Exercise Sheet 10, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 29.6.17 (Ehud Meir and Christoph Schweigert)

- 1. Let $\zeta \in \mathbb{C}$ be a primitive *n*-th root of unity.
 - (a) Show that $\sum_{i=0}^{n-1} \zeta^i = 0$. What happens when ζ is not a primitive root of unity?
 - (b) Show how one can receive the above result from the orthogonality of characters. Hint: use the cyclic group of order $n C_n$.
 - (c) *By Wedderburn Theorem we can write $\mathbb{Q}C_n \cong \prod_i L_i$ where L_i are matrix algebras over division rings. Since the ring is commutative, L_i are actually fields. What fields will we get in this decomposition?
- 2. Let $G = Q_8$ be the quaternion group of order 8. This is the group formed by the elements $\{\pm 1, \pm i, \pm j, \pm k\}$ inside the quaternion algebra. The multiplication in this group is given by the following rules: -1 is central, $(\pm i)^2 =$ $(\pm j)^2 = (\pm k)^2 = -1$, and ij = k, jk = i, ki = j, ji = -k, ik = -j, kj = -i. Write down explicitly the conjugacy classes in Q_8 and the character table.
- 3. Do the same for the Dihedral group D_8 . Compare with the results of the previous exercise.
- Let G be a finite group, and let X be a finite G-set (that is- a set upon which G acts). We define a complex representation V of G in the following way: V has a basis {e_x}_{x∈X}, and the action of g ∈ G on the basis elements is given by g ⋅ e_x = e_{gx}. Denote the character of this representation by χ.
 - (a) Show that $\chi(g)$ is the number of fixed points of g in the action on X.
 - (b) Show that $(\chi, 1)$ is the number of *G*-orbits in *X*.
- 5. Let G be a finite group, and let V be a finite dimensional complex representation of G with character χ .
 - (a) Prove that the map $T: v \mapsto \frac{1}{|G|} \sum_{g \in G} gv$ is a projection of V onto V^G (that is: $T^2 = T$. The space V^G is the subspace of G-invariant vectors in V). Conclude that $\frac{1}{|G|} \sum_{g \in G} \chi(g)$ is equal to $dimV^G$ (hint: if T is a projection, what can you say about Tr(T)?)

- (b) If U is another G-representation with character ψ , prove that the character of Hom(U,V) with the diagonal action $(g \cdot f)(u) = gf(g^{-1}u)$ is given by $g \mapsto \psi(g^{-1})\chi(g)$.
- (c) Re-prove the character orthogonality formula.