Exercise Sheet 9, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 22.6.17

(Ehud Meir and Christoph Schweigert)

1. Let D be a division ring, and let M be a D-module. We will show here that M is free. Let

$$
X=\{Y \subseteq M \mid Y \text { is linearly independent over } D\}
$$

Use Zorn's Lemma to prove that X has a maximal element B, and show that B is a basis for M.
2. Let R be a ring, and let $A=M_{n}(R)$. We will show here that studying modules over A is "as difficult" as studying modules over R. Let $\mathcal{C}=\operatorname{Mod}-R$ and $\mathcal{D}=\operatorname{Mod}-A$. For every R-module M we write

$$
F(M)=M^{\oplus n}=M \oplus M \oplus \cdots \oplus M
$$

For every A-module N we write

$$
G(N)=\operatorname{Hom}_{A}\left(R^{n}, N\right) .
$$

(a) Show that $F(M)$ is an A-module for every R-module M, and that F defines a functor from \mathcal{C} to \mathcal{D}.
(b) Show that $G(N)$ is an R-module for every A-module N, and that G defines a functor from \mathcal{D} to \mathcal{C} (hint: use the fact that R^{n} is also a left R-module).
(c) Show that $F G \cong I d_{\mathcal{D}}$ and $G F \cong I d_{\mathcal{C}}$. Conclude that F and G establish an equivalence of categories between \mathcal{C} and \mathcal{D}.
3. Let $A_{1}, \ldots A_{n}$ be rings, and let $R=\prod_{i=1}^{n} A_{i}$ be the ring product. Prove that every R-module M can be written uniquely as the direct product $M=\prod_{i=1}^{n} M_{i}$ where M_{i} is an A_{i}-module.
4. Let $G=S_{3}$. In this exercise we will find all the irreducible representations of $\mathbb{C} G$.
(a) Consider the representation $V=\mathbb{C}^{3}$, upon which G acts by permutation of the coordinates:

$$
g \cdot\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{g^{-1}(1)} \\
a_{g^{-1}(2)} \\
a_{g^{-1}(3)}
\end{array}\right)
$$

Show that V splits as the direct sum of an irreducible representation of dimension 2, and the trivial representation of dimension 1.
(b) Find another (non-isomorphic) irreducible representation of dimension 1.
(c) Prove by counting argument that the these are all the 3 irreducible representations of S_{3}.
5. The goal of this exercise will be to construct many new division rings, the so called generalized quaternion algebras. Let K be a field of characteristic $\neq 2$, and let $a, b \in K^{\times}$. Let $D=K\langle X, Y\rangle /\left(X^{2}-a, Y^{2}-b, X Y+Y X\right)$. We denote by x and Y the images of X and Y in D respectively.
(a) Show that D has dimension 4 over K. Show that $\{1, x, y, x y\}$ is a basis for D over K.
(b) Let $d=d_{1}+d_{2} x+d_{3} y+d_{4} x y$. Prove that $d^{2} \in K$ if and only if $d_{1}=0$.
(c) Prove that if a is not a square in K (that is, if the equation $a=t^{2}$ has no solution in K), then the set of elements of the form $t^{2}-s^{2} a$ in K^{\times} forms a subgroup.
(d) Prove that D is a division algebra if and only if the equation $r^{2}-s^{2} a=$ b has no solutions in K (hint: use the previous exercise, and find the characteristic polynomial of an element d with $d_{1}=0$).

