Exercise Sheet 10, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 29.6.17

(Ehud Meir and Christoph Schweigert)

1. Let $\zeta \in \mathbb{C}$ be a primitive n-th root of unity.
(a) Show that $\sum_{i=0}^{n-1} \zeta^{i}=0$. What happens when ζ is not a primitive root of unity?
(b) Show how one can receive the above result from the orthogonality of characters. Hint: use the cyclic group of order $n C_{n}$.
(c) $*$ By Wedderburn Theorem we can write $\mathbb{Q} C_{n} \cong \prod_{i} L_{i}$ where L_{i} are matrix algebras over division rings. Since the ring is commutative, L_{i} are actually fields. What fields will we get in this decomposition?
2. Let $G=Q_{8}$ be the quaternion group of order 8 . This is the group formed by the elements $\{ \pm 1, \pm i, \pm j, \pm k\}$ inside the quaternion algebra. The multiplication in this group is given by the following rules: -1 is central, $(\pm i)^{2}=$ $(\pm j)^{2}=(\pm k)^{2}=-1$, and $i j=k, j k=i, k i=j, j i=-k, i k=-j, k j=-i$. Write down explicitly the conjugacy classes in Q_{8} and the character table.
3. Do the same for the Dihedral group D_{8}. Compare with the results of the previous exercise.
4. Let G be a finite group, and let X be a finite G-set (that is- a set upon which G acts). We define a complex representation V of G in the following way: V has a basis $\left\{e_{x}\right\}_{x \in X}$, and the action of $g \in G$ on the basis elements is given by $g \cdot e_{x}=e_{g x}$. Denote the character of this representation by χ.
(a) Show that $\chi(g)$ is the number of fixed points of g in the action on X.
(b) Show that $(\chi, 1)$ is the number of G-orbits in X.
5. Let G be a finite group, and let V be a finite dimensional complex representation of G with character χ.
(a) Prove that the map $T: v \mapsto \frac{1}{|G|} \sum_{g \in G} g v$ is a projection of V onto V^{G} (that is: $T^{2}=T$. The space V^{G} is the subspace of G-invariant vectors in V). Conclude that $\frac{1}{|G|} \sum_{g \in G} \chi(g)$ is equal to dim^{G} (hint: if T is a projection, what can you say about $\operatorname{Tr}(T)$?)
(b) If U is another G-representation with character ψ, prove that the character of $\operatorname{Hom}(U, V)$ with the diagonal action $(g \cdot f)(u)=g f\left(g^{-1} u\right)$ is given by $g \mapsto \psi\left(g^{-1}\right) \chi(g)$.
(c) Re-prove the character orthogonality formula.
