} = -r^2 < 0$. We consider

$$P = M \times S^1, \quad S^1 = \{e^{is} | s \in \mathbb{R}\}$$

with the connection $\left[\beta=g(Z,\cdot)=2r^2d\phi\right]$

$$\eta = ds - \frac{1}{2}r^2d\phi, \quad d\eta = -\omega = \omega - \frac{1}{2}d\beta.$$

Geometrical insights from supergravity constructions - 28 / 30

Simple example: $\mathbb{C}^* \xrightarrow{\mathsf{K/K cor.}} \mathbb{C}H^1$

Introduction Completeness in supergravity constructions One-loop deformation of the c-map and HK/QK-correspondence Conification of the rigid c-map?

The rigid c-map

Conification of HK

manifolds

HK/QK

correspondence

HK/QK

correspondence for the

c-map

The one-loop deformed local c-map

K/K correspondence

Simple example: $\mathbb{C}^* \xrightarrow{\mathrm{K/K \ cor.}} \mathbb{C}H^1$

We have
$$Z^P = 2\partial_{\phi}$$
 and choose the transversal manifold $M' = \{\phi = 0\} \subset \mathbb{C}^*$, i.e. $M' = \{r | r \in \mathbb{R}^{>0}\}$.
We have $\beta|_{M'} = 0$, $\theta_0^P = -\frac{1}{2}df = -rdr$, $\theta_1^P|_{M'} = ds$, i.e.

$$(\theta_0^P)^2 + (\theta_1^P)^2|_{M'} = r^2 dr^2 + ds^2.$$

$$g_P|_{M'} = \frac{2}{f_1}\eta^2|_{M'} + g|_{M'} = -\frac{2}{r^2}ds^2 + dr^2.$$

$$\tilde{g}_P|_{M'} = g_P|_{M'} - \frac{2}{f} \sum_{a=0}^1 (\theta_a^P)^2|_{M'} = -\frac{4}{r^2} ds^2 - dr^2.$$

$$\Rightarrow -g' = -\frac{1}{|f|}\tilde{g}_P|_{M'} = \frac{1}{4\rho^2}(d\tilde{\phi}^2 + d\rho^2) = g_{\mathbb{C}H^1},$$

where
$$ilde{\phi}:=-4s$$
 , $ho:=r^2$,

Introduction
Completeness in
supergravity
constructions
One-loop deformation of
the c-map and
HK/QK-correspondence
Thank you!

Thank you!