Exercise Sheet 1, Advanced Algebra, Summer Semester 2017. To be discussed on Thursday 13.4.17

(Ehud Meir and Christoph Schweigert)

1. Let $M \subseteq \mathbb{Q}$ be a finitely generated \mathbb{Z}-submodule. Show that M is cyclic. Is the result still true if we replace \mathbb{Z} by an integral domain R and \mathbb{Q} by the ring of fractions of R ? (Hint: consider $R=K[X, Y]$ where K is a field).
2. Let R be a commutative ring, and let m, n be natural numbers. Assume that $R^{n} \cong R^{m}$ as left R-modules. Prove that $n=m$. Are there also noncommutative rings for which this result holds?
3. Let R be a ring and let M be a left R-module. Is $\operatorname{Tor}(M)$ closed under addition? Is $\operatorname{Tor}(M)$ closed under multiplication with an element in R in case R is commutative?
4. An element $e \in R$ is called idempotent if $e=e^{2}$. An element $e \in R$ is called central if $e r=r e$ for all $r \in R$. Assume that R contains a central idempotent e, which is different from 0 and 1 . Show that R is isomorphic with $R_{1} \times R_{2}$ for two non-zero rings R_{1} and R_{2}.
5. Let $G=S_{3}$, the symmetric group on three elements. Let $M=\mathbb{Q}^{3}$. We denote the standard basis of M over \mathbb{Q} by $\left\{e_{1}, e_{2}, e_{3}\right\}$. We define an action of G on M by $\sigma \cdot e_{i}=e_{\sigma(i)}$. Show that this equips M with a structure of a $\mathbb{Q} G$-module. Describe all the submodules and quotient modules.
6. Let $T: V \rightarrow W$ be a linear surjective map of vector spaces over a field K. Show that T splits: that is, there exists a linear map $S: W \rightarrow V$ such that $T S=I d_{W}$. Is the result still true for modules over rings?
