Exercise Sheet 4, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 4.5.17 (Ehud Meir and Christoph Schweigert)

1. Let *P* be a projective *R*-module.

(a) Is there always a *free* R-module F such that the direct sum $P \oplus F$ is free?

Hint:

Let P' be a module such that $P \oplus P'$ is free. Consider the countable direct sum

$$P' \oplus (P \oplus P') \oplus (P \oplus P') \dots$$

(This trick is known as the "Eilenberg swindle".)

- (b) Can *F* be chosen to be a finitely generated free module? (Proof or counterexample.)
- 2. Consider the commutative diagram of *R*-modules (where *R* is some ring)

in which both rows are assumed to be exact sequences and for which ϕ_1, ϕ_2, ϕ_4 and ϕ_5 are assumed to be isomorphisms. Show that then also ϕ_3 is an isomorphism. (This is called the five lemma.)

- 3. Let *R* be an integral domain let and *M* be an *R*-module. An element $x \in M$ is said to be *divisible*, iff $x \in \bigcap_{\alpha \neq 0} \alpha M$. The module *M* is called divisible, if all its elements are divisible.
 - (a) Show that the subset Div(M) of divisible elements of M is a submodule of M.
 - (b) Compute Div(M/Div(M)).
 - (c) Show that if *M* is divisible and $U \subset M$ a submodule, then the quotient module M/U is divisible.
 - (d) Is any submodule of a divisible module divisible? Proof or counterexample!

- 4. Let *R* be any ring and F_X a free *R*-module with basis *X*. Since *X* is a subset of *F*, there is a natural map of sets $\iota_X : X \to F_X$.
 - (a) Show that the pair (F_X, ι_X) is characterized, up to unique isomorphism, by the following property:

For any *R*-module *B* and any map $f: X \to B$ of sets, there exists a unique morphism $\tilde{f}: F_X \to B$ of *R*-modules such that the following diagram commutes

- (b) Reformulate this statement as a bijection between certain sets of homomorphisms in different categories.
- Consider the following property (C) for an *R*-module *M*: There is a family (m_i)_{i∈I} of elements m_i ∈ M and a family (Φ_i)_{i∈I} of elements Φ_i ∈ M* := Hom_R(M, R) such that:
 - (1) For any $m \in M$, one has $\Phi_i(m) = 0$ for almost all $i \in I$.
 - (2) For all $m \in M$, one has

$$\sum_{i\in I}\Phi_i(m)m_i=m\;.$$

Show that a module is proejctive if and only if it has the property (C).