Exercise Sheet 9, Advanced Algebra, Summer Semester 2017. Some hints
for solutions
(Ehud Meir and Christoph Schweigert)

1. The set X is non-empty because ¢ € X. If {Vi},cs is a chain in X, then
we show that Y := U;;Y; is an element of X: we use the fact that a linear
relation between elements of ¥ will involve only finitely many elements.
By Zorn Lemma we now have a maximal element B in X. If B is not a
basis of M, then there exists m ¢ R-B. The set BU {m} is then not in
X and therefore linearly dependent. We get a linear relation of the form
am—+ribl +...r,b, = 0. If a =0 we get a linear dependence in B, which
is impossible. Otherwise by inverting a we get m as a linear combination of
elements in B, which is also a contradiction. Therefore B is a basis of M.

2. We are considering here the categories of left R and left A-modules. F (M)
is an A-module by the action

mj ayymy +---ajmy

my azimy +---az,My
(@jij-| . | =

my apimy + - appy

G(N) is an R-module by the action (r- f)(v) = f(v-r) for v € R". We use
here the right action of R on R" given by

& ryr

ler=1. .

" Tl
The map r- f is again an A-module map because R" is an A — R-bimodule:
it holds that (av)r = a(vr) for a € A and r € R. We had to use the action

of R from the right in order to assure that (rir;) f = ri(rof). (otherwise we
need to invert the order of the multiplication).

The difficult part is to show part (c): that F' and G are quasi-inverse to one
another. We will use here the standard matrix and vector notations: e; is
the i-th vector in the standard basis of R", and e;; is the n X n matrix which
is zero everywhere, except in the (i, j)-entry, where it has the value 1. We
begin with showing that GF = Ide. We have GF (M) = Homu (R",M"). Tt



nm
holds that f(e;) = f(ei1e1) = e11f(e1). Thus, if f(e;) = | : | we get
ny
that my =m3 = ...m, = 0. We define ® : GF(M) — M by ®(f) = m.
A direct verification shows that this is indeed a well defined map of R-
modules. Since f(e;) determines f it is clear that ® is injective (we use
here the fact that e; is a generator for R"” as an A-module). On the other
hand, if m € M, we define

a a,m

A direct verification shows that this map is indeed an A-module homomor-
phism, and that ®( f,,,) = m. This shows us that ® is an isomorphism indeed.
Notice that the choice of the vector e; was arbitrary here. We could have
chosen any other non-zero vector in R" as well. This would make, however,
the description of f;,, more complicated.

We next show that GF = Idy. So let N be an A-module. We have GF (N) =
(Homa(R",N))®". We define ¥ : GF(N) — N by

i
Y[ 2 |)=rfiler)+ fa(e2) +-.. fulen).
fn

A very careful verification shows us that this is indeed a homomorphism
of A-modules. The homomorphism ¥ is injective. This follows from the
fact that if ), fi(e;) = 1 then we can multiply this equation with ¢; to get
fi(ei;) = 0 for every i. Since ¢; is a generator of R"” we get that f; = 0 for
every i. The homomorphism W is also surjective. Indeed, if v is an element
of N, define f; : R* — N by

a
— Zajejiv.
a, J

As before, a very careful verification shows that f; are indeed A-module

fi
homomorphisms. We then have that W(| : | =Y, fi(e;) =Y e;;v =v. This

Ja

shows us that ¥ is an isomorphism and we are done.
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4,

If M; is an A; module for every i, then [[; M; = &;M; is an R = [];A;-module
with the action
ai nq aijmy

ap ny apmy

Let now M be an R-module. Write M; = ¢;M where ¢; € R is the element
which is 1 in the i-th entry and zero in all the rest. We use again the fact that
eiej = o;je; and that ) ;e; = 1 in order to prove that M; is an A;-module, and
that M is the direct sum of M;. For m; € M; and aj € A; with i # j we have
that a; - m; = ajeje;m; = 0 (we consider here a; as an element of R by the
obvious inclusion). This implies that the only non-trivial action we get is of
A; on M;, and we thus get

ai mj apm

= Y aim; =
i

an nmy apmy

as desired.

The idea behind this exercise, and the previous ones, was to explain how
modules over semisimple rings look like. Indeed, by Wedderburn Theorem
we know that a semisimple ring R can be written as

R=[[M,,(Di)

where the D; are division rings. Exercise 3 enables us to reduce the study to
modules over M, (D) where D is a division ring. Exercise 2 reduces to the
study of modules over D. Exercise 1 says that all modules over D are free.

(a) The first part follows from Exercise 5 in Exercise Sheet 1. We see that
the vector (1,1, 1) spans a one dimensional sub-representation U upon
which G = $3 acts trivially. Using the standard Hermitian product,
which in this case is G-invariant, we see that the subspace

a
W:={[b]||la+b+c=0}
C

is also a subrepresentation and a direct sum complement of U. It re-
mains to prove that W is an irreducible representation. The only pos-
sible proper subrepresentations of W will be of dimension 1. Assume



(b)

(©)

(a)

(b)

a

that the nonzero vector w = | b | spans such a subrepresentation,
c
which we shall denote by W’. Then the elements w, = (Id — (1,2))w =
a—>b 0
b—a | andws = (Id—(2,3))w= [ b—c | are alsoin W'.
0 c—b

If a # b then by the fact that the space is one dimensional we get that
¢ = 0 (by considering a linear relation on w and w»). By considering
now a linear relation between w; and w3 we get that » = 0. But this
already implies that a = 0 as well, which is a contradiction.

We thus get that the only option for (a,b,c) is one in which a = b.
Similarly, we can deduce that b = ¢. But since a+ b+ ¢ =0, we get
that w is the zero vector, which is again a contradiction. This shows
that W is indeed irreducible.

As for any other symmetric group, we also have the one-dimensional
sign representation. The representation is given explicitly in the fol-
lowing way:

C-x— (_l)sign(o)

X
for 0 € G and x € C. It can easily be seen that this representation is

not isomorphic with the trivial representation.

We have found 3 irreducible representations, of dimensions 1,1 and 2.
The sum of their squares is 124 12 +22 = 6, which is exactly the order
of G = 3. This shows that these are all the irreducible representations
of G.

The relation xy = —yx enables us to write every product of elements
x,y as £x'y/ for some i, j. The first two relations enable us to reduce to
the case where i, j € {0,1}. this already shows that {1,x,y,xy} spans
D. We still need to show that these elements are linearly independent.
One possible way to show this is by considering the ring homomor-

. . Ja 0 0 b
phlst—>M2(K(\/5))glvenbyx»—>(0 _/a and y — L0

(we can show that the relations between x and y hold in M, (K (+/a)).
Another option is to write explicitly the product between the four basis
elements, and show that we indeed get an associative algebra.

we prove here that if d> € K and d ¢ K then d; = 0 (this was the way
it was suppose to be formulated in the exercise sheet, sorry for this
mistake!). We calculate:

d* = d} +d3a+ d3b — diab + 2dydyx + 2dy dzy + 2d1 dyxy.
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(c)

(d)

All the other elements in the sum vanish due to the relation xy = —yx
(which also implies that x(xy) — (xy)x and so on). this implies that
d? € K if and only if did, = dyd3 = dids = 0. So either dy =0 or
dr = dz =ds = 0. In the second case d € K.

We have a Galois extension K(y/a)/K. We denote by o the Galois

automorphism, which sends \/a to —+/a. We then have that 1> — s?a =
(t+s+/a)o(t 4 s\/a). Therefore, since o is multiplicative, we get

(17 —s53a) (13 — s3a) = (t +51v/a) o (t; +51v/a) (12 +521/a) 6 (12 + 521/a)
= (l‘l +S1\/a)(t2+S2\/E)G((l‘1 +s1\/5)(t2+s2\/5)) = rG(r)

where r = (f; + s1v/a)(t2 + s2+/a) and therefore has the aforemen-
tioned form. This can also be proved directly, without using the Galois

action. The inverse of r? — s?a is (rzjsza)2 — (= fsza)za.

We would like to show that every element d = d| 4+ dox+ d3y+ daxy of
D — K is invertible. For this, it will be enough to prove that the minimal
polynomial of dyx + d3y + dsxy is irreducible (this will imply that also
the minimal polynomial of d is irreducible, and therefore that d must
be invertible). Since d —d; is notin K, but (d —d; )? is in K, we see that
the minimal polynomial is t* — (da + d3b — d3ab). This polynomial
is irreducible if and only if the equation d%a + d%b — dfab = I? does
not have a solution in K. We rewrite this equation as [* —d5a = b(d3 —
dia). If d3 —dja = 0 we get that | = dy = d3 = ds = 0 (since /a ¢ K)
and this contradicts our assumption. We rewrite this equation as as
(I — d3a)(d3 — d?a)~! = b. By the previous part of the exercise, the

left hand side can be re-written as ¢? — c3a for some c1,cs € K, and
1 2 )

we get the equation c% — c%a = b. We thus see that this equation has

no non-trivial solution if and only if D is a division algebra.



