Exercise Sheet 10, Advanced Algebra, Summer Semester 2017- Hints and partial solutions

(Ehud Meir and Christoph Schweigert)

1. (c): The fields L_{i} are quotients of the ring $\mathbb{Q} C_{n}$. They are therefore generated over \mathbb{Q} by an element whose order divides n. Such fields will therefore necessarily be of the form $\mathbb{Q}\left(\zeta_{r}\right)$ where $r \mid n$ and ζ_{r} is a primitive r-th root of unity.
2. We have calculated and seen that Q_{8} has 5 conjugacy classes:

$$
\{1\},\{-1\},\{ \pm i\},\{ \pm j\},\{ \pm k\} .
$$

There are therefore 5 irreducible representations. Using the equation $\sum_{i} d_{i}^{2}=$ $|G|=8$, we saw that the dimensions must be $1,1,1,1,2$. For the one dimensional representations, we have calculated all homomorphisms $G \rightarrow$ $G L_{1}(\mathcal{C})$. We then filled up the last column by using the orthogonality relations. We got the following character table:

conj.	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	$\mathrm{~V}_{4}$	$\mathrm{~V}_{5}$
$\{1\}$	1	1	1	1	2
$\{-1\}$	1	1	1	1	-2
$\{ \pm i\}$	1	1	-1	-1	0
$\{ \pm j\}$	1	-1	1	-1	0
$\{ \pm k\}$	1	-1	-1	1	0

3. For the dihedral group, $D_{8}=\left\langle x, y \mid x^{2}=y^{4}=1, x y x^{-1}=y^{-1}\right\rangle$, the conjugacy classes are $\{1\},\left\{y^{2}\right\},\left\{y, y^{3}\right\},\left\{x, x y^{2}\right\},\left\{x y, x y^{3}\right\}$. Again, the dimensions of the irreducible representations are $1,1,1,1,2$. A similar analysis, using the fact that $y^{2} \in[G, G]$ reveals the fact that the character table is exactly the same as that of Q_{8}, even though the two groups are non-isomorphic.
4. (a) We write $X=\left\{x_{1}, \ldots x_{n}\right\}$. We have seen that the matrix which corresponds to $g \in G$ is given by

$$
g_{i j}= \begin{cases}1 & \text { if } g\left(x_{j}\right)=x_{i}, \\ 0 & \text { else }\end{cases}
$$

This implies that $\chi(g)=\sum_{i \mid g\left(x_{i}\right)=x_{i}} 1$ which is exactly the number of fixed points of g.
(b) There are (at least) two solutions. One option is to use the equation $\operatorname{dimHom}_{G}(U, V)=\left(\chi_{U}, \chi_{V}\right)$, and use the fact that $\operatorname{Hom}_{G}(\mathbb{C}, V)=V^{G}$ has a basis by the elements $\sum_{y \in G \cdot x} e_{y}$ for the different orbits of G in X. Another option is to write

$$
\begin{gathered}
\left(\chi_{V}, 1\right)=\frac{1}{|G|} \sum_{g \in G} \chi(g)=\frac{1}{|G|} \sum_{g \in, x \in X, g(x)=x} 1= \\
\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stab}_{G}(x)\right|=\frac{1}{|G|} \sum_{[x] \in X / G}\left|\operatorname{Stab}_{G}(x)\right||G \cdot x|= \\
\frac{1}{|G|} \sum_{[x] \in X / G}|G|=|X / G| .
\end{gathered}
$$

5. (a) We calculate

$$
T^{2} v=\frac{1}{|G|^{2}} \sum_{g, h \in G} g h v=\frac{1}{|G|^{2}} \sum_{g, h \in G} g v=\frac{1}{G} \sum_{g \in G} g v=T v
$$

For the second equality we have used a change of summation of the form $g \mapsto g h, h \mapsto h$. If $h \in G$ then it holds that $h \cdot T v=\frac{1}{|G|} \sum_{g \in G} h g v=$ $\frac{1}{|G|} \sum_{g \in G} g \nu=T v$. Finally, if $v \in V^{G}$ then $T v=\frac{1}{|G|} \sum_{g \in G} g \nu=\frac{1}{|G|} \sum_{g \in G} v=$ v, and so the image is exactly V^{G}. It is true for every projection that $\operatorname{tr}(T)=\operatorname{dim}(\operatorname{Im}(T))$ (diagonalize!) and so in this case we get $\frac{1}{|G|} \sum_{g \in G} \chi(g)=V^{G}$.
(b) Let $\left\{u_{1}, \ldots u_{n}\right\}$ and $\left\{v_{1}, \ldots v_{m}\right\}$ be bases for U and for V respectively. Then a basis for the space $\operatorname{Hom}(U, V)$ is given by the "matrix units" $e_{i j}$ where $e_{i j}\left(u_{k}\right)=\delta_{j k} v_{i}$. If $g \in G$ acts on V by a matrix A_{g} and on U by a matrix B_{g}, then we will get that

$$
g \cdot e_{i j}=A_{g} e_{i j} B_{g^{-1}}=\sum_{k, l}\left(a_{g}\right)_{k i}\left(b_{g^{-1}}\right)_{j l} e_{k l} .
$$

So by using the basis $e_{i j}$ we see that the character value on g will be $\sum_{i, j}\left(a_{g}\right)_{i i}\left(b_{g^{-1}}\right)_{j j}=\psi\left(g^{-1}\right) \chi(g)$.
(c) It holds that $\operatorname{Hom}(U, V)^{G}=\operatorname{Hom}_{G}(U, V)$. By the first part of this exercise and by the formula for the character, the dimension of this space is exactly $\frac{1}{|G|} \sum_{g \in G} \psi\left(g^{-1}\right) \chi(g)=(\chi, \psi)$. In particular, we see that the characters of the irreducible representations are orthogonal to one another, and have norm 1 .

