Hints to solutions- Exercise sheet 8

1. (a) A direct calculation shows that the module $\operatorname{Hom}(R, \mathbb{Q} / \mathbb{Z})$ is isomorphic with R itself. This implies that R is injective as an R-module. But then every finitely generated free R-module is also injective, and every projective module is also injective. In the other direction, every finitely generated injective R-module is a direct summand of R^{m} for some m (because R is now also co-free), and therefore every finitely generated injective module is also projective (we use here the fact that finite direct sums and finite direct products are isomorphic).
(b) The module M is finitely generated. So we already know that it will be injective if and only if it will be projective. Consider now the short exact sequence

$$
0 \rightarrow \mathbb{Z} / n / m \xrightarrow{i} R \xrightarrow{p} \mathbb{Z} / m \rightarrow 0
$$

where $i(x)=x m$ and $p(x)=x$ (all formulas are modulo the relevant numbers). Then M is projective if and only if this sequence split. Assume that this sequence splits. Let $s: \mathbb{Z} / m \rightarrow R$ be a splitting, and write $s(1)=x$. Then $m x=0 \bmod n$ and $x=1 \bmod m$. From the second equation we get that $x=a m+1$ for some $a \in \mathbb{Z}$, and from the second equation we get that $n \mid m x$ so that $n / m \mid x$. We write $x=c n / m$ and get that $c n / m-a m=1$. This implies that $\operatorname{gcd}(m, n / m)=1$. On the other hand, if $\operatorname{gcd}(m, n / m)=1$ we get a similar equation which enables us to construct a splitting of the above sequence.
2. For modules which are not finitely generated the statement is not true. Take for example $Z=\oplus_{n} R$, an infinite direct sum of copies of R, take $X=R$ and $Y=0$. Then both $X \oplus Z$ and $Y \oplus Z$ are isomorphic to $\oplus_{n} R$, but X and Y are not isomorphic. For finitely generated modules the statement is true. Indeed, we can write $X=R^{n_{X}} \oplus_{i} R / p_{i}^{a_{i}}, Y=R^{n_{Y}} \oplus_{j} R / q_{j}^{b_{j}}$ and $Z=$ $R^{n_{Z}} \oplus_{k} R / r_{k}^{c_{k}}$ for primes p_{i}, q_{j}, r_{k}. We then write $X \oplus Z=R^{n_{X}+n_{Z}} \oplus_{i} R / p_{i}^{a_{i}} \oplus_{k}$ $R / r_{k}^{c_{k}} \cong Y \oplus Z=R^{n_{Y}+n_{Z}} \oplus_{j} R / q_{j}^{b_{j}} \oplus_{k} R / r_{k}^{c_{k}}$ Then since the decomposition into direct sum of a free module and cyclic modules of the form R / p^{n} is unique, we get that $n_{X}=n_{Y}$ and that $\left\{p_{i}^{a_{i}}\right\}=\left\{q_{j}^{b_{j}}\right\}$, which means that X and Y are also isomorphic.
3. (a) The module $\mathbb{Z} / 60$ is already of the form \mathbb{Z} / n. On the other hand, the chinese remainder theorem enables us to write $\mathbb{Z} / 60 \cong \mathbb{Z} / 4 \oplus \mathbb{Z} / 3 \oplus$ $\mathbb{Z} / 5$.
(b) The group \mathbb{Z}^{2} is a free abelian group of rank 2. Let us write $v=(2,3)$. Then $A=\mathbb{Z}^{2} / 3 v$. Consider the vector $w=(1,1)$. Then $\{v, w\}$ is a basis for \mathbb{Z}^{2}. By using this basis, it is clear that $A=\mathbb{Z} \oplus \mathbb{Z} / 3$. The free module in A has rank 1 and we have an isomorphism $A / \operatorname{Tor}(A) \cong \mathbb{Z}$. To find all possible free direct summands, we just need to find a lifting for $A \rightarrow A / \operatorname{Tor}(A)$. Such a lifting will send $1 \in \mathbb{Z}$ to $(1, a)$ for some $a \in \mathbb{Z} / 3$. It is easy to see that all $a \in \mathbb{Z} / 3$ will give us valid liftings, and so we have exactly 3 options for the free direct summand.
4. (a) A finitely generated R-module will be a finitely generated \mathbb{Z}-module upon which p^{r} acts trivially. Let M be such a module. Since M is a finitely generated \mathbb{Z}-module we know that we can write M as the direct sum $M \cong \mathbb{Z}^{n} \oplus_{i} \mathbb{Z} / p_{i}^{a_{i}}$ for some natural n and some prime powers $p_{i}^{a_{i}}$. Since p^{r} acts trivially on this module, it follows that n must be zero, that all the p_{i} must be equal to p, and that all a_{i} must be less than or equal to r. Thus, every finitely generated R-module is of the form $\oplus_{i} \mathbb{Z} / p^{a_{i}}$ with all $a_{i} \leq r$. From the structure theorem of modules over a PID it follows that the numbers a_{i} are uniquely defined.
(b) The cardinality of the module $\oplus_{i} \mathbb{Z} / p_{i}^{a}$ is $\prod_{i} p^{a_{i}}=p^{\Sigma_{i} a_{i}}$. Thus, the number of modules of cardinality p^{n} will be exactly the number of elements in the set $X_{n, r}:=\left\{\left(a_{i}\right) \mid \sum_{i} a_{i}=n, a_{i} \leq r\right\}$. We can view the elements of $X_{n, r}$ as the number of partitions of $n\left(a_{i}\right)$ in which all the elements are less than or equal to r. If we simply consider the number of p-groups, then the restriction $a_{i} \leq r$ disappears, and we are left with the number of partitions of n, which is also the number of conjugacy classes in S_{n}.

