
Exercise Sheet 9, Advanced Algebra, Summer Semester 2017. Some hints
for solutions

(Ehud Meir and Christoph Schweigert)

1. The set X is non-empty because φ ∈ X . If {Yi}i∈I is a chain in X , then
we show that Y := ∪i∈IYi is an element of X : we use the fact that a linear
relation between elements of Y will involve only finitely many elements.
By Zorn Lemma we now have a maximal element B in X . If B is not a
basis of M, then there exists m /∈ R · B. The set B∪ {m} is then not in
X and therefore linearly dependent. We get a linear relation of the form
am+ r1b1+ . . .rnbn = 0. If a = 0 we get a linear dependence in B, which
is impossible. Otherwise by inverting a we get m as a linear combination of
elements in B, which is also a contradiction. Therefore B is a basis of M.

2. We are considering here the categories of left R and left A-modules. F(M)
is an A-module by the action

(ai j)i, j ·


m1
m2
...

mn

=


a11m1 + · · ·a1nmn
a21m1 + · · ·a2nmn

...
an1m1 + · · ·annmn

 .

G(N) is an R-module by the action (r · f )(v) = f (v · r) for v ∈ Rn. We use
here the right action of R on Rn given byr1

...
rn

 · r =( r1r
...rnr

)
.

The map r · f is again an A-module map because Rn is an A−R-bimodule:
it holds that (av)r = a(vr) for a ∈ A and r ∈ R. We had to use the action
of R from the right in order to assure that (r1r2) f = r1(r2 f ). (otherwise we
need to invert the order of the multiplication).

The difficult part is to show part (c): that F and G are quasi-inverse to one
another. We will use here the standard matrix and vector notations: ei is
the i-th vector in the standard basis of Rn, and ei j is the n×n matrix which
is zero everywhere, except in the (i, j)-entry, where it has the value 1. We
begin with showing that GF ∼= IdC. We have GF(M) = HomA(Rn,Mn). It
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holds that f (e1) = f (e11e1) = e11 f (e1). Thus, if f (e1) =

m1
...

mn

 we get

that m2 = m3 = . . .mn = 0. We define Φ : GF(M)→ M by Φ( f ) = m1.
A direct verification shows that this is indeed a well defined map of R-
modules. Since f (e1) determines f it is clear that Φ is injective (we use
here the fact that e1 is a generator for Rn as an A-module). On the other
hand, if m ∈M, we define

fm(

a1
...

an

) =

a1m
...

anm

 .

A direct verification shows that this map is indeed an A-module homomor-
phism, and that Φ( fm) =m. This shows us that Φ is an isomorphism indeed.
Notice that the choice of the vector e1 was arbitrary here. We could have
chosen any other non-zero vector in Rn as well. This would make, however,
the description of fm more complicated.

We next show that GF ∼= IdD. So let N be an A-module. We have GF(N) =
(HomA(Rn,N))⊕n. We define Ψ : GF(N)→ N by

Ψ(

 f1
...
fn

) = f1(e1)+ f2(e2)+ . . . fn(en).

A very careful verification shows us that this is indeed a homomorphism
of A-modules. The homomorphism Ψ is injective. This follows from the
fact that if ∑i fi(ei) = 1 then we can multiply this equation with eii to get
fi(ei) = 0 for every i. Since ei is a generator of Rn we get that fi = 0 for
every i. The homomorphism Ψ is also surjective. Indeed, if v is an element
of N, define fi : Rn→ N bya1

...
an

 7→∑
j

a je jiv.

As before, a very careful verification shows that fi are indeed A-module

homomorphisms. We then have that Ψ(

 f1
...
fn

=∑i fi(ei)=∑i eiiv= v. This

shows us that Ψ is an isomorphism and we are done.

2



3. If Mi is an Ai module for every i, then ∏i Mi =⊕iMi is an R = ∏i Ai-module
with the action a1

...
an

 ·
m1

...
mn

=

a1m1
...

anmn

 .

Let now M be an R-module. Write Mi = eiM where ei ∈ R is the element
which is 1 in the i-th entry and zero in all the rest. We use again the fact that
eie j = δi jei and that ∑i ei = 1 in order to prove that Mi is an Ai-module, and
that M is the direct sum of Mi. For mi ∈Mi and a j ∈ A j with i 6= j we have
that a j ·mi = a je jeimi = 0 (we consider here a j as an element of R by the
obvious inclusion). This implies that the only non-trivial action we get is of
Ai on Mi, and we thus geta1

...
an


m1

...
mn

= ∑
i

aimi =

a1m1
...

anmn


as desired.

The idea behind this exercise, and the previous ones, was to explain how
modules over semisimple rings look like. Indeed, by Wedderburn Theorem
we know that a semisimple ring R can be written as

R∼= ∏
i

Mni(Di)

where the Di are division rings. Exercise 3 enables us to reduce the study to
modules over Mn(D) where D is a division ring. Exercise 2 reduces to the
study of modules over D. Exercise 1 says that all modules over D are free.

4. (a) The first part follows from Exercise 5 in Exercise Sheet 1. We see that
the vector (1,1,1) spans a one dimensional sub-representation U upon
which G = S3 acts trivially. Using the standard Hermitian product,
which in this case is G-invariant, we see that the subspace

W := {

a
b
c

 |a+b+ c = 0}

is also a subrepresentation and a direct sum complement of U . It re-
mains to prove that W is an irreducible representation. The only pos-
sible proper subrepresentations of W will be of dimension 1. Assume
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that the nonzero vector w =

a
b
c

 spans such a subrepresentation,

which we shall denote by W ′. Then the elements w2 =(Id−(1,2))w=a−b
b−a

0

 and w3 = (Id− (2,3))w =

 0
b− c
c−b

 are also in W ′.

If a 6= b then by the fact that the space is one dimensional we get that
c = 0 (by considering a linear relation on w and w2). By considering
now a linear relation between w2 and w3 we get that b = 0. But this
already implies that a = 0 as well, which is a contradiction.
We thus get that the only option for (a,b,c) is one in which a = b.
Similarly, we can deduce that b = c. But since a+ b+ c = 0, we get
that w is the zero vector, which is again a contradiction. This shows
that W is indeed irreducible.

(b) As for any other symmetric group, we also have the one-dimensional
sign representation. The representation is given explicitly in the fol-
lowing way:

σ · x = (−1)sign(σ)x

for σ ∈ G and x ∈ C. It can easily be seen that this representation is
not isomorphic with the trivial representation.

(c) We have found 3 irreducible representations, of dimensions 1,1 and 2.
The sum of their squares is 12+12+22 = 6, which is exactly the order
of G = S3. This shows that these are all the irreducible representations
of G.

5. (a) The relation xy = −yx enables us to write every product of elements
x,y as±xiy j for some i, j. The first two relations enable us to reduce to
the case where i, j ∈ {0,1}. this already shows that {1,x,y,xy} spans
D. We still need to show that these elements are linearly independent.
One possible way to show this is by considering the ring homomor-

phism D→M2(K(
√

a)) given by x 7→
(√

a 0
0 −

√
a

)
and y 7→

(
0 b
1 0

)
(we can show that the relations between x and y hold in M2(K(

√
a)).

Another option is to write explicitly the product between the four basis
elements, and show that we indeed get an associative algebra.

(b) we prove here that if d2 ∈ K and d /∈ K then d1 = 0 (this was the way
it was suppose to be formulated in the exercise sheet, sorry for this
mistake!). We calculate:

d2 = d2
1 +d2

2a+d2
3b−d2

4ab+2d1d2x+2d1d3y+2d1d4xy.
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All the other elements in the sum vanish due to the relation xy =−yx
(which also implies that x(xy)− (xy)x and so on). this implies that
d2 ∈ K if and only if d1d2 = d1d3 = d1d4 = 0. So either d1 = 0 or
d2 = d3 = d4 = 0. In the second case d ∈ K.

(c) We have a Galois extension K(
√

a)/K. We denote by σ the Galois
automorphism, which sends

√
a to−

√
a. We then have that t2−s2a =

(t + s
√

a)σ(t + s
√

a). Therefore, since σ is multiplicative, we get

(t2
1−s2

1a)(t2
2−s2

2a)= (t1+s1
√

a)σ(t1+s1
√

a)(t2+s2
√

a)σ(t2+s2
√

a)

= (t1 + s1
√

a)(t2 + s2
√

a)σ((t1 + s1
√

a)(t2 + s2
√

a)) = rσ(r)

where r = (t1 + s1
√

a)(t2 + s2
√

a) and therefore has the aforemen-
tioned form. This can also be proved directly, without using the Galois
action. The inverse of r2− s2a is ( r

r2−s2a)
2− ( s

r2−s2a)
2a.

(d) We would like to show that every element d = d1+d2x+d3y+d4xy of
D−K is invertible. For this, it will be enough to prove that the minimal
polynomial of d2x+d3y+d4xy is irreducible (this will imply that also
the minimal polynomial of d is irreducible, and therefore that d must
be invertible). Since d−d1 is not in K, but (d−d1)

2 is in K, we see that
the minimal polynomial is t2− (d2

2a+ d2
3b− d2

4ab). This polynomial
is irreducible if and only if the equation d2

2a+ d2
3b− d2

4ab = l2 does
not have a solution in K. We rewrite this equation as l2−d2

2a = b(d2
3−

d2
4a). If d2

3−d2
4a = 0 we get that l = d2 = d3 = d4 = 0 (since

√
a /∈ K)

and this contradicts our assumption. We rewrite this equation as as
(l2− d2

2a)(d2
3 − d2

4a)−1 = b. By the previous part of the exercise, the
left hand side can be re-written as c2

1− c2
2a for some c1,c2 ∈ K, and

we get the equation c2
1− c2

2a = b. We thus see that this equation has
no non-trivial solution if and only if D is a division algebra.
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