Exercise Sheet 4, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 4.5.17

(Ehud Meir and Christoph Schweigert)

1. Let P be a projective R-module.
(a) Is there always a free R-module F such that the direct sum $P \oplus F$ is free?
Hint:
Let P^{\prime} be a module such that $P \oplus P^{\prime}$ is free. Consider the countable direct sum

$$
P^{\prime} \oplus\left(P \oplus P^{\prime}\right) \oplus\left(P \oplus P^{\prime}\right) \ldots
$$

(This trick is known as the "Eilenberg swindle".)
(b) Can F be chosen to be a finitely generated free module? (Proof or counterexample.)
2. Consider the commutative diagram of R-modules (where R is some ring)

in which both rows are assumed to be exact sequences and for which $\phi_{1}, \phi_{2}, \phi_{4}$ and ϕ_{5} are assumed to be isomorphisms. Show that then also ϕ_{3} is an isomorphism. (This is called the five lemma.)
3. Let R be an integral domain let and M be an R-module. An element $x \in M$ is said to be divisible, iff $x \in \cap_{\alpha \neq 0} \alpha M$. The module M is called divisible, if all its elements are divisible.
(a) Show that the subset $\operatorname{Div}(M)$ of divisible elements of M is a submodule of M.
(b) Compute $\operatorname{Div}(M / \operatorname{Div}(M))$.
(c) Show that if M is divisible and $U \subset M$ a submodule, then the quotient module M / U is divisible.
(d) Is any submodule of a divisible module divisible? Proof or counterexample!
4. Let R be any ring and F_{X} a free R-module with basis X. Since X is a subset of F, there is a natural map of sets $\boldsymbol{l}_{X}: X \rightarrow F_{X}$.
(a) Show that the pair $\left(F_{X}, l_{X}\right)$ is characterized, up to unique isomorphism, by the following property:
For any R-module B and any map $f: X \rightarrow B$ of sets, there exists a unique morphism $\tilde{f}: F_{X} \rightarrow B$ of R-modules such that the following diagram commutes

(b) Reformulate this statement as a bijection between certain sets of homomorphisms in different categories.
5. Consider the following property (C) for an R-module M :

There is a family $\left(m_{i}\right)_{i \in I}$ of elements $m_{i} \in M$ and a family $\left(\Phi_{i}\right)_{i \in I}$ of elements $\Phi_{i} \in M^{*}:=\operatorname{Hom}_{R}(M, R)$ such that:
(1) For any $m \in M$, one has $\Phi_{i}(m)=0$ for almost all $i \in I$.
(2) For all $m \in M$, one has

$$
\sum_{i \in I} \Phi_{i}(m) m_{i}=m
$$

Show that a module is proejctive if and only if it has the property (C).

