Hints to solutions- Exercise sheet 8

- 1. (a) A direct calculation shows that the module $Hom(R, \mathbb{Q}/\mathbb{Z})$ is isomorphic with *R* itself. This implies that *R* is injective as an *R*-module. But then every finitely generated free *R*-module is also injective, and every projective module is also injective. In the other direction, every finitely generated injective *R*-module is a direct summand of R^m for some *m* (because *R* is now also co-free), and therefore every finitely generated injective module is also projective (we use here the fact that finite direct sums and finite direct products are isomorphic).
 - (b) The module M is finitely generated. So we already know that it will be injective if and only if it will be projective. Consider now the short exact sequence

$$0 \to \mathbb{Z}/n/m \stackrel{\iota}{\to} R \stackrel{p}{\to} \mathbb{Z}/m \to 0$$

where i(x) = xm and p(x) = x (all formulas are modulo the relevant numbers). Then *M* is projective if and only if this sequence split. Assume that this sequence splits. Let $s : \mathbb{Z}/m \to R$ be a splitting, and write s(1) = x. Then $mx = 0 \mod n$ and $x = 1 \mod m$. From the second equation we get that x = am + 1 for some $a \in \mathbb{Z}$, and from the second equation we get that n|mx so that n/m|x. We write x = cn/mand get that cn/m - am = 1. This implies that gcd(m, n/m) = 1. On the other hand, if gcd(m, n/m) = 1 we get a similar equation which enables us to construct a splitting of the above sequence.

- 2. For modules which are not finitely generated the statement is not true. Take for example $Z = \bigoplus_n R$, an infinite direct sum of copies of R, take X = Rand Y = 0. Then both $X \oplus Z$ and $Y \oplus Z$ are isomorphic to $\bigoplus_n R$, but Xand Y are not isomorphic. For finitely generated modules the statement is true. Indeed, we can write $X = R^{n_X} \bigoplus_i R/p_i^{a_i}$, $Y = R^{n_Y} \bigoplus_j R/q_j^{b_j}$ and Z = $R^{n_Z} \bigoplus_k R/r_k^{c_k}$ for primes p_i, q_j, r_k . We then write $X \oplus Z = R^{n_X + n_Z} \bigoplus_i R/p_i^{a_i} \bigoplus_k$ $R/r_k^{c_k} \cong Y \oplus Z = R^{n_Y + n_Z} \bigoplus_j R/q_j^{b_j} \bigoplus_k R/r_k^{c_k}$ Then since the decomposition into direct sum of a free module and cyclic modules of the form R/p^n is unique, we get that $n_X = n_Y$ and that $\{p_i^{a_i}\} = \{q_j^{b_j}\}$, which means that Xand Y are also isomorphic.
- (a) The module Z/60 is already of the form Z/n. On the other hand, the chinese remainder theorem enables us to write Z/60 ≅ Z/4 ⊕ Z/3 ⊕ Z/5.

- (b) The group \mathbb{Z}^2 is a free abelian group of rank 2. Let us write v = (2,3). Then $A = \mathbb{Z}^2/3v$. Consider the vector w = (1,1). Then $\{v,w\}$ is a basis for \mathbb{Z}^2 . By using this basis, it is clear that $A = \mathbb{Z} \oplus \mathbb{Z}/3$. The free module in *A* has rank 1 and we have an isomorphism $A/Tor(A) \cong \mathbb{Z}$. To find all possible free direct summands, we just need to find a lifting for $A \to A/Tor(A)$. Such a lifting will send $1 \in \mathbb{Z}$ to (1,a) for some $a \in \mathbb{Z}/3$. It is easy to see that all $a \in \mathbb{Z}/3$ will give us valid liftings, and so we have exactly 3 options for the free direct summand.
- 4. (a) A finitely generated *R*-module will be a finitely generated Z-module upon which p^r acts trivially. Let M be such a module. Since M is a finitely generated Z-module we know that we can write M as the direct sum M ≅ Zⁿ ⊕_i Z/p_i^{a_i} for some natural n and some prime powers p_i^{a_i}. Since p^r acts trivially on this module, it follows that n must be zero, that all the p_i must be equal to p, and that all a_i must be less than or equal to r. Thus, every finitely generated *R*-module is of the form ⊕_iZ/p^{a_i} with all a_i ≤ r. From the structure theorem of modules over a PID it follows that the numbers a_i are uniquely defined.
 - (b) The cardinality of the module $\bigoplus_i \mathbb{Z}/p_i^a$ is $\prod_i p^{a_i} = p^{\sum_i a_i}$. Thus, the number of modules of cardinality p^n will be exactly the number of elements in the set $X_{n,r} := \{(a_i) | \sum_i a_i = n, a_i \le r\}$. We can view the elements of $X_{n,r}$ as the number of *partitions* of $n(a_i)$ in which all the elements are less than or equal to r. If we simply consider the number of p-groups, then the restriction $a_i \le r$ disappears, and we are left with the number of partitions of n, which is also the number of conjugacy classes in S_n .