
Exercise Sheet 9, Advanced Algebra, Summer Semester 2017. Some hints
for solutions

(Ehud Meir and Christoph Schweigert)

1. The set X is non-empty because φ ∈ X . If {Yi}i∈I is a chain in X , then
we show that Y := ∪i∈IYi is an element of X : we use the fact that a linear
relation between elements of Y will involve only finitely many elements.
By Zorn Lemma we now have a maximal element B in X . If B is not a
basis of M, then there exists m /∈ R · B. The set B∪ {m} is then not in
X and therefore linearly dependent. We get a linear relation of the form
am+ r1b1+ . . .rnbn = 0. If a = 0 we get a linear dependence in B, which
is impossible. Otherwise by inverting a we get m as a linear combination of
elements in B, which is also a contradiction. Therefore B is a basis of M.

2. We are considering here the categories of left R and left A-modules. F(M)
is an A-module by the action

(ai j)i, j ·


m1
m2
...

mn

=


a11m1 + · · ·a1nmn
a21m1 + · · ·a2nmn

...
an1m1 + · · ·annmn

 .

G(N) is an R-module by the action (r · f )(v) = f (v · r) for v ∈ Rn. We use
here the right action of R on Rn given byr1

...
rn

 · r =( r1r
...rnr

)
.

The map r · f is again an A-module map because Rn is an A−R-bimodule:
it holds that (av)r = a(vr) for a ∈ A and r ∈ R. We had to use the action
of R from the right in order to assure that (r1r2) f = r1(r2 f ). (otherwise we
need to invert the order of the multiplication).

The difficult part is to show part (c): that F and G are quasi-inverse to one
another. We will use here the standard matrix and vector notations: ei is
the i-th vector in the standard basis of Rn, and ei j is the n×n matrix which
is zero everywhere, except in the (i, j)-entry, where it has the value 1. We
begin with showing that GF ∼= IdC. We have GF(M) = HomA(Rn,Mn). It
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holds that f (e1) = f (e11e1) = e11 f (e1). Thus, if f (e1) =

m1
...

mn

 we get

that m2 = m3 = . . .mn = 0. We define Φ : GF(M)→ M by Φ( f ) = m1.
A direct verification shows that this is indeed a well defined map of R-
modules. Since f (e1) determines f it is clear that Φ is injective (we use
here the fact that e1 is a generator for Rn as an A-module). On the other
hand, if m ∈M, we define

fm(

a1
...

an

) =

a1m
...

anm

 .

A direct verification shows that this map is indeed an A-module homomor-
phism, and that Φ( fm) =m. This shows us that Φ is an isomorphism indeed.
Notice that the choice of the vector e1 was arbitrary here. We could have
chosen any other non-zero vector in Rn as well. This would make, however,
the description of fm more complicated.

We next show that GF ∼= IdD. So let N be an A-module. We have GF(N) =
(HomA(Rn,N))⊕n. We define Ψ : GF(N)→ N by

Ψ(

 f1
...
fn

) = f1(e1)+ f2(e2)+ . . . fn(en).

A very careful verification shows us that this is indeed a homomorphism
of A-modules. The homomorphism Ψ is injective. This follows from the
fact that if ∑i fi(ei) = 1 then we can multiply this equation with eii to get
fi(ei) = 0 for every i. Since ei is a generator of Rn we get that fi = 0 for
every i. The homomorphism Ψ is also surjective. Indeed, if v is an element
of N, define fi : Rn→ N bya1

...
an

 7→∑
j

a je jiv.

As before, a very careful verification shows that fi are indeed A-module

homomorphisms. We then have that Ψ(

 f1
...
fn

=∑i fi(ei)=∑i eiiv= v. This

shows us that Ψ is an isomorphism and we are done.
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3. If Mi is an Ai module for every i, then ∏i Mi =⊕iMi is an R = ∏i Ai-module
with the action a1

...
an

 ·
m1

...
mn

=

a1m1
...

anmn

 .

Let now M be an R-module. Write Mi = eiM where ei ∈ R is the element
which is 1 in the i-th entry and zero in all the rest. We use again the fact that
eie j = δi jei and that ∑i ei = 1 in order to prove that Mi is an Ai-module, and
that M is the direct sum of Mi. For mi ∈Mi and a j ∈ A j with i 6= j we have
that a j ·mi = a je jeimi = 0 (we consider here a j as an element of R by the
obvious inclusion). This implies that the only non-trivial action we get is of
Ai on Mi, and we thus geta1

...
an


m1

...
mn

= ∑
i

aimi =

a1m1
...

anmn


as desired.

The idea behind this exercise, and the previous ones, was to explain how
modules over semisimple rings look like. Indeed, by Wedderburn Theorem
we know that a semisimple ring R can be written as

R∼= ∏
i

Mni(Di)

where the Di are division rings. Exercise 3 enables us to reduce the study to
modules over Mn(D) where D is a division ring. Exercise 2 reduces to the
study of modules over D. Exercise 1 says that all modules over D are free.

4. (a) The first part follows from Exercise 5 in Exercise Sheet 1. We see that
the vector (1,1,1) spans a one dimensional sub-representation U upon
which G = S3 acts trivially. Using the standard Hermitian product,
which in this case is G-invariant, we see that the subspace

W := {

a
b
c

 |a+b+ c = 0}

is also a subrepresentation and a direct sum complement of U . It re-
mains to prove that W is an irreducible representation. The only pos-
sible proper subrepresentations of W will be of dimension 1. Assume
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that the nonzero vector w =

a
b
c

 spans such a subrepresentation,

which we shall denote by W ′. Then the elements w2 =(Id−(1,2))w=a−b
b−a

0

 and w3 = (Id− (2,3))w =

 0
b− c
c−b

 are also in W ′.

If a 6= b then by the fact that the space is one dimensional we get that
c = 0 (by considering a linear relation on w and w2). By considering
now a linear relation between w2 and w3 we get that b = 0. But this
already implies that a = 0 as well, which is a contradiction.
We thus get that the only option for (a,b,c) is one in which a = b.
Similarly, we can deduce that b = c. But since a+ b+ c = 0, we get
that w is the zero vector, which is again a contradiction. This shows
that W is indeed irreducible.

(b) As for any other symmetric group, we also have the one-dimensional
sign representation. The representation is given explicitly in the fol-
lowing way:

σ · x = (−1)sign(σ)x

for σ ∈ G and x ∈ C. It can easily be seen that this representation is
not isomorphic with the trivial representation.

(c) We have found 3 irreducible representations, of dimensions 1,1 and 2.
The sum of their squares is 12+12+22 = 6, which is exactly the order
of G = S3. This shows that these are all the irreducible representations
of G.

5. (a) The relation xy = −yx enables us to write every product of elements
x,y as±xiy j for some i, j. The first two relations enable us to reduce to
the case where i, j ∈ {0,1}. this already shows that {1,x,y,xy} spans
D. We still need to show that these elements are linearly independent.
One possible way to show this is by considering the ring homomor-

phism D→M2(K(
√

a)) given by x 7→
(√

a 0
0 −

√
a

)
and y 7→

(
0 b
1 0

)
(we can show that the relations between x and y hold in M2(K(

√
a)).

Another option is to write explicitly the product between the four basis
elements, and show that we indeed get an associative algebra.

(b) we prove here that if d2 ∈ K and d /∈ K then d1 = 0 (this was the way
it was suppose to be formulated in the exercise sheet, sorry for this
mistake!). We calculate:

d2 = d2
1 +d2

2a+d2
3b−d2

4ab+2d1d2x+2d1d3y+2d1d4xy.
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All the other elements in the sum vanish due to the relation xy =−yx
(which also implies that x(xy)− (xy)x and so on). this implies that
d2 ∈ K if and only if d1d2 = d1d3 = d1d4 = 0. So either d1 = 0 or
d2 = d3 = d4 = 0. In the second case d ∈ K.

(c) We have a Galois extension K(
√

a)/K. We denote by σ the Galois
automorphism, which sends

√
a to−

√
a. We then have that t2−s2a =

(t + s
√

a)σ(t + s
√

a). Therefore, since σ is multiplicative, we get

(t2
1−s2

1a)(t2
2−s2

2a)= (t1+s1
√

a)σ(t1+s1
√

a)(t2+s2
√

a)σ(t2+s2
√

a)

= (t1 + s1
√

a)(t2 + s2
√

a)σ((t1 + s1
√

a)(t2 + s2
√

a)) = rσ(r)

where r = (t1 + s1
√

a)(t2 + s2
√

a) and therefore has the aforemen-
tioned form. This can also be proved directly, without using the Galois
action. The inverse of r2− s2a is ( r

r2−s2a)
2− ( s

r2−s2a)
2a.

(d) We would like to show that every element d = d1+d2x+d3y+d4xy of
D−K is invertible. For this, it will be enough to prove that the minimal
polynomial of d2x+d3y+d4xy is irreducible (this will imply that also
the minimal polynomial of d is irreducible, and therefore that d must
be invertible). Since d−d1 is not in K, but (d−d1)

2 is in K, we see that
the minimal polynomial is t2− (d2

2a+ d2
3b− d2

4ab). This polynomial
is irreducible if and only if the equation d2

2a+ d2
3b− d2

4ab = l2 does
not have a solution in K. We rewrite this equation as l2−d2

2a = b(d2
3−

d2
4a). If d2

3−d2
4a = 0 we get that l = d2 = d3 = d4 = 0 (since

√
a /∈ K)

and this contradicts our assumption. We rewrite this equation as as
(l2− d2

2a)(d2
3 − d2

4a)−1 = b. By the previous part of the exercise, the
left hand side can be re-written as c2

1− c2
2a for some c1,c2 ∈ K, and

we get the equation c2
1− c2

2a = b. We thus see that this equation has
no non-trivial solution if and only if D is a division algebra.
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