Exercise Sheet 9, Advanced Algebra, Summer Semester 2017. Some hints for solutions

(Ehud Meir and Christoph Schweigert)

1. The set X is non-empty because $\phi \in X$. If $\left\{Y_{i}\right\}_{i \in I}$ is a chain in X, then we show that $Y:=\cup_{i \in I} Y_{i}$ is an element of X : we use the fact that a linear relation between elements of Y will involve only finitely many elements. By Zorn Lemma we now have a maximal element B in X. If B is not a basis of M, then there exists $m \notin R \cdot B$. The set $B \cup\{m\}$ is then not in X and therefore linearly dependent. We get a linear relation of the form $a m+r_{1} b 1+\ldots r_{n} b_{n}=0$. If $a=0$ we get a linear dependence in B, which is impossible. Otherwise by inverting a we get m as a linear combination of elements in B, which is also a contradiction. Therefore B is a basis of M.
2. We are considering here the categories of left R and left A-modules. $F(M)$ is an A-module by the action

$$
\left(a_{i j}\right)_{i, j} \cdot\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} m_{1}+\cdots a_{1 n} m_{n} \\
a_{21} m_{1}+\cdots a_{2 n} m_{n} \\
\vdots \\
a_{n 1} m_{1}+\cdots a_{n n} m_{n}
\end{array}\right) .
$$

$G(N)$ is an R-module by the action $(r \cdot f)(v)=f(v \cdot r)$ for $v \in R^{n}$. We use here the right action of R on R^{n} given by

$$
\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right) \cdot r=\binom{r_{1} r}{\vdots r_{n} r} .
$$

The map $r \cdot f$ is again an A-module map because R^{n} is an $A-R$-bimodule: it holds that $(a v) r=a(v r)$ for $a \in A$ and $r \in R$. We had to use the action of R from the right in order to assure that $\left(r_{1} r_{2}\right) f=r_{1}\left(r_{2} f\right)$. (otherwise we need to invert the order of the multiplication).
The difficult part is to show part (c): that F and G are quasi-inverse to one another. We will use here the standard matrix and vector notations: e_{i} is the i-th vector in the standard basis of R^{n}, and $e_{i j}$ is the $n \times n$ matrix which is zero everywhere, except in the (i, j)-entry, where it has the value 1 . We begin with showing that $G F \cong I d_{\mathfrak{C}}$. We have $G F(M)=\operatorname{Hom}_{A}\left(R^{n}, M^{n}\right)$. It
holds that $f\left(e_{1}\right)=f\left(e_{11} e_{1}\right)=e_{11} f\left(e_{1}\right)$. Thus, if $f\left(e_{1}\right)=\left(\begin{array}{c}m_{1} \\ \vdots \\ m_{n}\end{array}\right)$ we get that $m_{2}=m_{3}=\ldots m_{n}=0$. We define $\Phi: G F(M) \rightarrow M$ by $\Phi(f)=m_{1}$. A direct verification shows that this is indeed a well defined map of R modules. Since $f\left(e_{1}\right)$ determines f it is clear that Φ is injective (we use here the fact that e_{1} is a generator for R^{n} as an A-module). On the other hand, if $m \in M$, we define

$$
f_{m}\left(\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)\right)=\left(\begin{array}{c}
a_{1} m \\
\vdots \\
a_{n} m
\end{array}\right)
$$

A direct verification shows that this map is indeed an A-module homomorphism, and that $\Phi\left(f_{m}\right)=m$. This shows us that Φ is an isomorphism indeed. Notice that the choice of the vector e_{1} was arbitrary here. We could have chosen any other non-zero vector in R^{n} as well. This would make, however, the description of f_{m} more complicated.
We next show that $G F \cong I d_{\mathcal{D}}$. So let N be an A-module. We have $G F(N)=$ $\left(\operatorname{Hom}_{A}\left(R^{n}, N\right)\right)^{\oplus n}$. We define $\Psi: G F(N) \rightarrow N$ by

$$
\Psi\left(\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)\right)=f_{1}\left(e_{1}\right)+f_{2}\left(e_{2}\right)+\ldots f_{n}\left(e_{n}\right)
$$

A very careful verification shows us that this is indeed a homomorphism of A-modules. The homomorphism Ψ is injective. This follows from the fact that if $\sum_{i} f_{i}\left(e_{i}\right)=1$ then we can multiply this equation with $e_{i i}$ to get $f_{i}\left(e_{i}\right)=0$ for every i. Since e_{i} is a generator of R^{n} we get that $f_{i}=0$ for every i. The homomorphism Ψ is also surjective. Indeed, if v is an element of N, define $f_{i}: R^{n} \rightarrow N$ by

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \mapsto \sum_{j} a_{j} e_{j i} v .
$$

As before, a very careful verification shows that f_{i} are indeed A-module homomorphisms. We then have that $\Psi\left(\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{n}\end{array}\right)=\sum_{i} f_{i}\left(e_{i}\right)=\sum_{i} e_{i i} v=v\right.$. This shows us that Ψ is an isomorphism and we are done.
3. If M_{i} is an A_{i} module for every i, then $\prod_{i} M_{i}=\oplus_{i} M_{i}$ is an $R=\prod_{i} A_{i}$-module with the action

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{1} m_{1} \\
\vdots \\
a_{n} m_{n}
\end{array}\right) .
$$

Let now M be an R-module. Write $M_{i}=e_{i} M$ where $e_{i} \in R$ is the element which is 1 in the i-th entry and zero in all the rest. We use again the fact that $e_{i} e_{j}=\delta_{i j} e_{i}$ and that $\sum_{i} e_{i}=1$ in order to prove that M_{i} is an A_{i}-module, and that M is the direct sum of M_{i}. For $m_{i} \in M_{i}$ and $a_{j} \in A_{j}$ with $i \neq j$ we have that $a_{j} \cdot m_{i}=a_{j} e_{j} e_{i} m_{i}=0$ (we consider here a_{j} as an element of R by the obvious inclusion). This implies that the only non-trivial action we get is of A_{i} on M_{i}, and we thus get

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{n}
\end{array}\right)=\sum_{i} a_{i} m_{i}=\left(\begin{array}{c}
a_{1} m_{1} \\
\vdots \\
a_{n} m_{n}
\end{array}\right)
$$

as desired.
The idea behind this exercise, and the previous ones, was to explain how modules over semisimple rings look like. Indeed, by Wedderburn Theorem we know that a semisimple ring R can be written as

$$
R \cong \prod_{i} M_{n_{i}}\left(D_{i}\right)
$$

where the D_{i} are division rings. Exercise 3 enables us to reduce the study to modules over $M_{n}(D)$ where D is a division ring. Exercise 2 reduces to the study of modules over D. Exercise 1 says that all modules over D are free.
4. (a) The first part follows from Exercise 5 in Exercise Sheet 1. We see that the vector $(1,1,1)$ spans a one dimensional sub-representation U upon which $G=S_{3}$ acts trivially. Using the standard Hermitian product, which in this case is G-invariant, we see that the subspace

$$
W:=\left\{\left.\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \right\rvert\, a+b+c=0\right\}
$$

is also a subrepresentation and a direct sum complement of U. It remains to prove that W is an irreducible representation. The only possible proper subrepresentations of W will be of dimension 1. Assume
that the nonzero vector $w=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ spans such a subrepresentation, which we shall denote by W^{\prime}. Then the elements $w_{2}=(I d-(1,2)) w=$ $\left(\begin{array}{c}a-b \\ b-a \\ 0\end{array}\right)$ and $w_{3}=(I d-(2,3)) w=\left(\begin{array}{c}0 \\ b-c \\ c-b\end{array}\right)$ are also in W^{\prime}.
If $a \neq b$ then by the fact that the space is one dimensional we get that $c=0$ (by considering a linear relation on w and w_{2}). By considering now a linear relation between w_{2} and w_{3} we get that $b=0$. But this already implies that $a=0$ as well, which is a contradiction.
We thus get that the only option for (a, b, c) is one in which $a=b$. Similarly, we can deduce that $b=c$. But since $a+b+c=0$, we get that w is the zero vector, which is again a contradiction. This shows that W is indeed irreducible.
(b) As for any other symmetric group, we also have the one-dimensional sign representation. The representation is given explicitly in the following way:

$$
\sigma \cdot x=(-1)^{\operatorname{sign}(\sigma)} x
$$

for $\sigma \in G$ and $x \in \mathbb{C}$. It can easily be seen that this representation is not isomorphic with the trivial representation.
(c) We have found 3 irreducible representations, of dimensions 1,1 and 2. The sum of their squares is $1^{2}+1^{2}+2^{2}=6$, which is exactly the order of $G=S_{3}$. This shows that these are all the irreducible representations of G.
5. (a) The relation $x y=-y x$ enables us to write every product of elements x, y as $\pm x^{i} y^{j}$ for some i, j. The first two relations enable us to reduce to the case where $i, j \in\{0,1\}$. this already shows that $\{1, x, y, x y\}$ spans D. We still need to show that these elements are linearly independent. One possible way to show this is by considering the ring homomorphism $D \rightarrow M_{2}(K(\sqrt{a}))$ given by $x \mapsto\left(\begin{array}{cc}\sqrt{a} & 0 \\ 0 & -\sqrt{a}\end{array}\right)$ and $y \mapsto\left(\begin{array}{cc}0 & b \\ 1 & 0\end{array}\right)$ (we can show that the relations between x and y hold in $M_{2}(K(\sqrt{a})$). Another option is to write explicitly the product between the four basis elements, and show that we indeed get an associative algebra.
(b) we prove here that if $d^{2} \in K$ and $d \notin K$ then $d_{1}=0$ (this was the way it was suppose to be formulated in the exercise sheet, sorry for this mistake!). We calculate:

$$
d^{2}=d_{1}^{2}+d_{2}^{2} a+d_{3}^{2} b-d_{4}^{2} a b+2 d_{1} d_{2} x+2 d_{1} d_{3} y+2 d_{1} d_{4} x y
$$

All the other elements in the sum vanish due to the relation $x y=-y x$ (which also implies that $x(x y)-(x y) x$ and so on). this implies that $d^{2} \in K$ if and only if $d_{1} d_{2}=d_{1} d_{3}=d_{1} d_{4}=0$. So either $d_{1}=0$ or $d_{2}=d_{3}=d_{4}=0$. In the second case $d \in K$.
(c) We have a Galois extension $K(\sqrt{a}) / K$. We denote by σ the Galois automorphism, which sends \sqrt{a} to $-\sqrt{a}$. We then have that $t^{2}-s^{2} a=$ $(t+s \sqrt{a}) \sigma(t+s \sqrt{a})$. Therefore, since σ is multiplicative, we get

$$
\begin{gathered}
\left(t_{1}^{2}-s_{1}^{2} a\right)\left(t_{2}^{2}-s_{2}^{2} a\right)=\left(t_{1}+s_{1} \sqrt{a}\right) \sigma\left(t_{1}+s_{1} \sqrt{a}\right)\left(t_{2}+s_{2} \sqrt{a}\right) \sigma\left(t_{2}+s_{2} \sqrt{a}\right) \\
=\left(t_{1}+s_{1} \sqrt{a}\right)\left(t_{2}+s_{2} \sqrt{a}\right) \sigma\left(\left(t_{1}+s_{1} \sqrt{a}\right)\left(t_{2}+s_{2} \sqrt{a}\right)\right)=r \sigma(r)
\end{gathered}
$$

where $r=\left(t_{1}+s_{1} \sqrt{a}\right)\left(t_{2}+s_{2} \sqrt{a}\right)$ and therefore has the aforementioned form. This can also be proved directly, without using the Galois action. The inverse of $r^{2}-s^{2} a$ is $\left(\frac{r}{r^{2}-s^{2} a}\right)^{2}-\left(\frac{s}{r^{2}-s^{2} a}\right)^{2} a$.
(d) We would like to show that every element $d=d_{1}+d_{2} x+d_{3} y+d_{4} x y$ of $D-K$ is invertible. For this, it will be enough to prove that the minimal polynomial of $d_{2} x+d_{3} y+d_{4} x y$ is irreducible (this will imply that also the minimal polynomial of d is irreducible, and therefore that d must be invertible). Since $d-d_{1}$ is not in K, but $\left(d-d_{1}\right)^{2}$ is in K, we see that the minimal polynomial is $t^{2}-\left(d_{2}^{2} a+d_{3}^{2} b-d_{4}^{2} a b\right)$. This polynomial is irreducible if and only if the equation $d_{2}^{2} a+d_{3}^{2} b-d_{4}^{2} a b=l^{2}$ does not have a solution in K. We rewrite this equation as $l^{2}-d_{2}^{2} a=b\left(d_{3}^{2}-\right.$ $d_{4}^{2} a$. If $d_{3}^{2}-d_{4}^{2} a=0$ we get that $l=d_{2}=d_{3}=d_{4}=0$ (since $\sqrt{a} \notin K$) and this contradicts our assumption. We rewrite this equation as as $\left(l^{2}-d_{2}^{2} a\right)\left(d_{3}^{2}-d_{4}^{2} a\right)^{-1}=b$. By the previous part of the exercise, the left hand side can be re-written as $c_{1}^{2}-c_{2}^{2} a$ for some $c_{1}, c_{2} \in K$, and we get the equation $c_{1}^{2}-c_{2}^{2} a=b$. We thus see that this equation has no non-trivial solution if and only if D is a division algebra.

