Exercise class, 6.4.17, Advanced Algebra, Summer Semester 2017- some remarks
 (Ehud Meir and Christoph Schweigert)

1. The following question rose in class today: What examples of rings R do we have so that R is not isomorphic to $R^{o p p}$? I gave one example without proof:

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a \in \mathbb{Z}, b, c \in \mathbb{Q}\right\} \subseteq M_{2}(\mathbb{Q})
$$

I will write a proof here for another ring:

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a \in \mathbb{Z}\left[\frac{1}{2}\right], b \in \mathbb{Z}\left[\frac{1}{6}\right], c \in \mathbb{Z}\left[\frac{1}{3}\right]\right\}
$$

(Exercise: prove that this is indeed a ring. The ring $\mathbb{Z}\left[\frac{1}{n}\right]$ stands for the subring of \mathbb{Q} of all elements of the form $\frac{a}{n^{t}}$ (where n is a natural number)). Assume that $\phi: R \rightarrow R^{o p p}$ is an isomorphism of rings. Consider the element $X=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 0\end{array}\right)$. This element satisfies the equation $2 X^{2}-X=0$. It is then easy to see that $\phi(X)$ satisfies the same equation. But the only elements in R satisfying this equation are elements of the form $\left(\begin{array}{cc}\frac{1}{2} & b \\ 0 & 0\end{array}\right)$ (use linear algebra to prove that!). It follows that $\phi(X)=\left(\begin{array}{ll}\frac{1}{2} & b \\ 0 & 0\end{array}\right)$ for some $b \in \mathbb{Z}\left[\frac{1}{6}\right]$. The element $Y=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ satisfies the equation $Y^{2}=0$. Just as with X, it follows that $\phi(Y)$ satisfies the same equation. Since the only elements which satisfy this equation are of the form $\left(\begin{array}{ll}0 & c \\ 0 & 0\end{array}\right)$ we can assume that $\phi(Y)=\left(\begin{array}{ll}0 & c \\ 0 & 0\end{array}\right)$ for some $c \in \mathbb{Z}\left[\frac{1}{6}\right]$. It holds that $X Y=\frac{1}{2} Y \neq 0$ but $\phi(X Y)=\phi(X) \cdot{ }_{\text {opp }} \phi(Y)=\phi(Y) \phi(X)=0$, contradicting the fact that ϕ is an isomorphism. The ring R is therefore not isomorphic to $R^{o p p}$.
2. We proved at the end of the class that if R is an integral domain and $\Phi: R[X] \rightarrow$ $R[X]$ is an isomorphism such that $\Phi(r)=r$ for every $r \in R$ then $\Phi(X)=a X+b$ for some $a \in R^{\times}$and $b \in R$. The assumption that R is an integral domain is really necessary here: consider for example the case where $R=\mathbb{Z} / 4$. Define $\Phi: R[X] \rightarrow$ $R[X]$ by $\Phi(X)=X+2 X^{2}$. Then $\Phi^{2}(X)=\Phi\left(X+2 X^{2}\right)=X+2 X^{2}+2\left(X+2 X^{2}\right)^{2}=$ X.

