Exercise Sheet 7, Advanced Algebra, remarks on left over exercises

 (Ehud Meir and Christoph Schweigert)3.

(a) No, for example $\mathbb{Z} / 6 \mathbb{Z}$, which is not an integral domain.
(b) No, for example $K[X, Y]$ is a subring of $K(X)[Y]$, and $\mathbb{Z}[X]$ is a subring of $\mathbb{Q}[X]$ (why are the subrings not PIDs?)
4. If $x_{1} \leq x_{2}$ we denote by $f_{x_{1}, x_{2}}$ the unique morphism in \mathcal{C}_{X} from x_{1} to x_{2}.
(a) If $F: \mathfrak{C}_{X} \rightarrow \mathfrak{C}_{Y}$ is a functor, then by considering the way F acts on objects of the category \mathcal{C}_{X} we get a function from X to Y. If $x_{1} \leq x_{2}$ in X, then $F\left(f_{x_{1}, x_{2}}\right)$ is a morphism in $\operatorname{Hom}_{\mathcal{C}_{Y}}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$. In particular, this set is non-empty, and we get that $f\left(x_{1}\right) \leq f\left(x_{2}\right)$, which means that f is monotonous. In the other direction, if $f: X \rightarrow Y$ is monotonous we define a functor F by $F(x)=f(x)$ for objects in X. Since all morphism sets contain zero or one element the action of F on morphisms is uniquely defined (the action on morphisms is then well defined since f is monotonous).
(b) If $G: \mathcal{C}_{\mathbb{R}} \rightarrow \mathcal{C}_{\mathbb{Q}}$ is a left adjoint functor of F, then it corresponds to a function $g: \mathbb{R} \rightarrow \mathbb{Q}$ which satisfies that $g(y) \leq x$ if and only if $y \leq f(x)$ for every $x \in \mathbb{Q}$ and $y \in \mathbb{R}$ (to see this, just consider the isomorphism $\operatorname{Hom}_{\mathfrak{C}_{X}}(G(y), x) \cong$ $\operatorname{Hom}_{\mathcal{C}_{Y}}(y, F(x))$. From basic calculus we know that such a function g cannot exist: there is, for example, no rational number t such that $\{x \in \mathbb{Q} \mid t \leq x\}=$ $\{x \in \mathbb{Q} \mid \sqrt{2} \leq x\}$. For similar reasons, F does not admit a right adjoint functor.

