Exercise Sheet 12, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 11.7.17

(Ehud Meir and Christoph Schweigert)

1. Let $m, n, k, r \in \mathbb{Z}$. Assume that $n \mid r m$, so that $\phi: \mathbb{Z} / m \rightarrow \mathbb{Z} / n x \mapsto x r$ is a well defined homomorphism of abelian groups.
(a) Calculate explicitly a lifting of ϕ from a projective resolution of \mathbb{Z} / m to a projective resolution of \mathbb{Z} / n.
(b) Calculate explicitly the maps $\phi_{*}: \operatorname{Tor}_{n}^{R}(\mathbb{Z} / m, \mathbb{Z} / k) \rightarrow \operatorname{Tor}_{n}^{R}(\mathbb{Z} / n, \mathbb{Z} / k)$ and $\phi^{*}: \operatorname{Ext}_{R}^{n}(\mathbb{Z} / n, \mathbb{Z} / k) \rightarrow E x t_{n}^{R}(\mathbb{Z} / m, \mathbb{Z} / k)$ for $n=0,1$.
2. Let \mathcal{C} be an abelian category.
(a) Show that the complex $\cdots 0 \rightarrow X \xrightarrow{I d} X \rightarrow 0 \rightarrow \cdots$ is a projective object in the category $\operatorname{Ch}(\mathrm{C})$ if and only if X is projective in \mathcal{C}.
(b) Let $C .=\cdots 0 \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{0} \rightarrow 0 \rightarrow \cdots$ be a chain complex in some abelian category C . Assume that C is projective. Show that C can be written as the direct sum of complexes from the first part of the exercise.
3. Bring your own questions, about everything that we have had during the semester!
