Exercise Sheet 12, Advanced Algebra, Summer Semester 2017. Hints to exercise sheet 12

(Ehud Meir and Christoph Schweigert)

1. (a) We have seen that a projective resolution for \mathbb{Z} / m is given by

$$
0 \rightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \rightarrow \mathbb{Z} / m \rightarrow 0
$$

A similar resolution exists for \mathbb{Z} / n. To find the lifting we consider the following diagram:

The maps ϕ_{0} and ϕ_{1} are given by multiplication by some numbers. A direct calculation, by chasing the image of $1 \in \mathbb{Z}$ shows us now that $\phi_{0}(x)=r x$ and $\phi_{1}(x)=a x$ where $a=\frac{r m}{n}$.
(b) To calculate the action on the derived functors, we apply the functors to the resolutions (without \mathbb{Z} / m and \mathbb{Z} / n) and calculate homology. We begin with $\otimes \mathbb{Z} / k$ and its derived functors Tor $_{n}^{R}$ (here $R=\mathbb{Z}$). We get the diagram

The zeroth homology of the first line is just

$$
\operatorname{Tor}_{0}^{R}(\mathbb{Z} / m, \mathbb{Z} / k)=\mathbb{Z} / m \otimes \mathbb{Z} / k=\mathbb{Z} / \operatorname{gcd}(m, k)
$$

and of the second line is

$$
\operatorname{Tor}_{0}^{R}(\mathbb{Z} / n, \mathbb{Z} / k)=\mathbb{Z} / n \otimes \mathbb{Z} / k=\mathbb{Z} / \operatorname{gcd}(n, k)
$$

The induced map is just multiplication by r.
The first homology of the first line is

$$
\operatorname{Tor}_{1}^{R}(\mathbb{Z} / m, \mathbb{Z} / k)=\operatorname{Ker}(\mathbb{Z} / k \xrightarrow{m} \mathbb{Z} / k) \cong\langle k / \operatorname{gcd}(k, m)\rangle \cong \mathbb{Z} / \operatorname{gcd}(k, m)
$$

Similarly the first homology of the second line is

$$
\operatorname{Tor}_{1}^{R}(\mathbb{Z} / n, \mathbb{Z} / k)=\operatorname{Ker}(\mathbb{Z} / k \xrightarrow{n} \mathbb{Z} / k) \cong\langle k / \operatorname{gcd}(k, n)\rangle \cong \mathbb{Z} / \operatorname{gcd}(k, n) .
$$

Let us write $k / \operatorname{gcd}(k, m)=k^{\prime}$ and $k / \operatorname{gcd}(k, n)=k^{\prime \prime}$. It follows that the map induced by ϕ will send the generator k^{\prime} of the first homology group of the first line to the element $a k^{\prime}$ inside the first homology group of the second line.
For the ext groups, we apply the contravariant functor $\operatorname{Hom}_{R}(-, \mathbb{Z} / k)$ to the diagram. We get now the diagram:

The zeroth homology in the first line is now

$$
E x t_{R}^{0}(\mathbb{Z} / m, \mathbb{Z} / k)=\operatorname{Ker}(\mathbb{Z} / k \xrightarrow{m} \mathbb{Z} / k) \cong \mathbb{Z} / \operatorname{gcd}(k, m)
$$

and the zeroth homology of the second line is calculated similarly. The induced map is then induced by multiplication by r. The first homology group of the first line is then

$$
E x t_{R}^{1}(\mathbb{Z} / m, \mathbb{Z} / k)=\mathbb{Z} / k / m \mathbb{Z} / k \cong \mathbb{Z} / \operatorname{gcd}(m, k)
$$

The induced map $\mathbb{Z} / \operatorname{gcd}(m, k) \rightarrow \mathbb{Z} / \operatorname{gcd}(n, k)$ is induced by multiplication by a.
2. For an object $X \in \mathcal{C}$ we write C_{X}^{n} for the complex

$$
\cdots \rightarrow X \xrightarrow{I d} X \rightarrow 0 \rightarrow \cdots
$$

where the copies of X are in degrees n and $n-1$. We write D_{X}^{n} for the complex

$$
\cdots \rightarrow 0 \rightarrow X \rightarrow 0 \rightarrow \cdots
$$

where X is concentrated in degree n.
(a) We first prove that C_{X}^{n} is projective if and only if X is projective. We have calculated in class and saw that we have an isomorphism of functors $\operatorname{Hom}_{C h(\mathcal{C})}\left(C_{X}^{n}, C\right) \cong \operatorname{Home}_{\mathcal{C}}\left(X, C_{n}\right)$. If X is projective then $\operatorname{Home}_{\mathcal{C}}(X,-)$ is exact and as a result $\operatorname{Hom}_{C h(\mathcal{C})}\left(C_{X}^{n},-\right)$ is exact, which
means that C_{X}^{n} is projective. If X is not projective we use the same argument, using the fact that if

is a diagram in \mathcal{C} which cannot be completed, then we get a diagram

in $\operatorname{Ch}(\mathcal{C})$ which cannot be completed.
(b) We first prove that $d_{1}: X_{1} \rightarrow X_{0}$ is surjective. We write $M=X_{0} / d_{1}\left(X_{1}\right)$. we have a canonical surjection $C_{M}^{0} \rightarrow D_{M}^{0}$. We have a chain map from C to D_{M}^{0} given by the natural projection in degree 0 , and this map is liftable to a map from C to C_{M}^{0}. As we have seen in class, this is possible only if $M=0$, which means that d_{1} is surjective. We next prove that the map d_{1} splits. We define a chain map $C \rightarrow C_{X_{0}}^{1}$ which in degree 1 is given by $d_{1}: X_{1} \rightarrow X_{0}$ and in degree 0 is given by $I d: X_{0} \rightarrow$ X_{0}. We use the canonical surjection $C_{X_{1}}^{1} \rightarrow C_{X_{0}}^{1}$ and use the fact that C is projective. This gives us a splitting of d_{1}. This enables us to write $X_{1} \cong \operatorname{Ker}\left(d_{1}\right) \oplus X_{0}$. Since the image of d_{2} is contained in $\operatorname{Ker}\left(d_{1}\right)$, we get a direct sum decomposition of C as

$$
\begin{gathered}
C=\left(\cdots \rightarrow 0 \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{2} \rightarrow \operatorname{Ker}\left(d_{1}\right) \rightarrow 0 \rightarrow \cdots\right) \oplus \\
\left(\cdots 0 \rightarrow X_{0} \rightarrow X_{0} \rightarrow \cdots\right) .
\end{gathered}
$$

Since C is projective the two direct summands are projective as well, and we continue by induction.

