Exercise Sheet 6, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 18.5.17 (Ehud Meir and Christoph Schweigert)

1. Let *Grp* be the category of groups. Let *Ab* be the category of abelian groups. For every group *G*, let *Z*(*G*) be the center of *G* (which is an abelian group). Let [G,G] be the subgroup of *G* generated by the commutators $[g,h] := ghg^{-1}h^{-1}$ for $g,h \in G$, and let G_{ab} be the abelian group G/[G,G].

- (a) Is there a functor $F : Grp \to Ab$ such that $F(G) = G_{ab}$ for every group G?
- (b) Show that there is a functor F : Grp → Grp with F(G) = [G,G] for every group G. Is it true that the inclusion [G,G] → G determines a natural transformation F → Id?
- (c) Is there a functor F : Grp → Ab such that F(G) = Z(G) for every group G?
 Hint: consider the group homomorphisms Z/2 → S₃ a → (12)^a and S₃ → Z/2, σ → ^{1-sign(σ)}/₂
- Let C = R mod be the category of *R*-modules. Let U : C → Ab be the forgetful functor. Show that there is a bijection between the collection Nat(F,F) of all natural transformations from F to itself, and the ring R. Hint: Let α be such a transformation. Consider first α(R) : U(R) → U(R), and show that this must be given by the action of some element r ∈ R. Then for an *R*-module M and an element m ∈ M, use the fact that there is a homomorphism of *R*-modules R → M which sends 1 to m.
- 3. A generator of a category \mathcal{C} is an object J of \mathcal{C} such that for any pair of morphisms $f \neq g : X \to Y$ there exists a morphism $h : J \to X$ such that $fh \neq gh$.
 - (a) Does the category *Grp* have a generator?
 - (b) Does the category fin Grp (of finite groups and group homomorphisms) have a generator?
- 4. Let *Top* be the category of topological spaces. Let $Dis : Set \rightarrow Top$ be the functor which assigns to a set *X* the topological space *X* with the discrete topology. Does the functor *Dis* have a left adjoint? a right adjoint? if so, describe them.

5. Let $F : Grp \to Set$ be the functor which sends the group *G* to the underlying set of the group G_{ab} . Is the functor *F* representable (Darstellbar)?