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Hints to solutions- Exercise sheet &

(a) A direct calculation shows that the module Hom(R,Q/Z) is isomor-
phic with R itself. This implies that R is injective as an R-module.
But then every finitely generated free R-module is also injective, and
every projective module is also injective. In the other direction , every
finitely generated injective R-module is a direct summand of R" for
some m (because R is now also co-free), and therefore every finitely
generated injective module is also projective (we use here the fact that
finite direct sums and finite direct products are isomorphic).

(b) The module M is finitely generated. So we already know that it will
be injective if and only if it will be projective. Consider now the short
exact sequence

O%Z/n/m—i>R£>Z/m—>O

where i(x) = xm and p(x) = x (all formulas are modulo the relevant
numbers). Then M is projective if and only if this sequence split. As-
sume that this sequence splits. Let s : Z/m — R be a splitting, and
write s(1) = x. Then mx =0 mod n and x = 1 mod m. From the sec-
ond equation we get that x = am + 1 for some a € Z, and from the
second equation we get that n|mx so that n/m|x. We write x = cn/m
and get that cn/m — am = 1. This implies that gcd(m,n/m) = 1. On
the other hand, if gcd(m,n/m) =1 we get a similar equation which
enables us to construct a splitting of the above sequence.

2. For modules which are not finitely generated the statement is not true. Take
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for example Z = @,R, an infinite direct sum of copies of R, take X = R
and Y = 0. Then both X ¢ Z and Y & Z are isomorphic to &,R, but X
and Y are not isomorphic. For finitely generated modules the statement
is true. Indeed, we can write X = R™ &;R/p{’, Y =R"™ &;R/ ql;.j and Z =
R"2 @ R/r* for primes p;, g, re. We then write X &Z = R™ "2 &; R/ p' &y
R/rif2Y®Z=R""23;R/ ql;j @k R/ri* Then since the decomposition
into direct sum of a free module and cyclic modules of the form R/p" is
unique, we get that ny = ny and that {p{'} = {ql;.j }, which means that X
and Y are also isomorphic.

(a) The module Z/60 is already of the form Z/n. On the other hand, the
chinese remainder theorem enables us to write Z/60 = Z/4 ©Z/3 @
Z]5.



(b)

(a)

(b)

The group Z? is a free abelian group of rank 2. Let us write v = (2,3).
Then A = Z?/3v. Consider the vector w = (1,1). Then {v,w} is a
basis for Z2. By using this basis, it is clear that A = Z @ Z /3. The free
module in A has rank 1 and we have an isomorphism A /Tor(A) = Z.
To find all possible free direct summands, we just need to find a lifting
for A — A/Tor(A). Such a lifting will send 1 € Z to (1,a) for some
a € 7/3. Tt is easy to see that all a € Z/3 will give us valid liftings,
and so we have exactly 3 options for the free direct summand.

A finitely generated R-module will be a finitely generated Z-module
upon which p” acts trivially. Let M be such a module. Since M is a
finitely generated Z-module we know that we can write M as the direct
sum M = 7" &;Z/ p;" for some natural n and some prime powers p:".
Since p” acts trivially on this module, it follows that n must be zero,
that all the p; must be equal to p, and that all @; must be less than
or equal to r. Thus, every finitely generated R-module is of the form
@®;7/p“ with all a; < r. From the structure theorem of modules over
a PID it follows that the numbers a; are uniquely defined.

The cardinality of the module &;Z/p{ is []; p“ = pLi%_ Thus, the
number of modules of cardinality p” will be exactly the number of
elements in the set X, , := {(a;)| ¥;a; = n,a; < r}. We can view the
elements of X, , as the number of partitions of n (a;) in which all the
elements are less than or equal to r. If we simply consider the number
of p-groups, then the restriction a; < r disappears, and we are left with
the number of partitions of n, which is also the number of conjugacy
classes in S,,.



