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Chapter 1

Introduction

Classical and Non-classical set theories

Classical set theory. We shall briefly discuss about classical set theory in the framework

of first order predicate calculus. The language of set theory contains = and ∈ as two predicate

symbols. The connectives are ∧, ∨,→, and ¬. The symbols ∀ and ∃ are the quantifiers. For

reference, we list the forms of the axioms and axiom schemes that we use in this thesis (in

the schemes, ϕ is a formula with n + 2 free variables); the concrete formulations follow [4]

very closely:

∀x∀y[∀z(z ∈ x↔ z ∈ y)→ x = y] (Extensionality)

∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)) (Pairing)

∃x[∃y(∀z(z ∈ y → ⊥) ∧ y ∈ x) ∧ ∀w ∈ x∃u ∈ x(w ∈ u)]. (Infinity)

∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ x)) (Union)

∀x∃y∀z(z ∈ y ↔ ∀w ∈ z(w ∈ x)) (Power Set)

∀p0 · · · ∀pn∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z, p0, . . . , pn)) (Separationϕ)
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∀p0 · · · ∀pn−1∀x[∀y ∈ x∃!zϕ(y, z, p0, . . . , pn−1)

→ ∃w∀v ∈ x∃u ∈ w ϕ(v, u, p0, . . . , pn−1)] (Replacementϕ)

∀p0 · · · ∀pn∀x[∀y ∈ x ϕ(y, p0, . . . , pn)→ ϕ(x, p0, . . . , pn)]

→ ∀zϕ(z, p0, . . . , pn) (Foundationϕ)

The axioms Extensionality, Pairing, Infinity1, Union, Power Set, and Separation are due to

Ernst Zermelo; Replacement is independently due to Abraham Fraenkel and Thoralf Skolem;

Foundation is due to John von Neumann. The theory with the above axioms is called Zermelo-

Fraenkel axiomatic set theory (ZF). The following sentence is known as the Axiom of Choice

(AC):

∀y∃f [Func(f) ∧ dom(f) = y ∧ ∀x(x ∈ y ∧ x 6= ∅→ f(x) ∈ x)],

where Func(f) and dom(f) are the abbreviations for “f is a function” and “domain of f”,

respectively. The set theory ZF with the Axiom of Choice is denoted by ZFC. The set

theory having all the axioms of ZF excluding Foundation is represented by ZF−. In ZFC if

the axiom scheme of Replacement is replaced by the scheme Collectionϕ, expressed below,

then the theory remains equivalent in strength.

Collectionϕ

∀p0 · · · ∀pn−1∀x[∀y ∈ x∃zϕ(y, z, p0, . . . , pn−1)→ ∃w∀v ∈ x∃u ∈ w ϕ(v, u, p0, . . . , pn−1)],

where ϕ is a formula with n + 2 free variables. From now onwards whenever we shall refer

the systems ZFC, ZF, and ZF− it will be assumed that we are using Collectionϕ instead of

Replacementϕ.

1In the formulation of Infinity, we avoid the use of the ¬ symbol since we shall later require that the axioms
are in the negation-free fragment. Of course, this formulation is classically equivalent to the formulation
with /∈.
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In classical set theory we deal with only one type of object, viz. sets. But for simplicity

sometimes we refer to classes whose informal notion is given below:

If ϕ is a formula in n + 1 free variables, x1, ...., xn are sets, then {x : ϕ(x, x1, ..., xn)} is

called the class defined by ϕ and x1, ..., xn. The members of this class are those sets which

satisfy ϕ(x, x1, ..., xn). Two classes are said to be equal if they have same elements:

{x : ϕ(x, x1, . . . , xn)} = {x : ψ(x, y1, . . . , yn)}

if and only if for any x the following holds;

ϕ(x, x1, . . . , xn)↔ ψ(x, y1, . . . , yn).

From now onwards we shall consider the universal class, V = {x : x = x} as the standard

class model of ZF unless otherwise it is stated to be a class model of ZFC.

By a non-classical set theory we mean here a set theory whose underlying logic is non-

classical. Examples of non-classical set theories are intuitionistic Zermelo-Fraenkel set

theory (IZF), constructive Zermelo-Fraenkel set theory (CZF), quantum set theory, and

paraconsistent set theory.

Intuitionistic and constructive set theory. Both of the set theories IZF and CZF were

proposed by John Myhill in 1973 [19]. Constructive mathematics can be developed in the

logical framework of constructive set theory. The underlying logic for both of CZF and IZF

is Intuitionistic logic. But they do not have the same set theoretic axioms [1, Section 2]. The

set theoretic axioms of IZF are exactly the same as the axioms of ZF in the form expressed

above. On the other hand the set theoretic axioms for CZF are Extensionality, Pairing, Infinity,

Union, Restricted Separation, Strong Collection, Subset Collection, and Foundation; where
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Restricted Separationϕ:

∀p0 . . . ∀pn∀a∃b∀x[x ∈ b↔ x ∈ a ∧ ϕ(x, p0, . . . , pn)]

for all restricted formula ϕ whose quantifiers are either of the form ∀x ∈ y or ∃x ∈ y,

Strong Collectionϕ:

∀p0 . . . ∀pn−1∀a[∀x ∈ a∃y ϕ(x, y, p0, . . . , pn−1)→

∃b(∀x ∈ a∃y ∈ b ϕ(x, y, p0, . . . , pn−1) ∧ ∀y ∈ b∃x ∈ a ϕ(x, y, p0, . . . , pn−1))],

Subset Collectionϕ:

∀a∀b∃c[∀u∀x ∈ a∃y ∈ b ϕ(x, y, u)→

∃z ∈ c(∀x ∈ a∃y ∈ z ϕ(x, y, u) ∧ ∀y ∈ z∃x ∈ a ϕ(x, y, u))];

in Restricted Separation and Strong Collection, ϕ is a formula having n+ 2 free variables.

Intuitionistic Zermelo-Fraenkel set theory IZF has rich collection of mathematical mod-

els. For example Beth models, topological models, (pre)sheaf models, realizability toposes etc.

Heyting-valued models of IZF were introduced by R. J. Grayson in 1977 [20]. The construc-

tion is similar to the construction of the Boolean-valued models of ZF. In Chapter 2 we

shall discuss the construction of Boolean-valued model V(B) of ZF corresponding to a given

complete Boolean algebra B. For any complete Heyting algebra H it can be proved that V(H)

is an algebra-valued model of IZF. In this thesis we shall mainly emphasize on this kind of

algebra-valued model constructions of non-classical set theories.
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Quantum set theory. G. Takeuti first proposed quantum set theory in 1981 [30]. As

the name indicates, the underlying logic of quantum set theory is quantum logic. Let H

be a Hilbert space and L be the collection of all closed linear subspaces of H. It can be

proved that L will be a complete orthomodular lattice. Following the construction of the

Boolean-valued models or Heyting-valued models, the set theory developed in the L-valued

universe V(L) will be called a quantum set theory. In 1999, S. Titani generalised the idea to

a lattice-valued valued set theory. By using any complete lattice L the L -valued universe

V(L ) was developed for the lattice valued set theory.

Paraconsistent set theory. In this thesis we have constructed an algebra-valued model

of a paraconsistent set theory. Hence paraconsistent set theory will be our main area of

interest. Before the discussions of paraconsistent set theories it is worthwhile to concentrate

on the paraconsistent logic first.

History of paraconsistent logic

In the year 1948, Stanislaw Jaskowśki first constructed a formal system of paraconsistent

propositional calculus. Independently of S. Jaskowśki, Newton C. A. da Costa started the

general study of contradictory systems in 1958 [13, p. 657]. The adjective “paraconsistent”

was first used by the Peruvian philosopher Francisco Miró Quesada Cantuarias in the Sim-

posio Latinoamericano de Lógica Matemática held at the State University of Campinas, in

1976.

A set Γ of formulas is inconsistent if there is a formula ϕ in its language such that Γ ` ϕ

and Γ ` ¬ϕ. A set Γ of formulas is trivial or explosive if for any formula ϕ of its language,

Γ ` ϕ. In the context of classical logic the above two notions are equivalent. A logic is said

to be paraconsistent if there exists a set Γ of formulas such that Γ is inconsistent but not

explosive. So we have the following definition of paraconsistent logic:
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Definition. A logic is called paraconsistent if there exist formulas ϕ and ψ such that

{ϕ,¬ϕ} 0 ψ. (Par)

Many paraconsistent logics have been studied. These logics were developed with various

motivations. For example: Jaskowśki’s paraconsistent logic, Da Costa’s paraconsistent logic

systems Cn where 0 < n < ω, Priest’s logic of paradox, also other paraconsistent logics

defined by C. Mortensen, R. Brady, J. Marcos, W.A. Carnielli, A. Avron and many others.

In 1948 S. Jaśkowski proposed three conditions for a paraconsistent propositional logic

the simplified versions of which are as follows (cf. [16, p. 81],[17, p. 53]):

Jas1. the logic does not satisfy the implicational law of overfilling:

ϕ→ (¬ϕ→ ψ);

Jas2. the logic should be rich enough to enable practical inferences: it satisfies modus

ponens and the following formulas,

ϕ→ ϕ,

(ϕ→ ψ)→ ((γ → ϕ)→ (γ → ψ)),

(ϕ→ (ψ → γ))→ (ψ → (ϕ→ γ));

Jas3. it should have an intuitive justification: restriction to {0, 1} gives the classical valua-

tion.

Driven by some different motivation in 1963 Newton da Costa wanted to characterise

paraconsistency by proposing a whole hierarchy of paraconsistent propositional calculi, known

as Cn, for 0 < n < ω. The following four conditions are the basic requirements for these

calculi (cf. [17, p. 53]):
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NdaC1. the law of non-contradiction, ¬(ϕ ∧ ¬ϕ), should not be a valid schema;

NdaC2. from the set of formulae, {ϕ,¬ϕ}, not all formulas should be derived in general;

NdaC3. extension to the predicate calculi (with or without equality) of these propositional

calculi are simple;

NdaC4. without violating NdaC1, the calculi should contain the most part of the schemata

and rules of the classical propositional calculus.

We shall introduce a three-valued paraconsistent logic LPS3 in Chapter 3, which will

be the base logic for the paraconsistent set theory described in this thesis. The connection

between paraconsistent logics [12, 14, 27] and three-valued matrices is now well established

and a widely discussed issue, where an algebra with designated elements is usually called a

matrix in logic-literature. There are several articles dealing with this relationship [3, 7, 17,

26, 29]. Characterization of three-valued matrices giving rise to paraconsistency is shown

in [3, 2, 17]. The three-valued matrix obtained and dealt with in this thesis is naturally

one of them. The particular choice, however, stems from a specific motivation which will

be mentioned in Chapter 2 and Chapter 3. Although many paraconsistent logics have been

discussed in terms of three-valued semantics, in some cases a sound and complete axiomatic

system has not been obtained (e.g. Priest’s Logic of Paradox [26]).

Paraconsistent set theory

Some paraconsistent set theories are already developed [5, 15, 21, 36]. In [36] the author

used a paraconsistent logic as the underlying logic and the following axioms as set theoretic

axioms.

Abstraction. x ∈ {z : ϕ(z)} ↔ ϕ(x).
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Extensionality. ∀z(z ∈ x↔ z ∈ y)↔ x = y.

In this paraconsistent set theory the comprehension principle is a theorem, where the prin-

ciple is as follows: for any formula ϕ(x) having one free variable x,

Comprehension. ∃y∀x(x ∈ y ↔ ϕ(x)).

Using the comprehension scheme one can get existence of the Russell’s set, R = {x : x /∈ x}

in the paraconsistent set theory developed in [36]. After showing the existence of R it can be

proved that R 6= R. Hence the formula ∃x(x 6= x) is a theorem there. On the other hand it

can also be proved that identity is an equivalence relation. Though in the classical set theory

it seems contradictory, it is not explosive in Weber’s set theory [36] as the background logic

is paraconsistent. Moreover the comprehension principle produces the strength to have a

universal set, the set of all ordinals etc. Hence Russell’s paradox, Burali-Forti paradox are

not paradoxes in this set theory. It should also be mentioned that all the axioms of ZF−

hold in Weber’s set theory together with AC and Zorn’s Lemma.

The comprehension axiom scheme is derived as a theorem in many of the other para-

consistent set theories developed till now. As an immediate effect the paradoxes discussed

above do not remain paradoxes. Generally the paraconsistency enters in the corresponding

set theory through this axiom scheme.

In [5] some new paraconsistent set theories are developed, such as ZFmbC and ZFCil.

Both of these two set theories have the same language, where besides the two binary predicate

symbols “=” (for equality) and “∈” (for membership) there is one more unary predicate

symbol “C” (for consistency). The underlying logic for these set theories is named as QmbC,

which is the predicate extension of the logic mbC. The propositional logic mbC is known as

one of the basic Logic of Formal Inconsistencies (LFIs) [8, 6]. The paraconsistent set theory

ZFmbC is a subsystem of ZFCil.
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An overview of the research work done in this thesis

The idea of Boolean-valued model V(B) where V is the standard class model of classical

set theory and B is any arbitrary but fixed complete Boolean algebra was introduced in

1960s (cf. [4]). The motivation behind this construction was to understand in a different

way Cohen’s method of forcing [9] which is used to prove the results regarding consistency

and the independence of set theoretic statements. We have already discussed some other

algebra-valued models too.

Generally speaking an A-valued model V(A) validate all (or some) of the ZF-axioms

where A is the algebraic model for the underlying logic of the corresponding set theory.

For instance Boolean algebras are algebraic models of classical logic, Heyting algebras are

algebraic models of intuitionistic logic, and orthomodular lattices are algebraic models for

quantum logic. Accordingly, V(A) is called a model for classical set theory or intuitionistic

set theory or quantum set theory when A is a Boolean algebra or a Heyting algebra or

an orthomodular lattice, respectively. In Chapter 2 we shall describe the construction of

the Boolean-valued model V(B) in brief. The construction of the generalised algebra-valued

model V(A) corresponding to some algebra A is same as the construction of the Boolean-

valued model.

We have already said that our goal is to construct a paraconsistent set theory. As one

step towards this, an algebra A is defined so that V(A) becomes an algebra-valued model

of some versions of ZF−-axioms [22, Section 2.1] 2. This algebra A is sufficiently general

to give rise to some non-classical logics other than paraconsistent logics. In this project we

have chosen a three-valued matrix PS3 as an instance of the above mentioned algebra A.

The matrix PS3 is shown to give a semantics of a paraconsistent logic LPS3 [33]. We would

2We should like to mention that Joel Hamkins independently investigated the construction of general
algebra-valued model of set theory and proved a result equivalent to our Theorem 3.5.12 (presented at the
Workshop on Paraconsistent Set Theory in Storrs, CT in October 2013; personal communication).
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like to mention some of the results obtained in [22] to justify the selection of the particular

algebra PS3 in Chapter 3. It should be focused that claiming an algebra to be the model of

some logic means that the logic should be sound and complete with respect to the semantics

given in the algebra. In the algebra some elements need to be designated. In the Boolean

algebras and Heyting algebras the designated element is only the top element of the bounded

lattice. But in PS3 we will consider more than one element in the designated set.

The structure V(PS3) becomes an algebra-valued model of the paraconsistent set theory

mentioned above. Some properties of ordinal-like elements and in particular natural number-

like elements will be investigated in this model, where the notion of ordinal-like elements will

be defined in Chapter 4. For each ordinal number α in V the collection of all α-like elements

in V(PS3) will form an equivalence class made by the identity relation ∼ in V(A), defined

in Section 2.2.3. Some properties of the ordinal-like elements will be studied in comparison

with the corresponding properties of ordinals in classical set theories. In particular for any

natural number n in V the n-like elements and the arithmetic of them will be proposed.

It will be proved that the formula corresponding to mathematical induction is valid in this

algebra-valued model.

In V(PS3), though the identity relation ∼ is an equivalence relation still two elements

from the same class may not agree on the same properties. It will be shown that any two

elements from the same class will either both satisfy or both dissatisfy any negation-free

formula (defined in Section 2.1.3). On the other hand an example of a formula (having

negation) will be provided such that there are two elements from a same ∼-class, one of

which will satisfy the formula where as the other will not (for reference see Section 4.4).

It was already discussed that, if A is a deductive reasonable implication algebra then

V(A) may become an algebra-valued model of set theory. The logic corresponding to A will

act as the underlying logic of the set theory having the algebra-valued model V(A). It may

happen that such an algebra A is generating none of classical logic, intuitionistic logic and
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paraconsistent logic, but some other non-classical logic. In that case a new non-classical set

theory can be made in the same vein and not only that, an algebra-valued model viz. V(A)

of that set theory can be produced. Hence the research work found in this thesis has the

strength to produce different non-classical set theories corresponding to different deductive

reasonable implication algebras and a way to get the axiom systems of their underlying

non-classical logics.

It is worthwhile to mention that Chapter 2, Chapter 3, and Chapter 4 are based on the

papers [22], [33], and [32], respectively.

Comparison with previous paraconsistent set theories. The paraconsistent set the-

ory developed in this thesis does not validate the comprehension axiom scheme. Not only

that, it will be established that the statements “there is a Russell set”, “there is a set of

all ordinals”, and “there is a set of all sets” are invalid in our set theory. Hence the state-

ments of Russell’s paradox, Burali-Forti’s paradox, Cantor’s Paradox remain paradoxical in

this paraconsistent set theory. This is a notable difference with almost all of the existing

paraconsistent set theories.

There is a notion of inconsistent set in [36, p. 77], but there is no such notion in our

paraconsistent set theory. In Section 4.4 it will be shown that Leibniz’s law of indiscernible

of identicals will be violated here. Hence the property substitution is not in general valid

in this set theory (but is valid if restricted to negation-free formulas), whereas the law of

substitution is taken as a rule in the set theory developed in [36]. Unlike in classical set

theory, in the paraconsistent set theory of Weber, inaccessible cardinals can be proved to

exist [36, p. 90]. We shall develop some properties of ordinal numbers and in particular

natural numbers in our paraconsistent set theory in Section 4, but the theory of cardinal

numbers will not be investigated here.

One of the differences between the paraconsistent set theories ZFmbC and ZFCil, and

11



the one developed in this thesis is that the Leibniz’s axiom for equality,

x = y → (ϕ→ ϕ(x/y))

(where ϕ(x/y) denotes any formula obtained from ϕ by replacing some free occurrences of

the variable x by the variable y provided that y remains free in those occurrences) is taken

as a set theoretic axiom scheme in both of ZFmbC and ZFCil [5, p. 5]. But as mentioned

above, in Section 4.4 we shall show that Leibniz’s law of indiscernible of identicals is not

valid in our paraconsistent set theory. It is proved that ZFmbC and ZFCil are non-explosive

if ZF is consistent [5, Corollary 3.16], which is similar with the paraconsistent set theory we

have developed in this thesis as it will be shown in Section 3.6.1.
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Chapter 2

Algebra-valued models of set theories

On the basis of the standard textbook by J. L. Bell [4], we shall discuss briefly in the

following steps how a Boolean valued model is constructed.

1. Let us take the standard class model V of classical set theory and a complete Boolean

algebra, B = 〈B,∧,∨,⇒,∗ ,1,0〉.

2. For any ordinal α ∈ V we define,

V(B)
α = {x : Func(x) ∧ ran(x) ⊆ B ∧ ∃ξ < α(dom(x) ⊆ V

(B)
ξ )}

where as above, Func(x) is the abbreviation for the formula expressing “x is a function”

and in this case, we use dom(x) for the domain of the function x and ran(x) for the

range of the function x.

3. Using the above we get a Boolean valued model as,

V(B) = {x : ∃α(x ∈ V(B)
α )}.
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4. The language of classical ZFC is extended by adding a name corresponding to each

element of V(B), in it.

5. Each formula of the new language is associated by recursion on the complexity of the

formula with a value of the complete Boolean algebra, B. We start with the atomic

formulas u ∈ v and u = v, for any u, v in V(B). Their values are determined by a

simultaneous transfinite recursion,

Ju ∈ vK =
∨

x∈dom(v)

(v(x) ∧ Jx = uK), and

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK).

Then for any sentences σ and τ of the new language we define,

Jσ ∧ τK = JσK ∧ JτK,

Jσ ∨ τK = JσK ∨ JτK,

Jσ → τK = JσK⇒ JτK,

J¬σK = JσK∗,

J∀xϕ(x)K =
∧

u∈V (B)

Jϕ(u)K, and

J∃xϕ(x)K =
∨

u∈V (B)

Jϕ(u)K.

6. A sentence σ will be called valid in V(B) or V(B) will be called an algebra-valued model

of a sentence σ if JσK = 1. It will be denoted as V(B) � σ.

7. It can be shown that all the axioms of ZFC are valid in V(B) i.e., V(B) is a Boolean-

valued model of ZFC.

14



It is shown in [20] that if the same construction is done with a complete Heyting algebra

H instead of the complete Boolean algebra then V(H) becomes an algebra-valued model of

IZF. This idea was further generalized in [31, 34, 35]; and [24, 25], replacing the Heyting

algebra H by suitable lattices that produce algebra-valued models of quantum set theory

(where the algebra is an algebra of truth-values in quantum logic) or fuzzy set theory.

Generalising this idea we have found the algebraic properties needed for making the

axioms of set theories valid in the corresponding algebra-valued model.

2.1 Reasonable implication algebras

2.1.1 Implication algebras and implication-negation algebras

In this thesis, all structures (A,∧,∨,0,1) will be complete distributive lattices with

smallest element 0 and largest element 1.

As usual, we abbreviate x ∧ y = x as x ≤ y. An expansion of this structure by an

additional binary operation⇒ is called an implication algebra and an expansion with⇒ and

another unary operation ∗ is called an implication-negation algebra [22]. We emphasize that

no requirements are made for ⇒ and ∗ at this point. In [28, p. 30] a notion of “implication

algebra” is provided having some properties on the operators of the algebra. The property

for ⇒ in [28] is given by

(a⇒ b)⇒ a = a

for all a and b in the domain of the algebra. Since no property is assigned on⇒ in the impli-

cation algebra defined in this thesis, these two notions of implication algebra are completely

different.
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2.1.2 Interpreting propositional logic in algebras

By LProp we denote the language of propositional logic without negation (with connectives

∧, ∨, →, and ⊥ and countably many variables Var); we write LProp,¬ for the expansion of

this language to include the negation symbol ¬. Let L be either LProp or LProp,¬, and let A

be either an implication algebra or an implication-negation algebra, respectively.

Any map ι from Var to A (called an assignment) allows us to interpret L-formulas ϕ as

elements ι(ϕ) of the algebra.

For an L-formula ϕ and some X ⊆ A, we write ϕ ∈ X to mean “for all assignments

ι : Var→ A, we have that ι(ϕ) ∈ X”.

As usual, we call a set D ⊆ A a filter if the following four conditions hold: (i) 1 ∈ D,

(ii) 0 /∈ D, (iii) if x, y ∈ D, then x ∧ y ∈ D, and (iv) if x ∈ D and x ≤ y, then y ∈ D; in

this context, we call filters designated sets of truth values, since the algebra A and a filter

D together determine a logic `A,D by defining for every set Γ of LProp-formulas and every

LProp-formula ϕ

Γ `A,D ϕ :⇐⇒ if for all ψ ∈ Γ, we have ψ ∈ D, then ϕ ∈ D.

We write PosA := {x ∈ A ; x 6= 0} for the set of positive elements in A. In all of the

examples considered in this project, this set will be a filter.

2.1.3 The negation-free fragment

If L is any first-order language including the connectives ∧, ∨, ⊥ and→ and Λ any class

of L-formulas, we denote closure of Λ under ∧, ∨, ⊥, ∃, ∀, and → by Cl(Λ) and call it the

negation-free closure of Λ. A class Λ of formulas is negation-free closed if Cl(Λ) = Λ. By

NFF we denote the negation-free closure of the atomic formulas; its elements are called the
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negation-free formulas.1

Obviously, if L does not contain any connectives beyond ∧, ∨, ⊥, and→, then NFF = L.

Similarly, if the logic we are working in, allows to define negation in terms of the other

connectives (as is the case, e.g., in classical logic), then every formula is equivalent to one in

NFF.

2.1.4 Reasonable implication algebras

We call an implication algebra A = (A,∧,∨,0,1,⇒) reasonable if the operation ⇒

satisfies the following axioms:

P1. (x ∧ y) ≤ z implies x ≤ (y ⇒ z),

P2. y ≤ z implies (x⇒ y) ≤ (x⇒ z), and

P3. y ≤ z implies (z ⇒ x) ≤ (y ⇒ x).

We say that a reasonable implication algebra is deductive if

((x ∧ y)⇒ z) = (x⇒ (y ⇒ z)). (P4)

Proposition 2.1.1 In a reasonable implication algebra A for any two elements a and b if

a ≤ b holds then a⇒ b = 1 also holds.

Proof. Let a, b ∈ A (the domain of A) be such that a ≤ b. Then by the property of lattice,

1 ∧ a ≤ b. Now by P1 we can write 1 ≤ a⇒ b. Hence a⇒ b = 1, since 1 is the top element

of A. �
1In some contexts, our negation-free fragment is called the positive fragment ; in other contexts, the

positive closure is the closure under ∧, ∨, ⊥, ∃, and ∀ (not including →). In order to avoid confusion with
the latter contexts, we use the phrase “negation-free” rather than “positive”.
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Proposition 2.1.2 In a deductive reasonable implication algebra A for any two elements a

and b, a⇒ b = a⇒ (a ∧ b) holds.

Proof. For any two elements a and b in a reasonable implication algebra A using P1, P2

and P4 we have

a ∧ b ≤ a ∧ b

i.e., b ≤ a⇒ (a ∧ b)

i.e., a⇒ b ≤ a⇒ (a⇒ (a ∧ b))

≤ (a ∧ a)⇒ (a ∧ b)

≤ a⇒ (a ∧ b)

On the other hand since a ∧ b ≤ b by using P2 we have a ⇒ (a ∧ b) ≤ a ⇒ b. Hence

combining the above results we have a⇒ b = a⇒ (a ∧ b). �

Proposition 2.1.3 Let A be a reasonable implication algebra having D as a designated set.

If d ∈ D be any element then 1⇒ d ∈ D.

Proof. For any d ∈ D we have 1 ∧ d ≤ d. Then, by using P1 we can write, d ≤ 1 ⇒ d.

Since d ∈ D and D is a filter, by the condition (iv) of a filter given in Section 2.1.2 it can be

said that 1⇒ d ∈ D, and hence the proof is complete. �

One can immediately check that all Boolean algebras and Heyting algebras are reasonable

and deductive implication algebras.
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2.2 The model construction

2.2.1 Definitions and basic properties

Our construction follows very closely the Boolean-valued construction as it is shown in

the beginning of this chapter.

By L∈, we denote the first-order language of set theory using the predicate symbols =

and ∈; propositional connectives ∧, ∨, ⊥, and →; quantifiers ∀ and ∃. We can now expand

this language by adding all of the elements of V(A) as constants; the expanded language will

be called LA. For convenience we shall identify the elements of V(A) by their corresponding

names in LA.

As in the Boolean case (cf. [4, Induction Principle 1.7]), the (meta-)induction principle

for V(A) can be proved by a simple induction on the rank function: for every property Φ of

names, if for all x ∈ V(A), we have

∀y ∈ dom(x)(Φ(y)) implies Φ(x),

then all names x ∈ V(A) have the property Φ.

As in the Boolean-valued model construction, we define a map J·K assigning to each

negation-free formula in LA a truth value in A together with J⊥K = 0.

We abbreviate ∃x(x ∈ u ∧ ϕ(x)) by ∃x ∈ u ϕ(x) and ∀x(x ∈ u→ ϕ(x)) by ∀x ∈ u ϕ(x)

and call these bounded quantifiers. Bounded quantifiers will play a crucial role in this thesis.

If D is a filter on A and σ is a sentence of LA, we say that σ is D-valid or valid in V(A)

if JσK ∈ D and write V(A) |=D σ, or simply V(A) |= σ.

Proposition 2.2.1 If A is a reasonable implication algebra and u ∈ V(A), then Ju = uK = 1

and for each x ∈ dom(u), u(x) ≤ Jx ∈ uK.
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Proof. We will prove this theorem by induction principle for V(A). Let us take any u ∈ V(A)

and assume Jx = xK = 1 for all x ∈ dom(u). Now,

Ju = uK =
∧

x∈dom(u)

[u(x)⇒ Jx ∈ uK] ∧
∧

x∈dom(u)

[u(x)⇒ Jx ∈ uK]

=
∧

x∈dom(u)

[u(x)⇒ Jx ∈ uK]

Take any x ∈ dom(u), then we get,

Jx ∈ uK =
∨

y∈dom(u)

[u(y) ∧ Jx = yK]

≥ u(x) ∧ Jx = xK

= u(x) ∧ 1, (by Induction hypothesis)

= u(x)

Therefore we have for any x ∈ dom(u), [u(x)⇒ Jx ∈ uK] = 1, by the above theorem. Hence

it can be immediately concluded that Ju = uK = 1.

For the proof of the second part let us take an u ∈ V(A). Then for any x ∈ dom(u),

Jx ∈ uK =
∨

y∈dom(u)

[u(y) ∧ Jx = yK]

≥ u(x) ∧ Jx = xK

= u(x) ∧ 1, (using the first part of the theorem)

= u(x)

Hence the proof is complete. �

If A is a Boolean algebra or Heyting algebra then for all u, v, w ∈ V(A) the following
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holds:

Ju = vK ∧ Jv = wK ≤ Ju = wK, (?)

which is not true for any reasonable implication algebra A.

Observation 2.2.2 There is a reasonable implication algebra A and u, v, w ∈ V(A) such

that the property ? does not hold.

Proof. Let  L3 = 〈{1, 1/2, 0},∧,∨,⇒,∗ 〉 be the three valued  Lukasiewicz algebra having the

following truth tables:

∧ 1 1/2 0

1 1 1/2 0

1/2 1/2 1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1

1/2 1 1/2 1/2

0 1 1/2 0

⇒ 1 1/2 0

1 1 1/2 0

1/2 1 1 1/2

0 1 1 1

∗

1 0

1/2 1/2

0 1

and {1} as the designated set. It can be verified that 〈{1, 1/2, 0},∧,∨,⇒〉 is a reasonable

implication algebra.

Consider the algebra-valued model V( L3) and three elements (which are actually func-

tions) p0, p1/2 and p1 in V( L3) as dom(p0) = dom(p1/2) = dom(p1) = {∅} and p0(∅) =

0, p1/2(∅) = 1/2, and p1(∅) = 1, i.e., in the notation of naive set theory

p0 = {〈∅, 0〉},

p1/2 = {〈∅, 1/2〉}, and

p1 = {〈∅, 1〉}.

By fixing u = p0, v = p1/2 and w = p1 one get

Ju = vK = (p0(∅)⇒ J∅ ∈ p1/2K) ∧ (p1/2(∅)⇒ J∅ ∈ p0K)
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= (0⇒ J∅ ∈ p1/2K) ∧ (1/2⇒ (p0(∅) ∧ J∅ = ∅K))

= 1 ∧ (1/2⇒ 0)

= 1/2,

Jv = wK = (p1/2(∅)⇒ J∅ ∈ p1K) ∧ (p1(∅)⇒ J∅ ∈ p1/2K)

= (1/2⇒ (p1(∅) ∧ J∅ = ∅K)) ∧ (1⇒ (p1/2(∅) ∧ J∅ = ∅K))

= (1/2⇒ (1 ∧ 1)) ∧ (1⇒ (1/2 ∧ 1))

= (1/2⇒ 1) ∧ (1⇒ 1/2)

= 1 ∧ 1/2

= 1/2,

Ju = wK = (p0(∅)⇒ J∅ ∈ p1K) ∧ (p1(∅)⇒ J∅ ∈ p0K)

= (0⇒ J∅ ∈ p1K)) ∧ (1⇒ (p0(∅) ∧ J∅ = ∅K))

= 1 ∧ (1⇒ 0)

= 0

Hence there are u, v, w ∈ V( L3) so that the inequality Ju = vK∧ Jv = wK ≤ Ju = wK does not

hold. �

The following proposition provides a class of reasonable implication algebras such that

if A belongs to that class then there exist u, v, w ∈ V(A) for which the property (?) of

Observation 2.2.2 does not hold.

Proposition 2.2.3 Let A = 〈A,∧,∨,⇒,∗ , 0, 1〉 be an algebra such that 〈A,∧,∨,⇒, 0, 1〉 is

a reasonable implication algebra and the unary operator ∗ satisfies 1∗ = 0 and a⇒ b ≤ a∗∨ b
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for all a, b ∈ A. If there exist two elements p and q in A such that, (p ∧ p∗ ⇒ q) 6= 1 then

there exist x, y, z ∈ V(A) such that, Jx = yK ∧ Jy = zK � Jx = zK.

Proof. Let us take those p, q ∈ A such that (p ∧ p∗ ⇒ q) 6= 1. By this property and the

property P2 of reasonable implication algebra we get,

(p ∧ p∗ ⇒ 0) ≤ (p ∧ p∗ ⇒ q) < 1.

Since a ≤ b implies a ⇒ b = 1 for all a, b ∈ A and 0 is the bottom element in A, one can

conclude that p ∧ p∗ > 0. Let us define three elements in V(A) as,

x0 = {〈∅, 0〉},

xp = {〈∅, p〉}, and

x1 = {〈∅, 1〉}.

We shall show that,

Jx0 = xpK ∧ Jxp = x1K > Jx0 = x1K.

Let us first find the value of Jx0 = xpK.

Jx0 = xpK =
∧

u∈dom(x0)

(x0(u)⇒ Ju ∈ xpK) ∧
∧

v∈dom(xp)

(xp(v)⇒ Jv ∈ x0K)

= (x0(∅)⇒ J∅ ∈ xpK) ∧ (xp(∅)⇒ J∅ ∈ x0K)

= (0⇒ p) ∧ (p⇒ 0)

= 1 ∧ (p⇒ 0)

≥ p∗ ∨ 0

= p∗
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Similarly,

Jxp = x1K = (xp(∅)⇒ J∅ ∈ x1K) ∧ (x1(∅)⇒ J∅ ∈ xpK)

= (p⇒ 1) ∧ (1⇒ p)

≥ 1 ∧ (1∗ ∨ p)

= p, [since 1∗ = 0].

Again we can prove that, Jx0 = x1K = 0.

Hence Jx0 = xpK ∧ Jxp = x1K > Jx0 = x1K is proved. �

Therefore Observation 2.2.2 is a particular case of Proposition 2.2.3.

We are now interested in the formulas ∃x(x ∈ u∧ϕ(x)) and ∀x(x ∈ u→ ϕ(x)) for which

we use the abbreviations as ∃x ∈ uϕ(x) and ∀x ∈ uϕ(x), respectively.

Proposition 2.2.4 If A is a reasonable implication algebra, ϕ(x) an LA-formula with one

free variable x, and u ∈ V(A), then

J∃x ∈ u ϕ(x)K ≥
∨

x∈dom(u)

(u(x) ∧ Jϕ(x)K).

Proof. By definition,

J∃x ∈ uϕ(x)K = J∃x(x ∈ u ∧ ϕ(x))K

=
∨

y∈V(A)

(Jy ∈ uK ∧ Jϕ(y)K)

≥
∨

x∈dom(u)

(Jx ∈ uK ∧ Jϕ(x)K)

≥
∨

x∈dom(u)

(u(x) ∧ Jϕ(x)K), using proposition 2.2.1.
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Hence the proposition is proved. �

In the Boolean case, the inequality proved in Proposition 2.2.4 is an equality [4, Corollary

1.18]:

J∃x ∈ u ϕ(x)K =
∨

x∈dom(u)

(u(x) ∧ Jϕ(x)K).

Similarly the following equality can be proved in Boolean case:

J∀x ∈ u ϕ(x)K =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

But this one breaks down for general reasonable implication algebras:

Proposition 2.2.5 There exists a reasonable implication algebra A such that in the extended

language of the set theory corresponding to V(A) there exists a formula ϕ(x) so that the

following holds

J∀x ∈ u ϕ(x)K <
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

Proof. We shall show that  L3 is such a reasonable implication algebra. Consider the

 Lukasiewicz-valued model V( L3) and the three elements p0, p1/2, and p1 in V( L3) as

p0 = {〈∅, 0〉},

p1/2 = {〈∅, 1/2〉}, and

p1 = {〈∅, 1〉}.

Consider the formula ϕ(x) := (x = p0) as well as the name u = {〈p1/2, 1/2〉}. Hence

J∀x ∈ uϕ(x)K =
∧

x∈V( L3)

(Jx ∈ uK⇒ Jϕ(x)K)
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≤ Jp1 ∈ uK⇒ Jϕ(p1)K

= (u(p1/2) ∧ Jp1 = p1/2K)⇒ Jp1 = p0K

= (1/2 ∧ 1/2)⇒ 0

= 1/2,

∧
x∈dom(u)

(u(x)⇒ Jϕ(x)K) = u(p1/2)⇒ Jϕ(p1/2)K)

= 1/2⇒ Jp1/2 = p0K

= 1/2⇒ 1/2

= 1.

As a conclusion the following is proved

J∀x ∈ uϕ(x)K <
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

�

This means that in the setting of reasonable implication algebras, the following equality

J∀x ∈ u ϕ(x)K =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K) (BQϕ)

becomes a new axiom, one whose validity depends on the choice of the formula ϕ and on A

(and conceivably on the model of set theory V).

If Λ is any class of formulas of the extended language, we say that V(A) satisfies the

Λ-bounded quantification property, if BQϕ holds for every ϕ ∈ Λ.
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2.2.2 Set theory

It can be observed that all axioms and axiom schemes have natural forms that do not

include any negation symbols,2 so unless we instantiate one of the schemes with a formula

containing a negation symbol, we will always have formulas in NFF.

We write NFF-Separation and NFF-Collection for the axiom schemes where we only allow

the instantiation by negation-free formulas, and NFF-ZF− and NFF-ZF stand for negation-

free set theory using these schemes.

We emphasize once more that in settings where negation can be defined in terms of

negation-free formulas (such as in classical logic negation of a formula, ¬ϕ can be defined

as ϕ→ ⊥), NFF-ZF coincides (up to provable equivalence) with standard Zermelo-Fraenkel

set theory. But there are logics where ϕ → ⊥ do not define the formula ¬ϕ, e.g., the logic

LPS3, introduced in Chapter 3.

Theorems 2.2.6 and 2.2.7 are the core of this chapter, establishing validity of NFF-ZF−

in our A-valued model.

Theorem 2.2.6 Let A be a reasonable implication algebra such that V(A) satisfies the NFF-

bounded quantification property, and let D be any filter on A. Then Extensionality, Pairing,

Infinity, Union and NFF-Collection are D-valid in V(A); in fact, they all get the value 1.

Proof. (i) Extensionality: We know that,

J∀x∀y[∀z(z ∈ x↔ z ∈ y)→ x = y]K

=
∧

u∈V(A)

∧
v∈V(A)

J∀z(z ∈ u↔ z ∈ v)→ u = v]K

2Note that this is only the case because we formulated the occurrence of the empty set in Infinity ap-
propriately and because we used the axiom scheme of set induction (or ∈-induction) instead of the usual
formulation of Foundation; the latter is not negation-free.
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=
∧

u∈V(A)

∧
v∈V(A)

[(J∀z ∈ u(z ∈ v)K ∧ J∀z ∈ v(z ∈ u)K)⇒ Ju = vK]

=
∧

u∈V(A)

∧
v∈V(A)

[((
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK)) ∧ (
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK)))⇒ Ju = vK]

=
∧

u∈V(A)

∧
v∈V(A)

(Ju = vK⇒ Ju = vK)

= 1

So we have shown that the Axiom of Extensionality is D-valid in V(A).

(ii) Pairing: For proving the Paring Axiom is true in V(A), it is to be shown,

∧
u∈V(A)

∧
v∈V(A)

∨
z∈V(A)

J∀w(w ∈ z ↔ (w = u ∨ w = v))K = 1.

Let us take arbitrary u, v ∈ V(A) and then define z ∈ V(A) such that dom(z) = {u, v} and

ran(z) = {1}. Now,

J∀w(w ∈ z → (w = u ∨ w = v))K =
∧

x∈dom(z)

(z(x)⇒ Jx = uK ∨ Jx = vK) = 1.

Similarly,

J∀w((w = u ∨ w = v)→ w ∈ z)K =
∧

w∈V(A)

(Jw = u ∨ w = vK⇒
∨

x∈dom(z)

(z(x) ∧ Jx = wK))

=
∧

w∈V(A)

(Jw = u ∨ w = vK⇒ Jw = u ∨ w = vK)

= 1

Hence we are done.
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(iii) Infinity: Let us first define for each x ∈ V ,

x̂ = {〈ŷ, 1〉 : y ∈ x}

where V is the standard model of classical set theory. Clearly x̂ ∈ V(A) for every x ∈ V.

Particularly ω̂ ∈ V(A), where ω is the first infinite ordinal. We will show that,

J∀z(z ∈ ∅→ ⊥)K ∧ J∅ ∈ ω̂K ∧ J∀x ∈ ω̂∃y ∈ ω̂(x ∈ y)K = 1.

Consider the first conjunct:

J∀z(z ∈ ∅→ ⊥)K =
∧

z∈V(PS3)

(0⇒ 0) = 1.

The value of the second conjunct is,

J∅ ∈ ω̂K =
∨

x∈dom(ω̂)

(ω̂(x) ∧ J∅ = xK) ≥ (ω̂(∅)⇒ J∅ = ∅K) = 1.

Now we will show that the value of the third conjunct is also 1.

J∀x ∈ ω̂∃y ∈ ω̂(x ∈ y)K =
∧

x∈dom(ω̂)

(ω̂(x)⇒
∨

y∈dom(ω̂)

(ω̂(y) ∧ Jx ∈ yK))

=
∧

x∈dom(ω̂)

(1⇒
∨

y∈dom(ω̂)

Jx ∈ yK)

Let us take any arbitrary x ∈ dom(ω̂). By our construction there exists some m ∈ ω such

that x = m̂. Clearly, ̂(m+ 1) ∈ dom(ω̂), where “ + ” is taken as the standard addition
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operator on the ordinals of V. Now,

∨
y∈dom(ω̂)

Jx ∈ yK =
∨

y∈dom(ω̂)

Jm̂ ∈ yK ≥ Jm̂ ∈ ̂(m+ 1)K ≥ ̂(m+ 1)(m̂) ∧ Jm̂ = m̂K = 1.

Therefore we get,

J∀x ∈ ω̂∃y ∈ ω̂(x ∈ y)K =
∧

x∈dom(ω̂)

(1⇒
∨

y∈dom(ω̂)

Jx ∈ yK)

=
∧

x∈dom(ω̂)

(1⇒ 1)

= 1.

Hence the axiom of infinity is valid in V(A).

(iv) Union: We know that,

J∀u∃v∀x(x ∈ v ↔ ∃y ∈ u(x ∈ y))K =
∧

u∈V(A)

∨
v∈V(A)

J∀x(x ∈ v ↔ ∃y ∈ u(x ∈ y))K.

Therefore, if for any u ∈ V(A) we can find a v ∈ V(A) for which,

J∀x(x ∈ v ↔ ∃y ∈ u(x ∈ y))K

= J∀x ∈ v∃y ∈ u(x ∈ y)K ∧ J∀x(∃y ∈ u(x ∈ y)→ (x ∈ v))K = 1

then Union will be valid in V(A).

Let us take any u ∈ V(A) and then define a v ∈ V(A) so that,

dom(v) =
⋃
{dom(y) : y ∈ dom(u)}
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and for any x ∈ dom(v),

v(x) = J∃y ∈ u(x ∈ y)K.

For this v we have,

J∀x ∈ v∃y ∈ u(x ∈ y)K =
∧

x∈dom(v)

(J∃y ∈ u(x ∈ y)K⇒ J∃y ∈ u(x ∈ y)K) = 1.

Let us now check the value of the second conjunct.

J∀x(∃y ∈ u(x ∈ y)→ (x ∈ v))K =
∧

x∈V(A)

(J∃y ∈ u(x ∈ y)K⇒ Jx ∈ vK)

=
∧

x∈V(A)

[J∃y ∈ u(x ∈ y)K⇒
∨

z∈dom(v)

(v(z) ∧ Jx = zK)]

=
∧

x∈V(A)

[(
∨

y∈dom(u)

(u(y) ∧ Jx ∈ yK))

⇒
∨

z∈dom(v)

(
∨

y∈dom(u)

(u(y) ∧ Jz ∈ yK) ∧ Jx = zK)]

We claim, for any x ∈ V(A),

∨
y∈dom(u)

(u(y) ∧ Jx ∈ yK)⇒
∨

z∈dom(v)

(
∨

y∈dom(u)

(u(y) ∧ Jz ∈ yK) ∧ Jx = zK) = 1

i.e., ∨
y∈dom(u)

(u(y) ∧ Jx ∈ yK)⇒
∨

y∈dom(u)

(u(y) ∧
∨

z∈dom(v)

(Jz ∈ yK ∧ Jx = zK)) = 1.

It will be proved if we can show, for any y ∈ dom(u),

Jx ∈ yK ≤
∨

z∈dom(v)

(Jz ∈ yK ∧ Jx = zK)).
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Let us take an element y ∈ dom(u). Then,

∨
z∈dom(v)

(Jz ∈ yK ∧ Jx = zK)) =
∨

z∈dom(v)

∨
w∈dom(y)

(y(w) ∧ Jz = wK ∧ Jx = zK).

By our construction, w ∈ dom(y) implies w ∈ dom(v). Hence for any w ∈ dom(y),

∨
z∈dom(v)

(y(w) ∧ Jz = wK ∧ Jx = zK) ≥ (y(w) ∧ Jw = wK ∧ Jx = wK)

= (y(w) ∧ Jx = wK).

Hence we get,

∨
z∈dom(v)

∨
w∈dom(y)

(y(w) ∧ Jz = wK ∧ Jx = zK) ≥
∨

w∈dom(y)

(y(w) ∧ Jx = wK),

i.e., ∨
z∈dom(v)

∨
w∈dom(y)

(y(w) ∧ Jz = wK ∧ Jx = zK) ≥ Jx ∈ yK.

But we know that

∨
w∈dom(y)

(y(w) ∧ Jz = wK) ∧ Jx = zK ≥
∨

w∈dom(y)

(y(w) ∧ Jz = wK ∧ Jx = zK),

which implies

∨
z∈dom(v)

(
∨

w∈dom(y)

(y(w) ∧ Jz = wK) ∧ Jx = zK) ≥
∨

z∈dom(v)

∨
w∈dom(y)

(y(w) ∧ Jz = wK ∧ Jx = zK),

i.e., ∨
z∈dom(v)

(Jz ∈ yK ∧ Jx = zK) ≥
∨

z∈dom(v)

∨
w∈dom(y)

(y(w) ∧ Jz = wK ∧ Jx = zK),
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and as a conclusion we get,

∨
z∈dom(v)

(Jz ∈ yK ∧ Jx = zK)) ≥ Jx ∈ yK.

(v) NFF-Collection: Let ϕ(x, y) be a negation-free formula having two free variables. By

definition,

J∀u[∀x ∈ u∃yϕ(x, y)→ ∃v∀x ∈ u∃y ∈ vϕ(x, y)]K

=
∧

u∈V(A)

J∀x ∈ u∃yϕ(x, y)→ ∃v∀x ∈ u∃y ∈ vϕ(x, y)K.

Now fix any u ∈ V(A) and then consider,

J∀x ∈ u∃yϕ(x, y)K =
∧

x∈dom(u)

[u(x)⇒ J∃yϕ(x, y)K]

=
∧

x∈dom(u)

[u(x)⇒
∨

y∈V(A)

Jϕ(x, y)K].

We have taken A as a set. Therefore we may apply the Axiom of Replacement in V so that

for any x ∈ dom(u) we get an ordinal αx such that

∨
y∈V(A)

Jϕ(x, y)K =
∨

y∈V(A)
αx

Jϕ(x, y)K.

Let α =
⋃
{αx : x ∈ dom(u)}. So we get,

∧
x∈dom(u)

[u(x)⇒
∨

y∈V(A)

Jϕ(x, y)K] =
∧

x∈dom(u)

[u(x)⇒
∨

y∈V(A)
αx

Jϕ(x, y)K].
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Since αx ⊆ α, for each x ∈ dom(u),

∨
y∈V(A)

αx

Jϕ(x, y)K ≤
∨

y∈V(A)
α

Jϕ(x, y)K.

Then, by the property P2, on page 17, for each x ∈ dom(u),

[u(x)⇒
∨

y∈V(A)
αx

Jϕ(x, y)K] ≤ [u(x)⇒
∨

y∈V(A)
α

Jϕ(x, y)K].

Hence we can easily conclude that,

∧
x∈dom(u)

[u(x)⇒
∨

y∈V(A)

Jϕ(x, y)K] ≤
∧

x∈dom(u)

[u(x)⇒
∨

y∈V(A)
α

Jϕ(x, y)K].

Let us take, v = V
(A)
α × 1; then clearly v ∈ V(A) and

J∃y ∈ vϕ(x, y)K =
∨

y∈dom(v)

[v(y) ∧ Jϕ(x, y)K]

=
∨

y∈V(A)
α

Jϕ(x, y)K, [since v(y) = 1, for all y ∈ dom(v) = V(A)
α ].

Now by putting the above results together we get,

J∀x ∈ u∃yϕ(x, y)K ≤
∧

x∈dom(u)

[u(x)⇒ J∃y ∈ vϕ(x, y)K] = J∀x ∈ u∃y ∈ vϕ(x, y)K.

Hence it is easy to prove, the NFF-Collection Axiom Schema is D-valid in V(A). �

Theorem 2.2.7 Let A be a reasonable and deductive implication algebra such that V(A)

satisfies the NFF-bounded quantification property, and let D be any filter on A. Then Power

Set and NFF-Separation are D-valid in V(A); in fact, they get the value 1.
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Proof. (i) Power Set: Let us take any u ∈ V(A) and fix v ∈ V(A) such that, dom(v) = Adom(u)

and for each x ∈ dom(v),

v(x) = Jx ⊆ uK = J∀y ∈ x(y ∈ u)K.

Here we have abbreviated ∀y ∈ x(y ∈ u) as x ⊆ u. Now it is enough to prove,

J∀x(x ∈ v ↔ ∀y ∈ x(y ∈ u))K = J∀x ∈ v(x ⊆ u)K ∧ J∀x(x ⊆ u→ x ∈ v)K = 1.

The value of the first conjunct is clearly 1 by our definitions and the fact that a⇒ a = 1 for

all a ∈ A. So we are interested to prove that the value of the second conjunct is also 1, if A

has the property, a⇒ b ≤ a⇒ (a ∧ b). The second conjunct is,

J∀x(x ⊆ u→ x ∈ v)K =
∧

x∈V(A)

(J∀y ∈ x(y ∈ u)K⇒ Jx ∈ vK).

Let us fix an arbitrary x ∈ V(A). Then,

J∀y ∈ x(y ∈ u)K⇒ Jx ∈ vK

= J∀y ∈ x(y ∈ u)K⇒
∨

z∈dom(v)

(v(z) ∧ Jx = zK)

= J∀y ∈ x(y ∈ u)K⇒
∨

z∈dom(v)

(J∀y ∈ z(y ∈ u)K ∧ Jx = zK)

=
∧

w∈dom(x)

(x(w)⇒ Jw ∈ uK)⇒
∨

z∈dom(v)

[
∧

p∈dom(z)

(z(p)⇒ Jp ∈ uK)∧

∧
w∈dom(x)

(x(w)⇒ Jw ∈ zK) ∧
∧

p∈dom(z)

(z(p)⇒ Jp ∈ xK)]

≥
∧

w∈dom(x)

(x(w)⇒ Jw ∈ uK)⇒
∧

w∈dom(x)

(x(w)⇒ Jw ∈ z′K)

[for some z′ ∈ dom(v) such that, z′(p) = u(p) ∧ Jp ∈ xK, for all p ∈ dom(z′)].
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Now let us take any w ∈ dom(x). Then,

x(w)⇒ Jw ∈ z′K = x(w)⇒
∨

p∈dom(z′)

(z′(p) ∧ Jp = wK)

= x(w)⇒
∨

p∈dom(z)

[u(p) ∧ (
∨

w′∈dom(x)

(x(w′) ∧ Jp = w′K)) ∧ Jp = wK]

≥ x(w)⇒
∨

p∈dom(u)

[u(p) ∧ (x(w) ∧ Jp = wK) ∧ Jp = wK]

= x(w)⇒
∨

p∈dom(u)

(u(p) ∧ Jp = wK) ∧ x(w)

= x(w)⇒ Jw ∈ uK ∧ x(w)

≥ x(w)⇒ Jw ∈ uK, (by our assumption).

Hence the following holds,

∧
w∈dom(x)

(x(w)⇒ Jw ∈ uK) ≤
∧

w∈dom(x)

(x(w)⇒ Jw ∈ z′K).

Therefore for any x ∈ V(A),

∧
w∈dom(x)

(x(w)⇒ Jw ∈ uK)⇒
∧

w∈dom(x)

(x(w)⇒ Jw ∈ z′K) = 1

i.e.,

J∀y ∈ x(y ∈ u)K⇒ Jx ∈ vK = 1.

Hence we get, the value of the second conjunct is also 1. Therefore the Power Set Axiom is

true in V(A).

(ii) NFF-Separation: Let ϕ(x) be a negation-free formula having one free variable. We know
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that,

J∀u∃v∀x(x ∈ v ↔ x ∈ u ∧ ϕ(x))K =
∧

u∈V(A)

∨
v∈V(A)

J∀x(x ∈ v ↔ x ∈ u ∧ ϕ(x))K.

Let us take any u ∈ V(A) and define v ∈ V(A) by dom(u) = dom(v) and for each x ∈ dom(v),

v(x) = u(x) ∧ Jϕ(x)K.

Now,

J∀x(x ∈ v ↔ x ∈ u ∧ ϕ(x))K = J∀x ∈ v(x ∈ u ∧ ϕ(x))K ∧ J∀x(x ∈ u ∧ ϕ(x)→ x ∈ v)K.

Let us first find the value of the first conjunct.

J∀x ∈ v(x ∈ u ∧ ϕ(x))K =
∧

x∈dom(v)

(u(x) ∧ Jϕ(x)K⇒ Jx ∈ uK ∧ Jϕ(x)K) = 1,

since, dom(v) = dom(u) and u(x) ≤ Jx ∈ uK for each x ∈ dom(u).

The value of the second conjunct is,

J∀x(x ∈ u ∧ ϕ(x)→ x ∈ v)K =
∧

x∈V(A)

(Jx ∈ uK ∧ Jϕ(x)K⇒ Jx ∈ vK)

=
∧

x∈V(A)

(Jx ∈ uK⇒ (Jϕ(x)K⇒ Jx ∈ vK))

= J∀x(x ∈ u→ (ϕ(x)→ x ∈ v)K

= J∀x ∈ u(ϕ(x)→ x ∈ v)K

=
∧

x∈dom(u)

(u(x)⇒ (Jϕ(x)K⇒ Jx ∈ vK))

=
∧

x∈dom(u)

[(u(x) ∧ Jϕ(x)K)⇒ Jx ∈ vK]
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=
∧

x∈dom(v)

(v(x)⇒ Jx ∈ vK)

= 1.

Hence the theorem is proved. �

2.2.3 Notion of “set”

Usually, in the model theory of set theory, we build models (M,E) where M is a class

of objects and E is a binary relation on M . We interpret these structures as L∈-structures

where the symbol ∈ is interpreted by E and the symbol = is interpreted by equality of

objects in M . So, the objects of M will be interpreted as “sets”.

This is quite different in the setting of algebra-valued models: the elements of V(A) are

not interpreted as the objects of our model of set theory; in particular, equality between

them is not the correct interpretation for the = symbol in L∈. Instead, the elements of V(A)

are names for sets, and a given set can have many different names.

If A is a Boolean algebra, i.e., we are looking at Boolean-valued models, there is a way

of transforming V(A) into a model of set theory. This transformation links the theory of

Boolean-valued models to the theory of forcing and is discussed in [4, Chapter 4]:

If G is an A-generic filter over V, then we define an equivalence relation ∼G on V(A) that

will respect the definition of the evaluation of ∈ in the sense that if

V(A) |= τ ∈ τ ∗ and τ ∼G τ ′, then V(A) |= τ ′ ∈ τ ∗

for any names τ, τ ′, and τ ∗. So, on the quotient V(A)/∼G, we can define a relation EG by

[τ ]∼G EG [τ ′]∼G iff V(A) |= τ ∈ τ ′.
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As a consequence, the structure (V(A)/∼G, EG) is now an actual L∈-structure and one can

show that it is a wellfounded model of the axioms of set theory [4, Theorem 4.22].

The situation is different for more general algebras A where we do not have an analogue

of the notion of a generic filter. A natural and näıve idea would be to think of the equivalence

classes of the following relation:

τ ∼ τ ′ iff V(A) |= τ = τ ′.

For Boolean algebras A, this näıve idea does not give us a proper ontology: for instance,

if B4 = {0, 1, l, r} is the four element Boolean algebra, then the empty name ∅ is the name

for the empty set. For x ∈ B4, let τx be the name with domain {∅} and τx(∅) = x. These

four names are pairwise non-equivalent in ∼, but correspond in the set theory of V(B4) to

only two sets, viz. ∅ and {∅}.

Moving from Boolean valued models to Heyting valued models, this phenomenon is ex-

ploited to provide models of intuitionistic set theory that have large power sets of the ordinal

number 1.

For our algebra-valued models, we shall explore the properties of this relation in Chapter

4 in depth. Since we are working in a weak logic, it is not immediately obvious that ∼ is an

equivalence relation. For example consider Proposition 2.2.3:

Let A be a reasonable-implication algebra which satisfies all the conditions of Proposition

2.2.3. If we observe the proof of this proposition, we get three elements x0, xp, and x1 in V(A)

such that Jx0 = xpK = p∗, Jxp = x1K = p, and Jx0 = x1K = 0. Now if we fix the designated

set DA of A such a way that p and p∗ both are in DA then

V(A) |= (x0 = xp) ∧ (xp = x1) but V(A) 2 x0 = x1.
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This shows that ∼ is not an equivalence relation in this algebra-valued model V(A).

In Chapter 3 we shall introduce a reasonable implication algebra PS3 which will give rise

to an algebra-valued model of a paraconsistent set theory. From Lemma 3.5.2 (i), one can

deduce that ∼ will be an equivalence relation in V(PS3).
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Chapter 3

The three-valued matrix PS3 and the

paraconsistent logic LPS3

In Chapter 2 (Theorems 2.2.6 and 2.2.7), we gave sufficient conditions on an algebra A

such that the relevant axioms of set theory are valid in V(PS3). This raises the immediate

question whether there are any algebras A that are neither Boolean algebras nor Heyting

algebras that satisfy these sufficient conditions. In this chapter, we shall introduce such an

algebra PS3. The logic LPS3 is found which is sound and (weak)complete with respect to

PS3.

3.1 The three-valued matrix PS3

We introduce a three-valued matrix PS3 = 〈{1, 1/2, 0},∧,∨,⇒,∗ 〉 having the following

truth tables:
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∧ 1 1/2 0

1 1 1/2 0

1/2 1/2 1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1

1/2 1 1/2 1/2

0 1 1/2 0

⇒ 1 1/2 0

1 1 1 0

1/2 1 1 0

0 1 1 1

∗

1 0

1/2 1/2

0 1

and D = {1, 1/2} as the designated set.

The algebra PS3 is a complete distributive lattice relative to ∧,∨. It can be checked that

PS3 is a deductive reasonable implication algebra. By asserting values 1/2 to ϕ and 0 to ψ

one can check that “Par” is satisfied. Later we will prove that BQϕ holds in V(PS3) for every

negation-free formula ϕ (see Theorem 3.5.7).

This matrix is included in the collection of 213 three-valued matrices of the Logic of

Formal Inconsistencies (cf. [6]) after exclusion of the inconsistency operator “ • ”. For our

purpose we do not need the operator for inconsistency which acts for internalising inconsis-

tency within the object language. Now it is important to explain why we have chosen PS3.

First of all ({1, 1/2, 0},∧,∨) has to be a complete distributive lattice for which ∧ and ∨ have

to be the operators minimum and maximum respectively. Secondly for satisfying properties

P1, P2, P3, and P4 the only possibilities for the implication are given below:

⇒1 1 1/2 0

1 1 1 1

1/2 1 1 1

0 1 1 1

⇒2 1 1/2 0

1 0 0 0

1/2 0 0 0

0 0 0 0

⇒3 1 1/2 0

1 1 1/2 0

1/2 1 1 0

0 1 1 1

⇒4 1 1/2 0

1 1 1 0

1/2 1 1 0

0 1 1 1
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The implications⇒1 and⇒2 cannot produce a reasonable logic as these two are degenerated.

The implication ⇒3 satisfies both P1 and its converse, though the converse of P1 is not

needed for being a reasonable implication algebra. Besides, ⇒3 together with the above

mentioned operators ∧ and ∨ produce the three-valued Heyting algebra. As a consequence

we are interested in ⇒4 which is the implication of PS3. Before fixing the truth table of ∗

it should be noticed, since 1 ⇒ 1/2 = 1 in the chosen truth table for ⇒, for getting Modus

Ponens as a valid rule in our system the designated set has to be fixed as {1, 1/2}.

Following are the requirements for fixing the truth table of ∗.

(i) For generating a paraconsistent logic, there should exist an element d ∈ {1, 1/2} such

that d∗ ∈ {1, 1/2} as well.

(ii) For getting a reasonable logic one can expect 0∗ ∈ {1, 1/2} and either 1∗ = 0 or 1/2
∗ = 0.

Hence the following are only possibilities for the truth table of ∗.

∗
1

1 0

1/2 1/2

0 1

∗
2

1 0

1/2 1

0 1

∗
3

1 1/2

1/2 0

0 1

∗
4

1 1

1/2 0

0 1

∗
5

1 0

1/2 1/2

0 1/2

∗
6

1 0

1/2 1

0 1/2

∗
7

1 1/2

1/2 0

0 1/2

∗
8

1 1

1/2 0

0 1/2

We are interested in taking 1∗ = 0 and 0∗ = 1 so that it does not violate the third criterion

of Jaśkowski, Jas3 for being a paraconsistent logic. Hence ∗1 and ∗2 are the only remaining

possibilities. Since we want to have the rule of double negation, as in many of the other

well known paraconsistent logics (shown in Section 3.3) the only choice for ∗ is ∗1. However,

it may be mentioned that in [23] a three-valued paraconsistent logic G′3 having connectives

∧, ∨, ⇒ and ∗ has been intensively investigated in which ∧ and ∨ are same as PS3 but ⇒

and ∗ are taken as ⇒3 and ∗2, respectively. Since ⇒3 is same as the implication operator of
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the three-valued Heyting algebra, and Heyting-valued models are already studied, we decide

to work with the implication operator ⇒4, which is same as the operator ⇒ of PS3. Some

comparisons between PS3 and G′3 are given in Section 3.3.2. It is to be noted that PS3 is

a fixed, particular algebra of type (2, 2, 2, 1, 0, 0) which satisfies the conditions P1, P2, P3,

P4, and Par.

3.2 The logic LPS3

In this section we introduce an axiom system for the propositional logic LPS3 having the

matrix PS3 as the three-valued semantics. The alphabet of LPS3 consists of propositional

letters p1, p2, . . .; logical connectives ¬, ∧, ∨, →. the well formed formulas are constructed

in the usual way.

3.2.1 The axiom system for LPS3

The following formulas are taken as the axioms for LPS3:

(Ax1) ϕ→ (ψ → ϕ)

(Ax2) (ϕ→ (ψ → γ))→ ((ϕ→ ψ)→ (ϕ→ γ))

(Ax3) ϕ ∧ ψ → ϕ

(Ax4) ϕ ∧ ψ → ψ

(Ax5) ϕ→ ϕ ∨ ψ

(Ax6) (ϕ→ γ) ∧ (ψ → γ)→ (ϕ ∨ ψ → γ)

(Ax7) (ϕ→ ψ) ∧ (ϕ→ γ)→ (ϕ→ ψ ∧ γ)

(Ax8) ϕ↔ ¬¬ϕ

(Ax9) ¬(ϕ ∧ ψ)↔ (¬ϕ ∨ ¬ψ)

(Ax10) (ϕ ∧ ¬ϕ)→ (¬(ψ → ϕ)→ γ)
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(Ax11) (ϕ→ ψ)→ (¬(ϕ→ γ)→ ψ)

(Ax12) (¬ϕ→ ψ)→ (¬(γ → ϕ)→ ψ)

(Ax13) ⊥ → ϕ

(Ax14) (ϕ ∧ (ψ → ⊥))→ ¬(ϕ→ ψ)

(Ax15) (ϕ ∧ (¬ϕ→ ⊥)) ∨ (ϕ ∧ ¬ϕ) ∨ (¬ϕ ∧ (ϕ→ ⊥))

where ϕ, ψ, γ are any well formed formulas and ⊥ is the abbreviation for ¬(θ → θ) for any

arbitrary formula θ.

The rules for LPS3 are the following:

1.
ϕ, ψ

ϕ ∧ ψ

2.
ϕ, ϕ→ ψ

ψ

Let ` be defined in the usual way and |= be defined as follows: let Γ be a set of formulas

and ϕ be a formula in LPS3; if for any valuation v, v(ψ) ∈ {1, 1/2} for all ψ ∈ Γ, implies

v(ϕ) ∈ {1, 1/2} then we say Γ |= ϕ. Below we shall show that the propositional axiom system

is sound and (weak)complete with respect to PS3.

3.2.2 Soundness

Theorem 3.2.1 For any formula ϕ and a set of formulas Γ, if Γ ` ϕ then Γ |= ϕ.

Proof. It is immediate that under any valuation the values of the axioms are either 1 or 1/2

and all the rules are valid. Hence the value of any theorem will belong to the designated set,

with respect to any valuation. So the theorem is proved. �
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3.2.3 Completeness

For the proof of completeness we need a few lemmas.

Lemma 3.2.2 For any formula ϕ, ` ϕ→ ϕ holds.

Proof. Let us take an arbitrary formula ϕ. The following deduction will prove the theorem.

` 1. [ϕ→ ((ϕ→ ϕ)→ ϕ)]→ [(ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ)] Axiom 2

2. ϕ→ ((ϕ→ ϕ)→ ϕ) Axiom 1

3. (ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) M.P. 1, 2

4. ϕ→ (ϕ→ ϕ) Axiom 1

5. ϕ→ ϕ M.P. 3, 4

Hence the proof is complete. �

Lemma 3.2.3 (Deduction Theorem). If Γ ∪ {ϕ} ` ψ then Γ ` ϕ→ ψ.

Proof. Let x1, x2, . . . , xn be a derivation of ψ from Γ∪{ϕ}. So by the definition of derivation

we get, xn = ψ. We will prove the theorem by showing, Γ ` ϕ→ xi for i = 1, 2, . . . , n.

Case 1. Let x1 be an axiom. The following derivation will prove Γ ` ϕ→ x1.

Γ ` 1. x1 Axiom

2. x1 → (ϕ→ x1) Axiom 1

3. ϕ→ x1 M.P. 1, 2

Case 2. Let x1 be in Γ. Now Γ ` ϕ→ x1 will be proved by following way.

Γ ` 1. x1 Assumption
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2. x1 → (ϕ→ x1) Axiom 1

3. ϕ→ x1 M.P. 1, 2

Case 3. Suppose x1 is ϕ. By the previous theorem we know that ` ϕ→ ϕ for any formula

ϕ. So in this case we can also prove, Γ ` ϕ→ ϕ i.e., Γ ` ϕ→ x1 by monotonicity.

Case 4. Now suppose xk (k ≤ n) is such that it is derived from xi and xj (1 ≤ i, j ≤ k − 1)

where Γ ` ϕ→ xi and Γ ` ϕ→ xj either by Rule 1 or by M.P.

Subcase 4.1. Let xk is derived from xi and xj by Rule 1, i.e., xk = xi ∧ xj. We have

to prove Γ ` ϕ→ xk. The derivation for proving this is as follows:

Γ ` 1. ϕ→ xi Assumption

2. ϕ→ xj Assumption

3. (ϕ→ xi) ∧ (ϕ→ xj) Rule 1 on 1, 2

4. (ϕ→ xi) ∧ (ϕ→ xj)→ (ϕ→ xi ∧ xj) Axiom 7

5. ϕ→ xi ∧ xj M.P. 3, 4

So in this subcase it can be proved, Γ ` ϕ→ xk.

Subcase 4.2. Let xk is derived from xi and xj by M.P. Without loss of generality we can

assume xj = xi → xk. Now for proving Γ ` ϕ→ xk, the derivation is as follows:

Γ ` 1. ϕ→ xi Assumption

2. ϕ→ (xi → xk) Assumption, since xj = xi → xk

3. [ϕ→ (xi → xk)]→ [(ϕ→ xi)→ (ϕ→ xk)] Axiom 2
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4. (ϕ→ xi)→ (ϕ→ xk) M.P. 2, 3

5. ϕ→ xk M.P. 1, 4

By all these cases together it has been shown, Γ ` ϕ → xi for each i = 1, 2, . . . , n. So in

particular Γ ` ϕ→ xn i.e., Γ ` ϕ→ ψ. Hence the proof is completed. �

Using the Deduction theorem one can also prove the following theorems.

Theorem 3.2.4 For any formulas ϕ, ψ and γ the following formulas are theorems.

(i) (ϕ→ ψ)→ ((ϕ ∧ γ)→ ψ).

(ii) (ϕ→ ψ)→ ((ψ → γ)→ (ϕ→ γ)).

(iii) (ϕ→ ψ) ∧ (ψ → γ)→ (ϕ→ γ).

Lemma 3.2.5 is the most important step to prove the completeness theorem.

Lemma 3.2.5 For any formula ϕ and a given valuation v with respect to PS3 let ϕ′ be

defined by,

ϕ′ =


ϕ ∧ (¬ϕ→ ⊥) if v(ϕ) = 1;

ϕ ∧ ¬ϕ if v(ϕ) = 1/2;

¬ϕ ∧ (ϕ→ ⊥) if v(ϕ) = 0.

If pi1 , pi2 , . . . , pik are the propositional letters in ϕ then {p′i1 , p
′
i2
, . . . , p′ik} ` ϕ

′.

Proof. As it was indicated that the proof will be by induction on the complexity of ϕ. Let,

Γ = {p′i1 , p
′
i2
, . . . , p′ik}.

Base step: It is obvious when the complexity is 0.
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Induction hypothesis: Assume the lemma holds well for formulas with complexity less

than n.

Induction step: Let the complexity of ϕ be n.

Case 1: Let us consider ϕ = ¬ψ.

Clearly the complexity of ψ is less than n and the propositional letters in ψ are exactly same

as the propositional letters in ϕ.

Subcase 1.1: If v(ψ) = 1 holds then we have v(ϕ) = 0. Hence by our construction,

ψ′ = ψ ∧ (¬ψ → ⊥) and ϕ′ = ¬ϕ ∧ (ϕ→ ⊥).

Here we get,

Γ `

1. ψ′ Induction hypothesis

2. ψ Axiom 3 and M.P.

3. ¬ψ → ⊥ Axiom 4 and M.P.

4. ψ → ¬¬ψ Axiom 8

5. ¬¬ψ M.P. 2, 4

6. ¬ϕ ∧ (ϕ→ ⊥) Rule 1 on 3 and 5

Hence in subcase1.1, Γ ` ϕ′.

Subcase 1.2: If v(ψ) = 1/2 holds then we get v(ϕ) = 1/2. So by the construction,

ψ′ = ψ ∧ ¬ψ and ϕ′ = ϕ ∧ ¬ϕ.

So we have,

Γ `

1. ψ′ Induction hypothesis
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2. ψ Axiom 3 and M.P.

3. ¬ψ Axiom 4 and M.P.

4. ψ → ¬¬ψ Axiom 8

5. ¬¬ψ M.P. 2, 4

6. ϕ ∧ ¬ϕ Rule 1 on 3 and 5

Hence Γ ` ϕ′ holds here.

Subcase 1.3: If we consider v(ψ) = 0 then v(ϕ) = 1 holds. Hence,

ψ′ = ¬ψ ∧ (ψ → ⊥) and ϕ′ = ϕ ∧ (¬ϕ→ ⊥).

The following derivation can be made,

Γ `

1. ψ′ Induction hypothesis

2. ¬ψ Axiom 3 and M.P.

3. ψ → ⊥ Axiom 4 and M.P.

4. (¬¬ψ → ψ)→ [(ψ → ⊥)→ (¬¬ψ → ⊥)] Theorem 3.2.4(ii)

5. ¬¬ψ → ψ Axiom 8

6. (ψ → ⊥)→ (¬¬ψ → ⊥) M.P. 4, 5

7. ¬¬ψ → ⊥ M.P. 3, 6

8. ϕ′ Rule 1 on 2, 7

Hence in Case 1 we always get Γ ` ϕ′.

Case 2: Let us take ϕ = ψ ∧ γ.

Obviously both the complexities of ψ and γ are less than n and the sets of propositional

letters in ϕ and ψ are proper subsets of {p′i1 , p
′
i2
, . . . , p′ik}, the set of propositional letters in
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ϕ. Hence clearly by the induction hypothesis and monotonicity property we get,

Γ ` ψ′ and Γ ` γ′.

Subcase 2.1: If any one of v(ψ) and v(γ) is 0 then it can be proved Γ ` ϕ′. Without loss

of generality, let v(ψ) = 0, then v(ϕ) = 0. Hence we get the following.

ψ′ = ¬ψ ∧ (ψ → ⊥) and ϕ′ = ¬ϕ ∧ (ϕ→ ⊥).

Since Γ ` ψ′,

Γ `

1. ¬ψ Axiom 3 and M.P.

2. ψ → ⊥ Axiom 4 and M.P.

3. ¬ψ → (¬ψ ∨ ¬γ) Axiom 5

4. ¬ψ ∨ ¬γ M.P. 1, 3

5. (¬ψ ∨ ¬γ)→ ¬(ψ ∧ γ) Axiom 9

6. ¬(ψ ∧ γ) M.P. 4, 5

7. (ψ → ⊥)→ (ψ ∧ γ → ⊥) Theorem 3.2.4(i)

8. ψ ∧ γ → ⊥ M.P. 2, 7

9. ϕ′ Rule 1 on 6, 8

Subcase 2.2: If v(ψ) = 1/2 and v(γ) = 1/2 hold together then v(ϕ) = 1/2 will also hold. So by

the definition,

ψ′ = ψ ∧ ¬ψ, γ′ = γ ∧ ¬γ and ϕ′ = ϕ ∧ ¬ϕ.

Now for proving Γ ` ϕ′ i.e., Γ ` (ψ∧γ)∧¬(ψ∧γ) we go through the following derivation,

by using Γ ` ψ′ and Γ ` γ′.
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Γ `

1. ψ Axiom 3 and M.P.

2. ¬ψ Axiom 4 and M.P.

3. γ Axiom 3 and M.P.

4. ψ ∧ γ Rule 1 on 1, 3

5. ¬ψ → (¬ψ ∨ ¬γ) Axiom 5

6. (¬ψ ∨ ¬γ) M.P. 2, 5

7. (¬ψ ∨ ¬γ)→ ¬(ψ ∧ γ) Axiom 9

8. ¬(ψ ∧ γ) M.P. 6, 7

9. ϕ′ Rule 1 on 4, 8

Subcase 2.3: If we have v(ψ) = 1/2 and v(γ) = 1 then v(ϕ) = 1/2 holds. Hence,

ψ′ = ψ ∧ ¬ψ, γ′ = γ ∧ (¬γ → ⊥) and ϕ′ = ϕ ∧ ¬ϕ.

Since Γ ` ψ′ and Γ ` γ′, using Axiom 1, 2 and rule M.P. we get,

Γ ` ψ, Γ ` ¬ψ and Γ ` γ.

Now following the same derivation as above we can prove Γ ` ψ′.

Subcase 2.4: If v(ψ) = 1 and v(γ) = 1 hold then v(ϕ) = 1 is true. Therefore by our

construction,

ψ′ = ψ ∧ (¬ψ → ⊥), γ′ = γ ∧ (¬γ → ⊥) and ϕ′ = ϕ ∧ (¬ϕ→ ⊥).

So we have to prove Γ ` ϕ′, i.e., Γ ` (ψ ∧ γ) ∧ [¬(ψ ∧ γ) → ⊥]. The derivation is as

follows.
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Γ `

1. ψ Axiom 3 and M.P.

2. γ Axiom 3 and M.P.

3. ¬ψ → ⊥ Axiom 4 and M.P.

4. ¬γ → ⊥ Axiom 4 and M.P.

5. ψ ∧ γ Rule 1 on 1 and 2

6. (¬ψ → ⊥) ∧ (¬γ → ⊥) Rule 1 on 3 and 4

7. (¬ψ → ⊥) ∧ (¬γ → ⊥)→ (¬ψ ∨ ¬γ → ⊥) Axiom 6

8. ¬ψ ∨ ¬γ → ⊥ M.P. 6, 7

9. ¬(ψ ∧ γ)→ (¬ψ ∨ ¬γ) Axiom 9

10. [¬(ψ ∧ γ)→ (¬ψ ∨ ¬γ)]→

[((¬ψ ∨ ¬γ)→ ⊥)→ (¬(ψ ∧ γ)→ ⊥)] Theorem 3.2.4(ii)

11. ¬(ψ ∧ γ)→ ⊥ M.P. repeatedly on 10, 9, 8

12. ϕ′ Rule 1 on 5, 11

Subcase 2.5: If v(ψ) = 1 and v(γ) = 1/2 hold together then by the same derivation in Subcase

2.3 it can be proved Γ ` ϕ′.

Hence in Case 2 we can always prove Γ ` ϕ′.

Case 3: Let us assume ϕ = ψ ∨ γ.

Since ϕ∨ψ can be abbreviated as ¬(¬ϕ∧¬ψ) therefore by using Case 1 and Case 2, Γ ` ϕ′

can also be proved in this case.

Case 4: Let us consider ϕ = ψ → γ.

Obviously both the complexities of ψ and γ are less than n and the sets of propositional

letters in ϕ and ψ are subsets of {p′i1 , p
′
i2
, . . . , p′ik}, the set of propositional letters in ϕ. Hence
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clearly by the induction hypothesis and monotonicity property we get,

Γ ` ψ′ and Γ ` γ′.

Subcase 4.1: If v(γ) = 1 is the case then no matter what v(ψ) is, v(ϕ) = 1 is always true.

So we get, γ′ = γ ∧ (¬γ → ⊥) and ϕ′ = ϕ ∧ (¬ϕ→ ⊥) = (ψ → γ) ∧ [¬(ψ → γ)→ ⊥].

Now for proving Γ ` ϕ′ we go through the following derivation.

Γ `

1. γ Axiom 3 and M.P.

2. ¬γ → ⊥ Axiom 4 and M.P.

3. γ → (ψ → γ) Axiom 1

4. ψ → γ M.P. 1, 3

5. (¬γ → ⊥)→ [¬(ψ → γ)→ ⊥] Axiom 12

6. ¬(ψ → γ)→ ⊥ M.P. 2, 5

7. ϕ′ Rule 1 on 4, 6

Subcase 4.2: If v(γ) = 1/2 holds then always v(ϕ) = 1 will hold. Hence by the definition,

γ′ = γ ∧ ¬γ and ϕ′ = ϕ ∧ (¬ϕ→ ⊥) = (ψ → γ) ∧ [¬(ψ → γ)→ ⊥].

Hence we get the following,

Γ `

1. γ ∧ ¬γ Iinduction hypothesis

2. γ Axiom 3 and M.P.

3. γ → (ψ → γ) Axiom 1

4. ψ → γ M.P. 1, 2

54



5. (γ ∧ ¬γ)→ [¬(ψ → γ)→ ⊥] Axiom 10

6. ¬(ψ → γ)→ ⊥ M.P. 1, 5

7. ϕ′ Rule 1 on 3, 6

Subcase 4.3: If v(γ) = 1/2 and v(ψ) = 0 are true then v(ϕ) = 1 holds. So by the construction,

γ′ = ¬γ ∧ (γ → ⊥), ψ′ = ¬ψ ∧ (ψ → ⊥) and

ϕ′ = ϕ ∧ (¬ϕ→ ⊥)

= (ψ → γ) ∧ [¬(ψ → γ)→ ⊥].

Now the following derivation shows that Γ ` ϕ′ holds in this subcase also.

Γ `

1. ψ → ⊥ Axiom 4 and M.P.

2. ⊥ → γ Axiom 13

3. (ψ → ⊥)→ [(⊥ → γ)→ (ψ → γ)] Theorem 3.2.4(ii)

4. (⊥ → γ)→ (ψ → γ) M.P. 1, 3

5. ψ → γ M.P. 2, 4

6. (ψ → ⊥)→ [¬(ψ → γ)→ ⊥] Axiom 11

7. ¬(ψ → γ)→ ⊥ M.P. 1, 6

8. ϕ′ Rule 1 on 5, 7

Subcase 4.4: If we have v(γ) = 0 and v(ψ) = 1 then v(ϕ) = 0 is true. Therefore,

γ′ = ¬γ ∧ (γ → ⊥), ψ′ = ψ ∧ (¬ψ → ⊥) and

ϕ′ = ¬ϕ ∧ (ϕ→ ⊥)
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= ¬(ψ → γ) ∧ [(ψ → γ)→ ⊥].

The deduction theorem will be used here for proving Γ ` ϕ′. Since we know Γ ` ψ′ and

Γ ` γ′

Γ ∪ {ψ → γ} `

1. ψ′ Monotonicity

2. ψ Axiom 3 and M.P. with 1

3. γ′ Monotonicity

4. γ → ⊥ Axiom 4 and M.P. with 3

5. ψ → γ Assumption

6. γ M.P. 2, 5

7. ⊥ M.P. 4, 6

Now applying the Deduction theorem we get, Γ ` (ψ → γ)→ ⊥.

Again for proving Γ ` ¬(ψ → γ) we do the following derivation.

Γ `

1. ψ′ Induction hypothesis

2. ψ Axiom 3 and M.P. with 1

3. γ′ Induction hypothesis

4. γ → ⊥ Axiom 4 and M.P. with 3

5. ψ ∧ (γ → ⊥) Rule 1 on 2 and 4

6. ψ ∧ (γ → ⊥)→ ¬(ψ → γ) Axiom 14

7. ¬(ψ → γ) M.P. 3, 4

Hence, again by Rule 1 it is derived Γ ` ¬(ψ → γ) ∧ [(ψ → γ)→ ⊥] i.e., Γ ` ϕ′.

Subcase 4.5: If both of v(γ) = 0 and v(ψ) = 1/2 hold then we have v(ϕ) = 0. Therefore by
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definition,

γ′ = ¬γ ∧ (γ → ⊥), ψ′ = ψ ∧ ¬ψ and

ϕ′ = ¬ϕ ∧ (ϕ→ ⊥) = ¬(ψ → γ) ∧ [(ψ → γ)→ ⊥].

Since Γ ` ψ′ and Γ ` γ′, by Axiom 1, 2 and using M.P. we get

Γ ` ψ and Γ ` γ → ⊥.

Therefore in this subcase Γ ` ϕ′ can be proved by following the same steps used in Subcase

4.4.

Hence combining all the cases Lemma 3.2.5 is proved. �

Using Lemma 3.2.5 one can prove the weak completeness theorem:

Theorem 3.2.6 (Completeness). For any formula ϕ, if |= ϕ then ` ϕ.

Proof. Let ϕ be a formula such that |= ϕ. Moreover let pi1 , pi2 , . . . , pin be n propositional

letters in ϕ. By Lemma 3.2.5, for any arbitrarily fixed valuation we have, {p′i1 , p
′
i2
, . . . , p′in} `

ϕ′. Since, |= ϕ, by the definition, ϕ′ is either ϕ ∧ (¬ϕ → ⊥) or ϕ ∧ ¬ϕ. So in any case

{p′i1 , p
′
i2
, . . . , p′in} ` ϕ can be derived by Axiom 3 and using M.P. Hence Deduction theorem

gives,

{p′i1 , p
′
i2
, . . . , p′in−1

} ` p′in → ϕ.

Now, since the valuation was arbitrary, we get,

{p′i1 , p
′
i2
, . . . , p′in−1

} ` [pin ∧ (¬pin → ⊥)]→ ϕ,

{p′i1 , p
′
i2
, . . . , p′in−1

} ` (pin ∧ ¬pin)→ ϕ, and

{p′i1 , p
′
i2
, . . . , p′in−1

} ` [¬pin ∧ (pin → ⊥)]→ ϕ.
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Hence the following derivation can be established:

{p′i1 , p
′
i2
, . . . , p′in−1

} `

1. [(pin ∧ (¬pin → ⊥))→ ϕ] ∧ [(pin ∧ ¬pin)→ ϕ]∧

[(¬pin ∧ (pin → ⊥))→ ϕ] Rule 1

2. [(pin ∧ (¬pin → ⊥)) ∨ (pin ∧ ¬pin)∨

(¬pin ∧ (pin → ⊥))]→ ϕ Axiom 6

3. (pin ∧ (¬pin → ⊥)) ∨ (pin ∧ ¬pin) ∨ (¬pin ∧ (pin → ⊥)) Axiom 15

4. ϕ. M.P. 2, 3

Repeating this process for each of the remaining p′ij , where j = n−1, n−2, . . . , 1 we get,

` ϕ. Hence the (weak) completeness theorem is proved. �

Strong completeness is however not yet investigated.

3.3 LPS3 and other three-valued paraconsistent logics

In this section some important properties of LPS3 will be discussed and comparisons

between LPS3 and some other well known three-valued paraconsistent logics will be pointed

out with respect to some logical properties.

3.3.1 Maximality relative to classical propositional logic

Maximality is an important issue in the study of paraconsistent logics (cf. [2, 7]).

Definition. A logic L1 = 〈L ,`1〉 is said to be maximal relative to a logic L2 = 〈L ,`2〉 iff
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(i) `1 ϕ implies `2 ϕ for any ϕ, and

(ii) if 01 ϕ, `2 ϕ and `1 is enhanced to `′1 by adding ϕ to the theorem set of L1 then

〈L ,`′1〉 = 〈L ,`2〉.

Definition 3.3.1 is more demanding than what is there in [7]. The change is in the

condition (ii) of the definition 3.3.1. In [7] the condition (ii) was taken as: if 01 ϕ, `2 ϕ

and `1 is enhanced to `′1 by adding ϕ to the theorem set of L1 then the set of theorems in

〈L ,`′1〉 is same as the set of theorems in 〈L ,`2〉.

The relationship between LPS3 and the classical propositional logic will be explored now.

Lemma 3.3.1 By adding any theorem of Classical Propositional Logic (CPL) which is not

a theorem of LPS3, as an axiom schema in LPS3, all the theorems of CPL can be proved in

the enhanced system of LPS3.

Proof. First we show that by adding any theorem of CPL which is not a theorem of LPS3,

as an axiom schema in LPS3, all the theorems of CPL can be proved.

Let ϕ(pi1 , pi2 , . . . , pin) be a theorem of CPL but not a theorem of LPS3, where pi1 , pi2 , . . . , pin

are the propositional variables. Hence for any valuation v from the set of all formulas of

LPS3 to PS3 for which

v(ϕ(pi1 , pi2 , . . . , pin)) = 0

there must exist some pi` , 1 ≤ ` ≤ n such that v(pi`) = 1/2. Now using this fact without loss

of generality we may assume that for any given valuation v we have v(ϕ(pi1 , pi2 , . . . , pin)) = 0

iff v(pi`) = 1/2 for all ` ∈ {1, . . . , n}. It is guaranteed by the following fact: Suppose a formula

ψ(pr1 , pr2 , . . . prt+1) is such that v(pr`) = 1/2 for all ` ∈ {1, . . . , t} but v(prt+1) 6= 1/2. We then

replace the propositional variable prt+1

(i) by ¬(pr1 → pr1) if v(prt+1) = 0
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(ii) by (pr1 → pr1) if v(Prt+1) = 1

in the formula ψ(pr1 , pr2 , . . . prt+1) and therefore after replacing, the formula will get the value

0 iff all its propositional variables take the value 1/2. In this way we always get such a formula

ϕ(pi1 , pi2 , . . . , pin).

Let us now assume σ(pk1 , pk2 , . . . , pkm) be another arbitrarily chosen theorem of CPL

which is not a theorem of LPS3, where pk1 , pk2 , . . . , pkm are the propositional variables. It

will be proved that σ(pk1 , pk2 , . . . , pkm) can be derived from the axiom system of LPS3 if it is

extended by the new axiom schema ϕ(pi1 , pi2 , . . . , pin). Let ϕ(pkj) be the formula replacing

each propositional variable of ϕ(pi1 , pi2 , . . . , pin) by pkj , for all j ∈ {1, . . . ,m}.

Claim 3.3.2 The formula ϕ(pk1)∧ϕ(pk2)∧ . . .∧ϕ(pkm)→ σ(pk1 , pk2 , . . . , pkm) is a theorem

of LPS3.

Proof. Let v be any valuation.

If v(σ(pk1 , pk2 , . . . , pkm)) = 0 and since σ(pk1 , pk2 , . . . , pkm) is a theorem of CPL there

must exist pkj such that v(pkj) = 1/2 for some j ∈ {1, . . . ,m}. Hence v(ϕ(pkj)) = 0 and

therefore

v(ϕ(pk1) ∧ ϕ(pk2) ∧ . . . ∧ ϕ(pkm)→ σ(pk1 , pk2 , . . . , pkm)) = 1.

Again if v(σ(pk1 , pk2 , . . . , pkm)) 6= 0 then by the truth tables of PS3

v(ϕ(pk1) ∧ ϕ(pk2) ∧ . . . ∧ ϕ(pkm)→ σ(pk1 , pk2 , . . . , pkm)) = 1.

Hence for any valuation the formula

ϕ(pk1) ∧ ϕ(pk2) ∧ . . . ∧ ϕ(pkm)→ σ(pk1 , pk2 , . . . , pkm)

always get the value 1. So by the completeness theorem of LPS3 the claim is proved. �
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Now let us extend the axiom system of LPS3 by including ϕ(pi1 , . . . , pin) as an axiom schema.

Let this system be denoted by L′PS3. Then by the Rule 1, ϕ(pk1)∧ϕ(pk2)∧ . . .∧ϕ(pkm) is a

theorem of L′PS3. Now by using M.P. we have σ(pk1 , pk2 , . . . , pkm) as a theorem of the new

system. Hence the lemma is proved. �

From Lemma 3.3.1 it follows that for the enhanced system L′PS3,

Γ `L′PS3 ϕ iff Γ `CPL ϕ.

Hence we get the following theorem.

Theorem 3.3.3 The logic LPS3 is maximal relative to the classical propositional logic (CPL).

3.3.2 Comparison with other logics

The three-valued paraconsistent logics chosen for comparisons are G. Priest’s Logic of

Paradox (LP) [26], Logic of Formal Inconsistency 1 (LFI1) and Logic of Formal Inconsistency

2 (LFI2) by W. A. Carnielli, J. Marcos, and S. de Amo [7], I. M. L. D’Ottaviano’s logic

(J3) [11], The Logic RM3 by the Entailment school (cf. [16]), A. M. Sette’s three-valued

paraconsistent logic P1 [29], the logic G′3 by M. O. Galindo and J. L. C. Carranza [23], and

C. Mortensen’s paraconsistent logic C0,2 [18]. Moreover we will also make a comparison table

with respect to S. Jaśkowski’s and N. Da Costa’s criteria for paraconsistent logics viz. Jas1,

Jas2, Jas3 and NdaC1, NdaC2, NdaC3, NdaC4, which are described in Chapter 1.

We will compare the following properties:

` ¬¬ϕ↔ ϕ. (DN)

` ¬(ϕ ∧ ψ)↔ (¬ϕ ∨ ¬ψ). (DM1)

61



` ¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ). (DM2)

` ϕ ∨ ¬ϕ. (LEM)

` (¬ϕ→ ¬ψ)→ (ψ → ϕ). (C)

` (¬ϕ→ ψ)→ (¬ψ → ϕ). (C1)

` (ϕ→ ¬ψ)→ (ψ → ¬ϕ). (C2)

` (ϕ→ ψ)→ (¬ψ → ¬ϕ). (C3)

` (ϕ→ ψ) ∧ (ψ → γ)→ (ϕ→ γ). (HS)

ϕ, ϕ→ ψ ` ψ (MP)

We write DT for the Deduction Theorem.

The mark (X) indicates that the property holds and the mark (X) indicates that the

property does not hold in the corresponding logical system.

DN DM1 DM2 LEM C C1 C2 C3 HS MP DT

LPS3 X X X X X X X X X X X

LP X X X X X X X X X X X

LFI1 X X X X X X X X X X X

LFI2 X X X X X X X X X X X

J3 X X X X X X X X X X X

RM3 X X X X X X X X X X x

P1 X X X X X X X X X X X

G′3 X X X X X X X X X X X

C0,2 X X X X X X X X X X X
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We also present the following comparison table with respect to Jas1, Jas2, Jas3, NdaC1,

and NdaC2.

Jas1 Jas2 Jas3 NdaC1 NdaC2

LPS3 X X X X X

LP X X X X X

LFI1 X X X X X

LFI2 X X X X X

J3 X X X X X

RM3 X X X X X

P1 X X X X X

G′3 X X X X X

C0,2 X X X X X

Note. All the observations for LP and C0,2 are semantical.

In the literature, one can get several paraconsistent logics having algebraic semantics. Some

of them are mentioned above. These logics and their algebraic semantics were developed

from various motivations. Our motivation is to construct models of some paraconsistent set

theories.

With respect to the algebraic properties discussed in Section 2.1.4 which are needed for

making an algebra-valued model of a paraconsistent set theory the following comparison

with othetr paraconsistent logics is made. The algebras of the three-valued semantics for

LFI2, P1 and C0,2 are not lattices and hence we exclude these three logics from the following

comparison table.
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P1 P2 P3 P4

LPS3 X X X X

LP X X X X

LFI1 X X X X

J3 X X X X

RM3 X X X X

G′3 X X X X

Note. The comparisons are made with respect to the corresponding

three-valued semantics of the respective logics.

Thus PS3 differs from the other three-valued matrices mentioned here in forming an alge-

braic structure suitable to construct some model of set theory within V with an underlying

paraconsistent logic. It is yet unknown whether other logics are suitable for this purpose.

3.4 Predicate logic for PS3 and the equality

In [10] the authors used a three valued matrix 〈{1, 1/2, 0},∧,∨,⇒,∗ , ◦, 0, 1〉 where the

unary operator ◦ is taken as the consistency operator and the structure 〈{1, 1/2, 0},∧,∨,⇒

,∗ , 0, 1〉 is similar to PS3. The operator ◦ can be defined by the other operators as ◦α =

(α ∧ α∗) ⇒ (α ⇒ α)∗. In [10] a propositional logic LPT is defined which is sound and

complete with respect to the above mentioned three-valued matrix, PS3. The axiom system

for LPT is given below:

(Ax1) ϕ→ (ψ → ϕ)

(Ax2) (ϕ→ ψ)→ ((ϕ→ (ψ → γ))→ (ϕ→ γ))

(Ax3) ϕ→ (ψ → (ϕ ∧ ψ))

(Ax4) ϕ ∧ ψ → ϕ
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(Ax5) ϕ ∧ ψ → ψ

(Ax6) ϕ→ ϕ ∨ ψ

(Ax7) ψ → ϕ ∨ ψ

(Ax8) (ϕ→ γ)→ ((ψ → γ)→ (ϕ ∨ ψ → γ))

(Ax9) ϕ ∨ (ϕ→ ψ)

(Ax10) ϕ ∨ ¬ϕ

(Ax11) ¬¬ϕ↔ ϕ

(Ax12) ◦ ϕ→ (ϕ→ (¬ϕ→ ψ))

(Ax13) ¬ ◦ ϕ→ (ϕ ∧ ¬ϕ)

(Ax14) ◦ (ϕ→ ψ)

(Ax15) (◦ϕ ∧ ◦ψ)→ ◦(ϕ ∧ ψ)

(Ax16) (ϕ ∧ ¬ϕ ∧ ψ)→ (¬(ϕ ∧ ψ) ∧ ¬(ψ ∧ ϕ))

where ϕ, ψ, γ are any well formed formulas.

The rule of inference is Modus Ponens:
ϕ, ϕ→ ψ

ψ
.

Then a predicate extension of LPT is developed whose soundness and completeness has

been established with respect to the pragmatic semantics of partial structures whose defini-

tions are given below [10, Section 3.2].

Definition. An n-ary partial relation R on a non-empty set D is an order triple 〈R+, R−, Ru〉

where R+, R−, Ru ⊆ Dn are mutually disjoint and R+ ∪R− ∪Ru = Dn.

Definition. A partial structure for a first order language L is an order pair S = 〈D, (·)S 〉

where D is non empty and the function (·)S defined on L is such that for every n-ary relation

symbol R, RS = (RS
+ , R

S
− , R

S
u ) is an n-ary partial relation, constant symbols and function

symbols are defined classically.

Definition. Let ϕ(x1, . . . , xn) be a formula with free variables x1, . . . , xn and let S be a
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partial structure with domain D. Then the triple ϕS = (ϕS
+ , ϕ

S
− , ϕ

S
u ) is defined recursively

as below:

(i) if ϕ = P (t1, . . . , tn) is atomic then for ∗ ∈ {+,−, u}

ϕS
∗ = {−→a ∈ Dn : 〈tS1 [−→a ], . . . , tSn [−→a ]〉 ∈ PS

∗ },

(ii) (¬ϕ)S = 〈ϕS
− , ϕ

S
+ , ϕ

S
u 〉,

(iii) (ϕ ∧ ψ)S = 〈ϕS
+ ∩ ψS

+ , ϕ
S
− ∪ ψS

− , D
n − (ϕS

+ ∩ ψS
+ ) ∪ (ϕS

− ∪ ψS
− ), and

(iv) (ϕ→ ψ)S = 〈ϕS
− ∪ (ψS

+ ∪ ψS
− ), (ϕS

+ ∪ ϕS
u ) ∩ ψS

− , ∅〉.

From the definition (ϕ∧¬ϕ)S = 〈∅, ϕS
+ ∪ϕS

− , ϕ
S
u 〉 and (ϕ∨¬ϕ)S = 〈ϕS

+ ∪ϕS
− , ∅, ϕS

u 〉

are proved. Let us consider a subset A of Dn+1 and define ∀(A),∃(A) ⊆ Dn as follows:

∀(A) = {−→a ∈ Dn : (b,−→a ) ∈ A for all b ∈ D} and

∃(A) = {−→a ∈ Dn : (b,−→a ) ∈ A for some b ∈ D}

Moreover if A ⊆ D (i.e., n = 0) then,

∀(A) =

 1 if A = D;

0 otherwise.

∃(A) =

 1 if A 6= ∅;

0 otherwise.

Definition. Assume that ϕS = 〈ϕS
+ , ϕ

S
− , ϕ

S
u 〉 is defined onDn+1 for a formula ϕ(x0, . . . , xn)

where n ≥ 1. Then

(∀x0ϕ)S = 〈∀(ϕS
+ ), ∃(ϕS

− ), Dn − [∀(ϕS
+ ) ∪ ∃(ϕS

− )]〉

66



and ∃x0ϕ = ¬∀x0¬ϕ.

Below the definition of pragmatic satisfaction of a formula is given.

Definition. Let ϕ(x1, . . . , xn) be a formula, S = 〈D, (·)S 〉 a partial structure and −→a ∈ Dn.

The sequence −→a pragmatically satisfies ϕ in S , denoted by S 
 ϕ[−→a ] in the following cases.

(i) S 
 R(t1, . . . , tn)[−→a ] iff (tS1 [−→a ], . . . , tSn [−→a ]) ∈ RS
+ ∪RS

u ;

(ii) S 
 ¬ϕ[−→a ] iff −→a ∈ ϕS
− ∪ ϕS

u ;

(iii) S 
 (ϕ ∧ ψ)[−→a ] iff S 
 ϕS [−→a ] and S 
 ψS [−→a ];

(iv) S 
 (ϕ→ ψ)[−→a ] iff S 1 ϕS [−→a ] or S 
 ψS [−→a ];

(v) S 
 ∀xϕ[−→a ] iff S 
 ϕ[b,−→a ] for all b ∈ D.

Definition. A formula ϕ(x1, . . . , xn) is said to be pragmatically satisfied by a partial struc-

ture S which is denoted by S 
 ϕ, if for all sequences −→a ∈ Dn, S 
 ϕ[−→a ].

Definition. Let Γ ∪ {ϕ} be a set of well formed formulas. The formula ϕ is said to be

pragmatic consequence of the set of formulas Γ which is denoted by Γ 
 ϕ, if S 
 ϕ for

every partial structure S such that S 
 ψ for all ψ ∈ Γ.

After defining all these definitions the authors extended the propositional logic LPT to

a predicate logic system LPT1 in [10, Section 6]. The language of LPT1 is the usual first

order language based on the connectives ∧, →, ¬ and the universal quantifier ∀. The axiom

system for LPT1 is as follows.

All the axioms of LPT together with one more axiom

(Ax17) ∀xϕ→ ϕ[x/t], where t is a term free for x in ϕ.

The rules of inference for LPT1 are
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1. The rule of modus ponens:
ϕ, ϕ→ ψ

ψ

2.
ϕ→ ψ

ϕ→ ∀xψ

whenever x does not occur free in ϕ.

After that it is proved that LPT1 is sound and complete with respect to the semantics

of the pragmatic satisfaction by partial structures [10, Section 6].

3.5 The algebra-valued model V(PS3) of a paraconsistent

set theory

In Section 3.1 we have proved that PS3 satisfies the properties P1, P2, P3, and P4. If

the property BQϕ would hold in V(PS3) for any formula ϕ then we could conclude that all

the axioms of ZF− are valid in V(PS3). But we have the following theorem.

Theorem 3.5.1 There is a formula ϕ such that the property BQϕ does not hold in V(PS3).

Proof. Let w ∈ V(PS3) be any arbitrary element, then u = {〈w, 1〉} and v = {〈w, 1/2〉} be

two elements in V(PS3). Define a formula ϕ(x) := ¬(w ∈ x). Therefore Jϕ(u)K = 0 and

Jϕ(v)K = 1/2. Let us now consider k ∈ V(PS3) as k = {〈v, 1〉}. Then the following can be

derived.

J∀x(x ∈ k → ϕ(x))K =
∧

y∈V(PS3)

(Jy ∈ kK⇒ Jϕ(y)K)

=
∧

y∈V(PS3)

((k(v) ∧ Jv = yK)⇒ Jϕ(y)K)
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≤ (k(v) ∧ Jv = uK)⇒ Jϕ(u)K

= (1 ∧ 1)⇒ 0

= 0

On the other hand,

∧
x∈dom(k)

(k(x)⇒ Jϕ(x)K) = k(v)⇒ Jϕ(v)K = 1⇒ 1/2 = 1.

Hence we get,

J∀x(x ∈ k → ϕ(x))K <
∧

x∈dom(k)

(k(x)⇒ Jϕ(x)K)

and the theorem is proved. �

Though BQϕ does not hold in V(PS3) for the formula ϕ defined in the proof of Theorem

3.5.1, below we shall show the property BQϕ is valid in V(PS3) for all negation-free formula

ϕ for which the following lemmas and theorems are needed.

Lemma 3.5.2 For any three elements u, v, w ∈ V(PS3), we have the following:

(i) Ju = vK ∧ Jv = wK ≤ Ju = wK

(ii) Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK

Proof. Let u, v, w ∈ V(PS3) be any three elements.

(i) We will prove Ju = vK ∧ Jv = wK ≤ Ju = wK by induction. Suppose for any u, v ∈ V(PS3)

and any z ∈ dom(w) we have the following:

Ju = vK ∧ Jv = zK ≤ Ju = zK.
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By the truth tables of the operators in PS3 it is clear that Ju = wK cannot be 1/2, so it is

either 1 or 0. If it is 1 then we have nothing to prove. Now suppose Ju = wK = 0. So in this

case our aim will be to prove either Ju = vK = 0 or Jv = wK = 0. By definition,

Ju = wK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ wK) ∧
∧

z∈dom(w)

(w(z)⇒ Jz ∈ uK).

Case 1. Suppose
∧
x∈dom(u)(u(x) ⇒ Jx ∈ wK) = 0. So, there exists x0 ∈ dom(u) such that,

[u(x0)⇒ Jx0 ∈ wK] = 0; which implies

u(x0) 6= 0 and
∨

z∈dom(w)

(w(z) ∧ Jx0 = zK) = 0. (?)

We know that,

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK),

and

Jv = wK =
∧

y∈dom(v)

(v(y)⇒ Jy ∈ wK) ∧
∧

z∈dom(w)

(w(z)⇒ Jz ∈ vK).

Since u(x0) 6= 0, if Jx0 ∈ vK = 0 then it can be concluded Ju = vK = 0. By definition,

Jx0 ∈ vK =
∨

y∈dom(v)

(v(y) ∧ Jx0 = yK).

Now if for any y0 ∈ dom(v), v(y0) 6= 0 then we will show, either Jy0 ∈ wK = 0 or Jx0 = y0K =

0. If Jy0 ∈ wK = 0 then we get Jv = wK = 0 and the proof is complete. On the other hand if

Jy0 ∈ wK 6= 0, i.e., ∨
z∈dom(w)

(w(z) ∧ Jy0 = zK) 6= 0
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then there exists z0 ∈ dom(w) such that, w(z0) 6= 0 and Jy0 = z0K 6= 0 both. Since w(z0) 6= 0,

from (?) we get, Jx0 = z0K = 0. Now by induction hypothesis,

Jx0 = y0K ∧ Jy0 = z0K ≤ Jx0 = z0K.

Hence we get Jx0 = y0K = 0. Therefore if v(y0) 6= 0 then either Jv = wK = 0 or Jx0 = y0K = 0,

i.e., Jx0 ∈ vK = 0. Now since u(x0) 6= 0 we get Ju = vK = 0. As a conclusion of Case 1, if

Ju = wK = 0 then either Ju = vK = 0 or Jv = wK = 0.

Case 2. Suppose
∧
z∈dom(w)(w(z) ⇒ Jz ∈ uK) = 0. So, there exists z0 ∈ dom(w) such that,

[w(z0)⇒ Jz0 ∈ uK] = 0, which gives

w(z0) 6= 0 and
∨

x∈dom(u)

(u(x) ∧ Jz0 = xK) = 0. (†)

We know that,

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK),

and

Jv = wK =
∧

y∈dom(v)

(v(y)⇒ Jy ∈ wK) ∧
∧

z∈dom(w)

(w(z)⇒ Jz ∈ vK).

Since w(z0) 6= 0 if Jz0 ∈ vK = 0 then it can be concluded Jv = wK = 0. By definition,

Jz0 ∈ vK =
∨

y∈dom(v)

(v(y) ∧ Jz0 = yK).

Now if for any y0 ∈ dom(v), v(y0) 6= 0 then we will show, either Jy0 ∈ uK = 0 or Jz0 = y0K = 0.

If Jy0 ∈ uK = 0 then we get Ju = vK = 0 and the proof is complete. On the other hand if
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Jy0 ∈ uK 6= 0, i.e., ∨
x∈dom(u)

(u(x) ∧ Jy0 = xK) 6= 0

then there exists x0 ∈ dom(u) such that, u(x0) 6= 0 and Jy0 = x0K 6= 0 both hold. Since

u(x0) 6= 0, from (†) we get, Jx0 = z0K = 0. Now by induction hypothesis,

Jx0 = y0K ∧ Jy0 = z0K ≤ Jx0 = z0K.

Hence we get Jz0 = y0K = 0. Therefore if v(y0) 6= 0 then either Ju = vK = 0 or Jz0 = y0K = 0,

i.e., Jz0 ∈ vK = 0. Now since w(z0) 6= 0 we get Jv = wK = 0. Therefore in Case 2 also, if

Ju = wK = 0 then either Ju = vK = 0 or Jv = wK = 0.

By the induction principle now we can argue,

Ju = vK ∧ Jv = wK ≤ Ju = wK,

for all u, v, w ∈ V(PS3).

(ii) The proof of Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK is as follows:

Ju = vK ∧ Ju ∈ wK = Ju = vK ∧
∨

z∈dom(w)

(w(z) ∧ Ju = zK)

=
∨

z∈dom(w)

[w(z) ∧ (Ju = zK ∧ Ju = vK)]

≤
∨

z∈dom(w)

(w(z) ∧ Jv = zK), (using (1))

= Jv ∈ wK.

Hence the proof is complete. �
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Observation 3.5.3 There exist u, v, w ∈ V(PS3) such that the inequality

Ju = vK ∧ Jw ∈ uK ≤ Jw ∈ vK

does not hold.

Proof. Let w ∈ V(PS3) be any arbitrary element and u, v be defined as,

dom(u) = dom(v) = {w} and u(w) = 1, v(w) = 1/2.

Then clearly Ju = vK = 1, Jw ∈ uK = 1 and Jw ∈ vK = 1/2 and hence the inequality is not

valid generally in V(PS3). �

Hence there exists a formula ϕ(x) and u, v, w ∈ V(PS3) so that the inequality Ju = vK ∧

Jϕ(u)K ≤ Jϕ(v)K is not valid. But we can prove the following lemma.

Lemma 3.5.4 For any three elements u, v, w ∈ V(PS3), we have the following:

(i) Ju = vK⇒ Jv = wK = Ju = vK⇒ Ju = wK.

(ii) Ju = vK⇒ Ju ∈ wK = Ju = vK⇒ Jv ∈ wK.

(iii) Ju = vK⇒ Jw ∈ uK = Ju = vK⇒ Jw ∈ vK.

Proof. (i) From Lemma 3.5.2, for any u, v, w ∈ V(PS3), it is very easy to get:

Ju = vK ∧ Jv = wK ≤ Ju = vK ∧ Ju = wK ≤ Ju = vK ∧ Jv = wK.

Hence it is clear that,

Ju = vK ∧ Jv = wK = Ju = vK ∧ Ju = wK.
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Since PS3 is a reasonable implication algebra, using Proposition 2.1.2 we get,

Ju = vK⇒ Jv = wK = Ju = vK⇒ Ju = wK.

The equality (ii) can be proved similarly as (1).

(iii) Here we have to prove, Ju = vK⇒ Jw ∈ uK = Ju = vK⇒ Jw ∈ vK.

By definition it is clear that, either Ju = vK = 0 or Ju = vK = 1. If Ju = vK = 0 then we

are done.

Now suppose Ju = vK = 1. We will show, if Jw ∈ uK = 0 then Jw ∈ vK = 0 and vice versa.

Let Jw ∈ uK = 0; i.e., ∨
x∈dom(u)

(u(x) ∧ Jw = xK) = 0. (?)

Again, by our assumption Ju = vK = 1; i.e.,

∧
x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK) = 1.

Hence if for some y0 ∈ dom(v), v(y0) 6= 0 then Jy0 ∈ uK 6= 0; i.e.,

∨
x∈dom(u)

(u(x) ∧ Jy0 = xK) 6= 0.

So there exists x0 ∈ dom(u) such that u(x0) 6= 0 6= Jy0 = x0K. Now since u(x0) 6= 0, from

(?) we get Jw = x0K = 0. Again by previous theorem we have

Jw = y0K ∧ Jy0 = x0K ≤ Jw = x0K

by which it is easily concluded that Jw = y0K = 0. Hence we get if for some y ∈ dom(v) if

v(y) 6= 0 then Jw = yK = 0; therefore Jw ∈ vK = 0.
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The other part can also be proved similarly. This completes the proof. �

Let us now consider the equality

Ju = vK⇒ Jϕ(u)K = Ju = vK⇒ Jϕ(v)K. (#)

In Lemma 3.5.4 it is shown that for any atomic well formed formula ϕ(x) (having one free

variable x) of the extended language of set theory corresponding to V(PS3), and for any two

elements u, v ∈ V(PS3) the equality (#) holds. If (#) could be proved for any formula ϕ(x),

having one free variable x, and for any two elements u, v ∈ V(PS3) then BQϕ could also be

proved in V(PS3) for any formula ϕ, contradicting Theorem 3.5.1. But we have the following

observation.

Observation 3.5.5 There is a formula ϕ(x) and u, v ∈ V(PS3) such that

Ju = vK⇒ Jϕ(u)K = Ju = vK⇒ Jϕ(v)K

does not hold.

Let w ∈ V(PS3) be any arbitrary element, then u = {〈w, 1〉} and v = {〈w, 1/2〉} be two

elements in V(PS3). Now define a formula ϕ(x) := ¬(w ∈ x). Hence clearly we will get

Ju = vK = 1, Jϕ(u)K = 0 and Jϕ(v)K = 1/2. Therefore,

Ju = vK⇒ Jϕ(u)K = 0 6= 1 = Ju = vK⇒ Jϕ(v)K.

If we notice carefully, the formulas used in Theorem 3.5.1 and Observation 3.5.5 are not

negation-free formulas. For the negation-free formulas we get the following theorem.
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Theorem 3.5.6 For any two elements u, v ∈ V(PS3) and any negation-free formula ϕ(x) the

following holds:

Ju = vK⇒ Jϕ(u)K = Ju = vK⇒ Jϕ(v)K.

Proof. The theorem will be proved by the mathematical induction on the complexity of an

arbitrarily chosen negation-free formula ϕ(x).

Base step: If the complexity of ϕ(x) is 0 the theorem will be proved by Lemma 3.5.4.

Induction hypothesis: Let the theorem hold for any negation-free formula with com-

plexity less than a non zero natural number n.

Induction step: Let the complexity of ϕ(x) be n. It is known that the value of Ju = vK

is either 0 or 1. If it is 0 then the theorem is proved immediately. Therefore through out in

this proof we assume Ju = vK = 1. The following cases may occur.

Case 1. Let ϕ(x) = ψ(x) ∧ γ(x).

Clearly the complexities of ψ(x) and γ(x) are less than n and therefore by the induction

hypothesis we get,

1. Ju = vK⇒ Jψ(u)K = Ju = vK⇒ Jψ(v)K and

2. Ju = vK⇒ Jγ(u)K = Ju = vK⇒ Jγ(v)K.

We have to prove:

Ju = vK⇒ Jϕ(u)K = Ju = vK⇒ Jϕ(v)K

i.e.,

Ju = vK⇒ Jψ(u)K ∧ Jγ(u)K = Ju = vK⇒ Jψ(v)K ∧ Jγ(v)K.

If Jψ(u)K∧ Jγ(u)K = 0 then any one of Jψ(u)K and Jγ(u)K is 0. If Jψ(u)K = 0 then by (1),

Jψ(v)K = 0 and if Jγ(u)K = 0 then by (2), Jγ(v)K = 0. Hence in any case, if Jψ(u)K∧Jγ(u)K = 0

then Jψ(v)K ∧ Jγ(v)K = 0.
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If Jψ(u)K ∧ Jγ(u)K 6= 0 then clearly Jψ(u)K 6= 0 and Jγ(u)K 6= 0. Hence from (1) and (2)

it can be concluded that Jψ(v)K 6= 0 and Jγ(v)K 6= 0 also. So, Jψ(v)K ∧ Jγ(v)K 6= 0 and hence

in this case we are done.

Case 2. Let ϕ(x) = ψ(x) ∨ γ(x).

Following the similar process as shown in Case 1 the theorem can be proved in this case

also.

Case 3. Let ϕ(x) = ψ(x)⇒ γ(x).

Clearly the complexities of both ψ(x) and γ(x) are less than n and similarly as the above

cases by the induction hypothesis we get,

1. Ju = vK⇒ Jψ(u)K = Ju = vK⇒ Jψ(v)K and

2. Ju = vK⇒ Jγ(u)K = Ju = vK⇒ Jγ(v)K

For proving the theorem, in this case the following has to be proved,

Ju = vK⇒ (Jψ(u)K⇒ Jγ(u)K) = Ju = vK⇒ (Jψ(v)K⇒ Jγ(v)K).

If Jψ(u)K⇒ Jγ(u)K = 0 then Jψ(u)K 6= 0 and Jγ(u)K = 0. Hence by using (1) and (2) we

get Jψ(v)K 6= 0 and Jγ(v)K = 0. So, Jψ(v)K⇒ Jγ(v)K = 0 and the proof is complete.

If Jψ(u)K⇒ Jγ(u)K 6= 0 then either Jγ(u)K 6= 0, in which case Jγ(v)K 6= 0 also, by (2); or

both of Jψ(u)K and Jγ(u)K is 0, in which case again by (1) and (2) we have, Jψ(v)K = 0 and

Jγ(v)K = 0. In any of the possibilities it can be concluded that

Jψ(u)K⇒ Jγ(u)K = Jψ(v)K⇒ Jγ(v)K.

Hence this case is also proved.
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Case 4. Let ϕ(x) = ∀yψ(x, y).

So the complexity of ψ(x, y) is less than n. Hence by the induction hypothesis,

Ju = vK⇒ Jψ(u, y)K = Ju = vK⇒ Jψ(v, y)K

for all y ∈ V(PS3). We have to prove

Ju = vK⇒
∧

y∈V(PS3)

Jψ(u, y)K = Ju = vK⇒
∧

y∈V(PS3)

Jψ(v, y)K.

Now if

Ju = vK⇒
∧

y∈V(PS3)

Jψ(u, y)K = 0

then there exists y ∈ V(PS3) for which Jψ(u, y)K = 0. Hence by the induction hypothesis

Jψ(v, y)K = 0; therefore
∧
y∈V(PS3)Jψ(v, y)K = 0 and hence

Ju = vK⇒
∧

y∈V(PS3)

Jψ(v, y)K = 0.

Similarly it can be proved, if

Ju = vK⇒
∧

y∈V(PS3)

Jψ(v, y)K = 0

then

Ju = vK⇒
∧

y∈V(PS3)

Jψ(u, y)K = 0.

Hence Case 4 is immediately proved by the truth table of ⇒.

Case 5. Let ϕ(x) = ∃yψ(x, y).
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So the complexity of ψ(x, y) is less than n and therefore by the induction hypothesis,

Ju = vK⇒ Jψ(u, y)K = Ju = vK⇒ Jψ(v, y)K

for all y ∈ V(PS3). We have to prove

Ju = vK⇒
∨

y∈V(PS3)

Jψ(u, y)K = Ju = vK⇒
∨

y∈V(PS3)

Jψ(v, y)K.

If

Ju = vK⇒
∨

y∈V(PS3)

Jψ(u, y)K = 0

then Jψ(u, y)K = 0 for all y ∈ V(PS3). Hence by the induction hypothesis Jψ(v, y)K = 0 for

all y ∈ V(PS3); therefore
∨
y∈V(PS3)Jψ(v, y)K = 0 and hence

Ju = vK⇒
∨

y∈V(PS3)

Jψ(v, y)K = 0.

Similarly it can be proved, if

Ju = vK⇒
∨

y∈V(PS3)

Jψ(v, y)K = 0

then

Ju = vK⇒
∨

y∈V(PS3)

Jψ(u, y)K = 0.

Hence this case is also proved.

So, combining all the cases above the theorem is proved. �

By using Theorem 3.5.6 we can reach to our main goal:
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Theorem 3.5.7 The property BQϕ holds in V(PS3) for any negation-free formula ϕ(x) hav-

ing one free variable x.

Proof. We have to prove, for any u ∈ V(PS3) and any negation-free formula ϕ(x),

J∀x(x ∈ u→ ϕ(x))K =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

The proof is done as follows.

J∀x(x ∈ u→ ϕ(x))K =
∧

y∈V(PS3)

(Jy ∈ uK⇒ Jϕ(y)K)

=
∧

y∈V(PS3)

[
∨

x∈dom(u)

(u(x) ∧ Jy = xK)⇒ Jϕ(y)K]

=
∧

y∈V(PS3)

∧
x∈dom(u)

[(u(x) ∧ Jy = xK)⇒ Jϕ(y)K],

since in PS3, (
∨
i

ai ⇒ b) =
∧
i

(ai ⇒ b)

=
∧

y∈V(PS3)

∧
x∈dom(u)

[u(x)⇒ (Jy = xK⇒ Jϕ(y)K)],

since PS3 is deductive

=
∧

y∈V(PS3)

∧
x∈dom(u)

[u(x)⇒ (Jy = xK⇒ Jϕ(x)K)],

by using Theorem 3.5.6, as ϕ(x) is a negation-free formula

=
∧

y∈V(PS3)

∧
x∈dom(u)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K]

Now for any y ∈ V(PS3) and x ∈ dom(u),

u(x)⇒ Jϕ(x)K ≤ (u(x) ∧ Jy = xK)⇒ Jϕ(x)K
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hence, ∧
x∈dom(u)

(u(x)⇒ Jϕ(x)K) ≤
∧

x∈dom(u)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K]

hence,

∧
y∈V(PS3)

∧
x∈dom(u)

(u(x)⇒ Jϕ(x)K) ≤
∧

y∈V(PS3)

∧
x∈dom(u)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K].

Again for the reverse direction, for any x ∈ dom(u),

∧
y∈V(PS3)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K] ≤ (u(x) ∧ Jx = xK)⇒ Jϕ(x)K

= u(x)⇒ Jϕ(x)K

hence,

∧
x∈dom(u)

∧
y∈V(PS3)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K] ≤
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

So, by combining the results we have,

∧
x∈dom(u)

∧
y∈V(PS3)

[(u(x) ∧ Jy = xK)⇒ Jϕ(x)K] =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

i.e.,

J∀x(x ∈ u→ ϕ(x))K =
∧

x∈dom(u)

(u(x)⇒ Jϕ(x)K).

So the theorem is proved. �

Hence as a corollary of Theorems 2.2.6 and 2.2.7 we get:

Theorem 3.5.8 The axioms and axiom schemas Extensionality, Pairing, Infinity, Union, Power
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Set, NFF-Separation and NFF-Collection are valid in V(PS3).

In addition we can also prove the following theorem in V(PS3):

Theorem 3.5.9 NFF-Foundation is valid in V(PS3).

Proof. Let ϕ(x) be a negation-free formula having one free variable x. We have to prove

V(PS3) |= ∀x[∀y ∈ x ϕ(y)→ ϕ(x)]→ ∀xϕ(x).

Case 1. Suppose ϕ(x) is such that Jϕ(x)K 6= 0 for any x ∈ V(PS3). Hence in this case

J∀xϕ(x)K 6= 0 and therefore J∀x[∀y ∈ x ϕ(y)→ ϕ(x)]→ ∀xϕ(x)K = 1.

Case 2. Suppose there exist x ∈ V(PS3) for which Jϕ(x)K = 0. Then take a minimal

u ∈ V(PS3) satisfying this, i.e., Jϕ(u)K = 0 but for any y ∈ dom(u); Jϕ(y)K 6= 0. Then clearly

J∀xϕ(x)K = 0. Now since the property BQϕ holds in V(PS3) for all negation-free formulas ϕ

we get the following.

J∀x[(∀y ∈ xϕ(y))→ ϕ(x)]K ≤ J(∀y ∈ uϕ(y))→ ϕ(u)K

=
∧

y∈dom(u)

(u(y)⇒ Jϕ(y)K)⇒ Jϕ(u)K

= 0

Hence we get

J∀x[∀y ∈ xϕ(y)→ ϕ(x)]→ ∀xϕ(x)K = 1.

Combining Case 1 and Case 2 we can proved that V(PS3) is an algebra-valued model of

NFF-Foundation. �

In ZF one can prove from Foundation that “there is no set containing itself”. The following

theorem shows that V(PS3) also agrees with this fact.
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Theorem 3.5.10 For all u ∈ V(PS3), Ju ∈ uK = 0. So, in particular, J∃x(x ∈ x)K = 0.

Proof. By meta-induction, if there is a counterexample to the claim, there is a minimal

counterexample, i.e., a name u with Ju ∈ uK 6= 0, but for every x ∈ dom(u), we have that

Jx ∈ xK = 0. The first claim means that there is some x0 ∈ dom(u) with u(x0) 6= 0 and

Ju = x0K 6= 0. Since Ju = x0K is defined in terms of a conjunction in which all expressions of

the form u(x) ⇒ Jx ∈ x0K for x ∈ dom(u) occur, each of these must be non-zero. Take one

of these and let x = x0 in this expression; we obtain u(x0) ⇒ Jx0 ∈ x0K. But we assumed

that u(x0) 6= 0 and Jx0 ∈ x0K = 0. Contradiction! �

In Chapter 1, we have said that the paraconsistent set theory developed in this thesis

does not satisfy Comprehension. Below we shall prove this claim.

Theorem 3.5.11 The formula ∃x∀y(y ∈ x↔ y /∈ y) is not valid in V(PS3).

Proof. Again, assume towards a contradiction that u satisfies J∀y(y ∈ u ↔ y /∈ y)K 6= 0.

By Theorem 3.5.10,

Jy /∈ yK = Jy ∈ yK∗ = 0∗ = 1

for all y ∈ V(PS3) and Ju ∈ uK = 0. But then Ju /∈ u→ u ∈ uK = 0. Contradiction! �

Since the formula ∃x∀y(y ∈ x ↔ y /∈ y) is one instance of Comprehension, Theorem 3.5.11

shows that the axiom scheme of Comprehension is not valid in V(PS3). It also assures that

there does not exist any name for Russell’s set in V(PS3). In addition, like classical set

theory, we can prove the formula stating ‘there exists an universal set’ is not valid in this

algebra-valued model.

Theorem 3.5.12 The formula ∃x∀y(y ∈ x) is invalid in V(PS3).
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Proof. This follows immediately from Theorem 3.5.10: if J∃x∀y(y ∈ x)K 6= 0 and u is a

name witnessing this (i.e., J∀y(y ∈ u)K 6= 0), then Ju ∈ uK 6= 0 in contradiction to Theorem

3.5.10.

3.6 Paraconsistency in the language of set theory

3.6.1 The logic corresponding to V(PS3) is non-explosive

We now built an algebra PS3 which is paraconsistent and the axioms of set theory are

valid in V(PS3). Does the paraconsistency of PS3 transfer to the set theory in V(PS3), though?

Or, in other words, can we find a sentence ϕ in the language L∈ such that V(PS3) |= ϕ∧¬ϕ?

In this section, we give a positive answer to this question.

Theorem 3.6.1 For the formula

∃z ∃x ∃y (x = y ∧ z ∈ x ∧ z /∈ y), (Paracon∃)

V(PS3) |= Paracon∃ ∧ ¬Paracon∃ holds; i.e., JParacon∃K = 1/2, where x /∈ y is an abbreviation

for ¬(x ∈ y).

Proof. Let us take an arbitrary element w ∈ V(PS3). Then u = {〈w, 1〉} and v = {〈w, 1/2〉}

are two elements of V(PS3). For these u, v and w we get

Jw ∈ uK = u(w) ∧ Jw = wK = 1;

similarly Jw ∈ vK = 1/2 and
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Ju = vK = (u(w)⇒ Jw ∈ vK) ∧ (v(w)⇒ Jw ∈ uK)

= (1⇒ 1/2) ∧ (1/2⇒ 1)

= 1.

Hence we get the following:

J∃z ∃x ∃y (x = y ∧ z ∈ x ∧ z /∈ y)K =
∨

z∈V(PS3)

∨
x∈V(PS3)

∨
y∈V(PS3)

(Jx = yK∧

Jz ∈ xK ∧ Jz ∈ yK∗)

≥ Ju = vK ∧ Jw ∈ uK ∧ Jw ∈ vK∗

= 1 ∧ 1 ∧ 1/2
∗

= 1/2.

We shall now show that

J∃x ∃y ∃z (x = y ∧ z ∈ x ∧ z /∈ y)K 6= 1.

It will be proved if we can show for any u, v, w ∈ V(PS3),

Ju = v ∧ w ∈ u ∧ w /∈ vK 6= 1. (i)

Hence we have to prove that simultaneously Ju = vK = 1, Jw ∈ uK = 1, and Jw ∈ vK = 0 are

not possible. By definitions we have,

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK) (ii)
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Jw ∈ uK =
∨

x∈dom(u)

(u(x) ∧ Jx = wK) (iii)

Jw ∈ vK =
∨

y∈dom(v)

(v(y) ∧ Jy = wK) (iv)

Let us assume Ju = vK = 1 and Jw ∈ vK = 0. Then we shall prove the value of Jw ∈ uK must

be equal to 0. Since Jw ∈ vK = 0 from (iv) we get, for any y ∈ dom(v)

either v(y) = 0 or Jy = wK = 0. (v)

Now let for some x ∈ dom(u), u(x) 6= 0. Then from (ii) and the assumption Ju = vK = 1

we have Jx ∈ vK 6= 0. So there exists y ∈ dom(v) such that v(y) 6= 0 6= Jx = yK. If v(y) 6= 0

then from (v) we get Jy = wK = 0. Using (i) of Lemma 3.5.2 it can be concluded that

Jx = yK ∧ Jx = wK ≤ Jy = wK.

Hence Jx = wK = 0. So we have derived, for any x ∈ dom(u) either u(x) = 0 or Jx = wK = 0.

Then using (iii) we get Jw ∈ uK = 0. Hence (i) is proved.

Combining all the above results we get,

JParacon∃K = J∃z ∃x ∃y (x = y ∧ z ∈ x ∧ z /∈ y)K = 1/2.

Hence we can conclude V(PS3) |= Paracon∃ ∧ ¬Paracon∃. �

By slightly changing the formula Paracon∃ we can provide another formula whose valua-

tion will still be 1/2. Details are given in the following theorem.

Theorem 3.6.2 For the formula

∀z ∃x ∃y (x = y ∧ z ∈ x ∧ z /∈ y), (Paracon∀)
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JParacon∀K = 1/2 holds i.e., V(PS3) |= Paracon∀ ∧ ¬Paracon∀.

Proof. For any z ∈ V(PS3) fix x = {〈z, 1〉} and y = {〈z, 1/2〉}. Then by following the

arguments given in Theorem 3.6.1 we get Jx = yK = 1, Jz ∈ xK = 1, and Jz /∈ yK = Jz ∈

yK∗ = 1/2. Hence JParacon∀K ≥ 1/2. Since the condition (i) in the proof of Theorem 3.6.1

holds in V(PS3), we get JParacon∀K < 1. Combining both the results it can be derived that

JParacon∀K = 1/2 i.e., V(PS3) |= Paracon∀ ∧ ¬Paracon∀. �

Let us now consider the formula ψ := ∀x(x ∈ x) in the language of set theory. One can

prove that JψK = 0 by the following derivation:

J∀x(x ∈ x)K =
∧

u∈V(PS3)

Ju ∈ uK ≤ J∅ ∈ ∅K = 0.

As a conclusion, suppose ϕ is any one of the formulas Paracon∃ and Paracon∀, we can

prove that V(PS3) being an algebra-valued model of {ϕ,¬ϕ} cannot validate ψ. Hence by

the definition, the first order set theory having V(PS3) as an algebra-valued model, is para-

consistent.

3.6.2 De-Paraconsistification of a formula

If we observe carefully it can be understood that the paraconsistency entered into the

language of set theory through the formulas ϕ which are such that JϕK = 1/2. Also we know

in the composition table of ⇒ in PS3 the only entries are 1 and 0. We shall use this fact

to get from a formula ϕ with JϕK = 1/2 a new, classically equivalent, formula ψ such that

JψK = 1.

Definition. Let ϕ ∈ LPS3 be an arbitrary formula and v be a valuation such that v(ϕ) = 1/2.

A formula ψ is said to be a v-de-paraconsistification of ϕ if v(ψ) = 1 and |= (ϕ↔ ψ).

87



Let ϕ(x) be a formula in the language of set theory having one free variable. Let us

define another formula, ϕ∗(x) := ∀t(t = x→ ϕ(t)).

Theorem 3.6.3 Let ϕ(x) be a formula having one free variable. Then J∀xϕ(x)K ∈ D iff

J∀xϕ∗(x)K = 1.

Proof. Let J∀xϕ(x)K ∈ D hold. Hence for any u ∈ V(PS3), Jϕ(u)K ∈ D. Hence by the com-

position table of⇒ in PS3 we can say that Jϕ∗(u)K = 1. Since u was arbitrary J∀xϕ∗(x)K = 1

also.

Conversely let J∀xϕ∗(x)K = 1 i.e., for any x ∈ V(PS3), Jϕ∗(x)K = 1. If there exists

u ∈ V(PS3) such that Jϕ(u)K = 0 then we would get

Jϕ∗(u)K = J∀t(t = u→ ϕ(t))K

≤ Ju = u→ ϕ(u)K

= Ju = uK⇒ Jϕ(u)K

= 0

which is not the case. Hence for any u ∈ V(PS3) we get Jϕ(u)K ∈ D. �

In particular if there exists a formula ϕ(x) such that J∀xϕ(x)K = 1/2 then ∀xϕ∗(x) is a

J·K-de-paraconsistification of the formula ∀xϕ(x). The formula Paracon∀ assures that such a

formula ϕ(x) exists.

Theorem 3.6.4 Let ϕ(x) be a negation-free formula having one free variable. Then J∃xϕ(x)K ∈

D iff J∃xϕ∗(x)K = 1.

Proof. Let ϕ(x) be a negation-free formula such that J∃xϕ(x)K ∈ D. Then there exists
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u ∈ V(PS3) such that Jϕ(u)K ∈ D. Hence for any v ∈ V(PS3) we get

Jv = u→ ϕ(v)K = Jv = uK⇒ Jϕ(v)K = Jv = uK⇒ Jϕ(u)K ∈ D

using Theorem 3.5.6. This implies Jϕ∗(u)K = 1. As a conclusion it can be derived that

J∃xϕ∗(x)K = 1.

Conversely let J∃xϕ∗(x)K = 1. Hence there exists u ∈ V(PS3) such that Jϕ∗(u)K = 1. Now

we know that

Jϕ∗(u)K =
∧

v∈V(PS3)

(Jv = uK⇒ Jϕ(v)K) ≤ Ju = uK⇒ Jϕ(u)K.

From this it can be concluded that Jϕ(u)K ∈ D. Hence J∃xϕ(x)K ∈ D. �

One side of the proof, viz. J∃xϕ∗(x)K = 1 implies J∃xϕ(x)K ∈ D, does not require ϕ to

be a negation-free formula. As above, in particular if we get a negation-free formula ϕ(x) so

that J∃xϕ(x)K = 1/2 then ∃xϕ∗(x) is a J·K-de-paraconsistification of the formula ∃xϕ(x).

We should stress that the results about J·K-de-paraconsistification are results in V(PS3),

not results for arbitrary reasonable implication algebras: this is because we heavily rely on

the fact that the truth table of⇒ does not contain the value 1/2 in our arguments. It is con-

ceivable that there are other reasonable implication algebras where J·K-de-paraconsistification

does not work. For example consider a reasonable implication-negation algebra A, other than

PS3, having DA as the designated set, which satisfy the following properties

(i) there exists d ∈ DA such that d∗ ∈ DA as well, and

(ii) all the truth tables of the operators in A contain d.

Then the same idea of J·K-de-paraconsistification of a formula may not work in the set theory

for V(A).
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Chapter 4

Ordinals in the algebra-valued model

V(PS3) and violation of Leibniz’s Law

In this chapter we shall discuss the validity of the sentences: ‘there is an ordinal number’,

‘there is no set containing all ordinals’ etc. Before that it is necessary to define which elements

in V(PS3) will be marked as names for ordinals. We shall also emphasize on some properties

of ordinals in the algebra-valued model V(PS3).

4.1 Definitions and preliminaries

4.1.1 Some classical definitions

We develop the classical theory of transitive sets, well-ordered sets, and ordinal numbers

in the setting of V(A). The following definitions are reminders of the classical definitions for

the benefit of the reader.

Definition. A set x is said to be transitive if every element of x is a subset of x, or equiva-
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lently, if y ∈ z and z ∈ x then y ∈ x.

Definition. A set A is said to be well-ordered by a relation R if R is a linear order on A

and any non-empty subset of A has a least element with respect to R.

Definition. An ordinal number is a transitive set well-ordered by ∈.

4.1.2 Definition of α-like Elements

As in the theory of Boolean-valued models, we can recursively define the notion of a

canonical name:

Definition. For each x ∈ V, x̂ is defined as:

∅̂ = ∅,

x̂ = {〈ŷ, 1〉 : y ∈ x}.

Let ORD refer to the class of all ordinal numbers in V. One of the main goals of this

chapter is to identify elements in V(PS3) which behave almost similar to the classical ordinal

numbers. It will be shown that there are more than one such elements in V(PS3) corresponding

to each α ∈ ORD which will be named as α-like elements. But the non-classical behaviour

of these elements will be discussed in the section 4.4.

For each α ∈ ORD the α-like names in V(PS3) are defined by transfinite recursion as

follows.

Definition. An element x ∈ V(PS3) is called

i. 0-like if for every y ∈ dom(x), we have that x(y) = 0; and
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ii. α-like if for each β ∈ α there exists y ∈ dom(x) which is β-like and x(y) ∈ {1, 1/2}, and

for any z ∈ dom(x) if it is not β-like for any β ∈ α then x(z) = 0.

Clearly, the canonical name α̂ is an α-like name for every α ∈ ORD.

4.2 Properties of α-like Elements

For each α ∈ ORD, there are many α-like names as the following results show.

Lemma 4.2.1 For any x ∈ V(PS3) and α ∈ ORD, Jx = α̂K = 1 if and only if x is α-like.

Proof. The proof will be done by (meta-)induction. We assume that we have shown the

result for all elements in the domain of α̂. We know

Jx = α̂K =
∧

y∈dom(x)

(x(y)⇒ Jy ∈ α̂K) ∧
∧

β̂∈dom(α̂)

(1⇒ Jβ̂ ∈ xK).

Hence Jx = α̂K = 1 if and only if both of the conjuncts are 1. The second conjunct is 1, i.e.,

∧
β̂∈dom(α̂)

(1⇒ Jβ̂ ∈ xK) = 1;

if and only if for each β̂ ∈ dom(α̂), 1⇒ Jβ̂ ∈ xK = 1 i.e.,

1⇒
∨

y∈dom(x)

(x(y) ∧ Jy = β̂K) = 1;

if and only if for each β̂ ∈ dom(α̂) there exists y ∈ dom(x) such that x(y) ∈ {1, 1/2} and

Jy = β̂K = 1; if and only if for each β̂ ∈ dom(α̂) there exists y ∈ dom(x) such that y is β-like

(by the induction hypothesis) and x(y) ∈ {1, 1/2}.
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Again, since the first conjunct is 1, we have,

∧
y∈dom(x)

(x(y)⇒ Jy ∈ α̂K) = 1;

if and only if for each y ∈ dom(x), (x(y)⇒ Jy ∈ α̂K) = 1, i.e.,

(x(y)⇒
∨

β̂∈dom(α̂)

Jy = β̂K) = 1;

if and only if for each y ∈ dom(x), if y is not β-like for any β ∈ α then by induction

hypothesis it can be derived that x(y) = 0.

Hence combining the above results we get Jx = α̂K = 1 if and only if x is α-like and hence

by the (meta-)induction the proof is done. �

Lemma 4.2.2 For any x ∈ V(PS3) and α ∈ ORD, Jx ∈ α̂K = 1 if and only if x is β-like for

some β ∈ α.

Proof. Using Lemma 4.2.1, the following three statements are equivalent:

1. Jx ∈ α̂K = 1;

2.
∨

û∈dom(α̂)

Jx = ûK = 1;

3. there exists β̂ ∈ dom(α̂) such that Jx = β̂K = 1; and

4. x is β-like for some β ∈ α.

�

It is clear from the definition that for any α ∈ ORD, there are many α-like names in

V(PS3) in addition to α̂. We would desire that for any two α-like names, V(PS3) validates
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the statement that they are equal, and if β < α, for β-like names and α-like names, V(PS3)

validates the statement that the former are elements of the latter.

Of course, we would desire that α-like names are equal and that for β < α, β-like names

are elements of α-like names (in the formal sense of V(A)):

Theorem 4.2.3 Let x ∈ V(PS3) be α-like for some α ∈ ORD. For any y ∈ V(PS3), Jx =

yK = 1 if and only if y is α-like.

Proof. It is proved in 3.5.2(i) that for any x, y, z ∈ V(PS3),

Jx = yK ∧ Jy = zK ≤ Jx = zK.

Let x and y be two α-like elements in V(PS3). So Jx = α̂K ∧ Jα̂ = yK ≤ Jx = yK. By Lemma

4.2.1 we have Jx = α̂K = 1 = Jy = α̂K, which implies Jx = yK = 1.

Conversely let Jx = yK = 1. By a similar argument we can write, Jx = yK ∧ Jx = α̂K ≤

Jy = α̂K and hence Jy = α̂K = 1. Again by Lemma 4.2.1 it can be concluded that y is α-like.

�

Theorem 4.2.4 Let x ∈ V(PS3) be α-like for some non-zero α ∈ ORD. For any y ∈ V(PS3),

Jy ∈ xK ∈ {1, 1/2} if and only if y is β-like for some β ∈ α.

Proof. Let y be β-like for some β ∈ α. Now

Jy ∈ xK =
∨

u∈dom(x)

(x(u) ∧ Ju = yK)

≥ x(v) ∧ Jv = yK,where v ∈ dom(x) is β-like and x(v) ∈ {1, 1/2}

≥ 1/2, by Theorem 4.2.3.
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Conversely, let Jy ∈ xK ∈ {1, 1/2}, i.e.,

∨
u∈dom(x)

(x(u) ∧ Ju = yK) ∈ {1, 1/2}.

Hence there exists some β-like v ∈ dom(x) such that x(v) ∈ {1, 1/2} and Jv = yK = 1, where

β ∈ α. So by Theorem 4.2.3, it follows that y is also β-like. �

4.3 Ordinals in V(PS3)

We now rewrite the classical definitions given in section 4.1 in the language of set theory:

Trans(x) = ∀y∀z(z ∈ y ∧ y ∈ x→ z ∈ x)

LO(x) = ∀y∀z((y ∈ x ∧ z ∈ x)→ (y ∈ z ∨ y = z ∨ z ∈ y))1

WO∈(x) = LO(x) ∧ ∀y(y ⊆ x ∧ (y 6= ∅)→ ∃z(z ∈ y ∧ z ∩ y = ∅))

ORD(x) = Trans(x) ∧WO∈(x)

where the following abbreviations are used in WO∈(x):

y ⊆ x := ∀t(t ∈ y → t ∈ x),

(y 6= ∅) := ∃z(z ∈ y), and

(z ∩ y = ∅) := ¬ ∃w(w ∈ z ∧ w ∈ y).

Finally, we can connect the notion of α-like elements to the set theoretic notion of ordinals:

1LO(x) stands for the formula: x is a linear orderdered set with respect to ∈.
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Lemma 4.3.1 Let α ∈ ORD and u be an α-like element in V(PS3). Then the following hold:

(i) V(PS3) |= Trans(u).

(ii) V(PS3) |= LO(u).

(iii) V(PS3) |= WO∈(u).

Proof. (i) We have to prove J∀y∀z(z ∈ y∧y ∈ u→ z ∈ u)K ∈ {1, 1/2}. Since the truth table

of ⇒ in PS3 does not contain 1/2 it is sufficient to show J∀y∀z(z ∈ y ∧ y ∈ u→ z ∈ u)K = 1.

Let us take any z ∈ V(PS3). Then,

J∀y(y ∈ u ∧ z ∈ y → z ∈ u)K =
∧

y∈V(PS3)

(Jy ∈ uK ∧ Jz ∈ yK⇒ Jz ∈ uK)

=
∧

y∈V(PS3)

(Jy ∈ uK⇒ (Jz ∈ yK⇒ Jz ∈ uK))

= J∀y ∈ u (z ∈ y → z ∈ u)K

=
∧

y∈dom(u)

(u(y)⇒ Jz ∈ y → z ∈ uK)

=
∧

y∈dom(u)

(u(y)⇒ (Jz ∈ yK⇒ Jz ∈ uK))

(since BQϕ hold in V(PS3) for all negation-free formulas ϕ, and (z ∈ y → z ∈ u) is a negation-

free formula.)

For any y ∈ dom(u) if u(y) 6= 0 then y is β-like for some non-zero β ∈ α. Let for such

an y, Jz ∈ yK ∈ {1, 1/2}. Therefore by Theorem 4.2.4, z is γ-like for some γ ∈ β. Clearly,

γ ∈ α. Therefore one more application of Theorem 4.2.4 provides Jz ∈ uK ∈ {1, 1/2}. Hence
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combining the above results we get

∧
y∈dom(u)

(u(y)⇒ (Jz ∈ yK⇒ Jz ∈ uK)) = 1

for any z ∈ V(PS3). This leads to the fact

J∀y∀z(y ∈ u ∧ z ∈ y → z ∈ u)K = 1, i.e., V(PS3) |= Trans(u).

(ii) Since for any α, β ∈ ORD exactly one of α ∈ β, α = β and β ∈ α holds in V, the

proof can be derived easily by applying Theorems 4.2.3 and 4.2.4.

(iii) We already have V(PS3) |= LO(u) from (ii). So it is sufficient to prove that

J∀y(y ⊆ u ∧ (y 6= ∅)→ ∃z(z ∈ y ∧ z ∩ y = ∅))K = 1, 2

i.e., for any y ∈ V(PS3) if Jy ⊆ u∧ (y 6= ∅)K ∈ {1, 1/2} then J∃z(z ∈ y∧ z∩y = ∅)K ∈ {1, 1/2}.

Now by definition and the fact that BQϕ hold in V(PS3) for all negation-free formulas ϕ,

Jy ⊆ uK = J∀t(t ∈ y → t ∈ u)K =
∧

t∈dom(y)

(y(t)⇒ Jt ∈ uK)

So, Jy ⊆ uK ∈ {1, 1/2} iff for any t ∈ dom(y) if y(t) 6= 0 then Jt ∈ uK 6= 0, i.e., by Theorem

4.2.4 it can be concluded that t is β-like for some β ∈ α. Again,

J(y 6= ∅)K = J∃z(z ∈ y)K =
∨

z∈V(PS3)

∨
t∈dom(y)

(y(t) ∧ Jz = tK).

Therefore J(y 6= ∅)K ∈ {1, 1/2} iff there exists t ∈ dom(y) such that y(t) ∈ {1, 1/2}.

Hence Jy ⊆ u ∧ (y 6= ∅)K ∈ {1, 1/2} iff there exists t ∈ dom(y) such that y(t) ∈ {1, 1/2}
2Since PS3 satisfies the deductive principle: ((a ∧ b)⇒ c) = (a⇒ (b⇒ c)).
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and for each t ∈ dom(y) if y(t) ∈ {1, 1/2} then t is β-like for some β ∈ α.

Let us now find the value of J∃z(z ∈ y ∧ z∩y = ∅)K assuming Jy ⊆ u∧(y 6= ∅)K ∈ {1, 1/2}.

Let

γ = min{β ∈ ORD | there exists t ∈ dom(y) such that

y(t) ∈ {1, 1/2} and t is β-like}.

So there exists t′ ∈ dom(y) such that y(t′) ∈ {1, 1/2} and t′ is γ-like.

J∃z(z ∈ y ∧ z ∩ y = ∅)K

= J∃z(z ∈ y ∧ ¬∃w(w ∈ z ∧ w ∈ y))K

≥ Jt′ ∈ y ∧ ¬∃w(w ∈ t′ ∧ w ∈ y))K

=
∨

t∈dom(y)

(y(t) ∧ Jt = t′K) ∧ (
∨

w∈dom(t′)

(t′(w) ∧ Jw ∈ yK))∗

≥ (y(t′) ∧ Jt′ = t′K) ∧ [
∨

w∈dom(t′)

(t′(w) ∧
∨

t∈dom(y)

(y(t) ∧ Jw = tK))]∗

≥ 1/2 ∧ [
∨

w∈dom(t′)

(t′(w) ∧
∨

t∈dom(y)

(y(t) ∧ Jw = tK))]∗.

Claim 4.3.2 [
∨

w∈dom(t′)

(t′(w) ∧
∨

t∈dom(y)

(y(t) ∧ Jw = tK))]∗ = 1.

Proof. It is sufficient to prove that

∨
w∈dom(t′)

(t′(w) ∧
∨

t∈dom(y)

(y(t) ∧ Jw = tK)) = 0.

If t′ is 0-like then the claim is proved immediately. If not, then assume there exists w ∈

dom(t′) such that t′(w) ∈ {1, 1/2}. If possible let there exist t ∈ dom(y) such that both

y(t), Jw = tK ∈ {1, 1/2}. By our assumption y(t) ∈ {1, 1/2} implies t is β-like for some β ∈ α.
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Since Jw = tK ∈ {1, 1/2} by Theorem 4.2.3 we have w is β-like. Again since t′ is γ like

and t′(w) ∈ {1, 1/2} therefore β ∈ γ. So combining the above results it can be concluded

that there exists t ∈ dom(y) such that y(t) ∈ {1, 1/2} and t is β-like where β < γ, which

contradicts the minimality of γ. Hence the claim is proved. �

Therefore J∃z(z ∈ y ∧ z ∩ y = ∅)K ≥ 1/2 ∧ 1 = 1/2. This leads to the fact that for any

y ∈ V(PS3), if Jy ⊆ u ∧ (y 6= ∅)K ∈ {1, 1/2} then J∃z(z ∈ y ∧ z ∩ y = ∅)K ∈ {1, 1/2}; i.e.,

J∀y(y ⊆ u ∧ ¬(y = ∅)→ ∃z(z ∈ y ∧ z ∩ y = ∅))K = 1.

Hence we can conclude V(PS3) |= WO∈(u). �

Combining (i) and (iii) of Lemma 4.3.1 the following theorem can be derived.

Theorem 4.3.3 Let α ∈ ORD and u be an α-like element in V(PS3). Then V(PS3) |=

ORD(u).

Theorem 4.3.3 shows that any α-like element satisfies the classical definition of ordinal

number. It is proved in Theorem 3.5.11 that the general Comprehension axiom scheme is

not valid in V(PS3). On the other hand the general Comprehension axiom is a theorem in

Weber’s paraconsistent set theory [36, Theorem 3.3], hence as a consequence, the collection

of all ordinals becomes a set. This fact leads us to the important question, whether the

collection of elements which make the first order formula ORD(x) valid is a name of set in

V(PS3). The following theorem assures the answer is negative.

Theorem 4.3.4 There is no set of all ordinals:

V(PS3) 2 ∃O ∀x(ORD(x)→ x ∈ O).
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Proof. Let O ∈ V(PS3) be arbitrarily chosen. Then by definition, dom(O) is a set in V. By

Theorem 4.2.3, if α 6= β for any α, β ∈ ORD then for any α-like u and β-like v, V(PS3) 2 u =

v. Hence u and v are not equal as a set in V. We conclude that if for each α ∈ ORD there

exists an α-like u in dom(O) then dom(O) cannot be a set in V as the collection of all ordinals

is not a set in V. Hence there exists an α′ ∈ ORD such that there is no α′-like element in

dom(O). Let u be an α′-like element. Then by Theorem 4.3.3, JORD(u)K ∈ {1, 1/2} but

Ju ∈ OK =
∨

x∈dom(O)

(O(x) ∧ Jx = uK) = 0.

Hence J∀x(ORD(x)→ x ∈ O)K = 0. Since O is arbitrary we have

J∃O ∀x(ORD(x)→ x ∈ O)K = 0.

So the theorem is proved. �

4.4 Violation of Leibniz’s law: indiscernibility of iden-

ticals

Before going to the main points, for simplicity, let us assume that D stands for the set

{1, 1/2}, the designated set of PS3. From now onwards D will be used for this designated set,

unless otherwise stated.

Leibniz’s law of indiscernibility of identicals can be expressed as an axiom scheme which

intuitively states the following:

Let x and y be any two objects. If x = y then for any formula ϕ(t) having one free variable

t, ϕ(x)↔ ϕ(y) is satisfied.
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If ϕ is a formula let LLϕ stands for the formula

∀x∀y(x = y → (ϕ(x)↔ ϕ(y))).

Let us call a formula ϕ Leibnizian if LLϕ is valid. This is equivalent to saying that the class

[ϕ] := {u ∈ V(PS3) : Jϕ(u)K ∈ D} forms a union of equivalence classes of the relation ∼

defined in Section 2.2.3, by using the Lemma 3.5.2(i). Typically (and classically), we say

that a formula ϕ(x) defines a unique object if

∀x∀y((ϕ(x) ∧ ϕ(y))→ x = y)

is valid. In V(PS3), this is equivalent to saying that [ϕ] is contained in one equivalence class

of the relation ∼. So, together if a formula ϕ is Leibnizian and defines a unique object, this

would just mean that [ϕ] is an equivalence class of ∼ in V(PS3).

All NFF-formulas are Leibnizian. But there are formulas that are not Leibnizian. Con-

sider the formula

Empty∃(x) := ¬ ∃y(y ∈ x).

Let us choose any non-zero α ∈ ORD. Fix any two α-like elements u and v as ran(u) =

{1/2} and ran(v) = {1}. Then clearly JEmpty∃(u)K = 1/2. But it is easy to calculate that

JEmpty∃(v)K = 0. Since u and v both are α-like by Theorem 4.2.3 Ju = vK = 1. Hence we

get the following derivation:

JLLEmpty∃K =
∧

x∈V(PS3)

∧
y∈V(PS3)

Jx = y → (Empty∃(x)↔ Empty∃(y))K

≤ Ju = v → (Empty∃(u)↔ Empty∃(v))K

= 0.
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This establishes that V(PS3) 2 LLEmpty∃ and hence the formula Empty∃ is not Leibnizian. This

shows that Leibniz’s law of indiscernible of identicals fails to be satisfied in V(PS3).

The idea of the proof showing the failure of Leibniz’s law of indiscernible of identicals in

V(PS3) can be generalised for some reasonable implication algebras, other than PS3, as well.

Let A = (A,∧,∨,0,1,⇒,∗ ) be an algebra extended by a unary operator ∗ from a reasonable

implication algebra (A,∧,∨,0,1,⇒). As we defined in Section 2.1.1, A is a reasonable

implication-negation algebra. Let DA be a filter of A taken as a designated set. We say that

the matrix (A, DA) is paraconsistent if there are formulas ϕ and ψ in the language, L(A,DA)

(say) corresponding to (A, DA) such that v(ϕ) ∈ DA, v(¬ϕ) ∈ DA and v(ψ) /∈ DA (where v

stands for a valuation function of propositional formulas in A). It is worthwhile to say that

for any formula ϕ of L(A,DA) and any valuation function v we have v(¬ϕ) = v(ϕ)∗.

Clearly, if (A, DA) is paraconsistent, then there must be some d ∈ DA such that d∗ ∈ DA.

We say that such a d witnesses the paraconsistency of (A, DA).

Definition. The designated set DA of an implication-negation algebra (A, DA) is said to be

a reasonable designated set if

(i) 1∗ /∈ DA, and

(ii) if a ∈ DA and b /∈ DA then a⇒ b /∈ DA.

Observation 4.4.1 Let (A, DA) be a reasonable implication-negation algebra where DA sat-

isfies the condition (ii) of a reasonable designated set. If there are two elements u, v ∈ V(A),

and a formula ϕ(x) having one free variable x, in the language of V(A) such that Ju = vK = a,

and (Jϕ(u)K⇒ Jϕ(v)K) = b, where a ∈ DA but b /∈ DA, then LLϕ fails to be valid in V(A).

Theorem 4.4.2 Let (A, DA) be a reasonable implication-negation algebra where DA is a

reasonable designated set. If (A, DA) is paraconsistent then there exists a formula ϕ such

that LLϕ is not valid in V(A).
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Proof. Let (A, DA) be paraconsistent. Then, there exists d ∈ DA which witnesses the

paraconsistency of (A, DA). Let u1, ud ∈ V(A) be such that dom(u1) = dom(ud) whereas

ran(u1) = {1} and ran(ud) = {d}. By definition we know that

Ju1 = udK =
∧

x∈dom(u1)

(u1(x)⇒ Jx ∈ udK) ∧
∧

y∈dom(ud)

(ud(y)⇒ Jy ∈ u1K).

Then from the first conjunct the following can be derived:

∧
x∈dom(u1)

(u1(x)⇒ Jx ∈ udK) =
∧

x∈dom(u1)

(1⇒
∨

y∈dom(ud)

(ud(y) ∧ Jx = yK))

=
∧

x∈dom(u1)

(1⇒ d)

= 1⇒ d.

Since d ∈ DA, by Proposition 2.1.3 we have 1⇒ d ∈ DA. On the other hand

∧
y∈dom(ud)

(ud(y)⇒ Jy ∈ u1K) =
∧

y∈dom(ud)

(d⇒
∨

x∈dom(u1)

(u1(x) ∧ Jy = xK)

=
∧

y∈dom(ud)

(d⇒ 1)

= d⇒ 1

= 1

by Proposition 2.1.1. Hence we get Ju1 = udK ∈ DA.

Now consider the formula Empty∃(x). Then

JEmpty∃(u1)K = J¬∃y(y ∈ u1)K

= (
∨

y∈V(A)

Jy ∈ u1K)∗
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= (
∨

y∈V(A)

∨
x∈dom(u1)

(u1(x) ∧ Jx = yK))∗

= 1∗.

Similarly we can derive JEmpty∃(ud)K = d∗. Hence the following holds

JEmpty∃(u1)↔ Empty∃(ud)K = (1∗ ⇒ d∗) ∧ (d∗ ⇒ 1∗).

Since d ∈ DA witnesses paraconsistency, d∗ ∈ DA too. So, by the definition of a reasonable

designated set, d∗ ⇒ 1∗ /∈ DA. Since

(1∗ ⇒ d∗) ∧ (d∗ ⇒ 1∗) ≤ d∗ ⇒ 1∗ /∈ DA

it can be concluded that (1∗ ⇒ d∗)∧(d∗ ⇒ 1∗) /∈ DA, otherwise DA would not be a designated

set.

Combining the above results we get

Ju1 = ud → (Empty∃(u1)↔ Empty∃(ud))K /∈ DA

since DA is a reasonable designated set. Hence it can be derived that JLLEmpty∃K /∈ DA which

means LLEmpty∃ is not valid in V(A). �

In set theory, we define many objects by formulas that “define unique objects”. In our

paraconsistent set theory, this is problematic since if the formula is not Leibnizian, then

there could be things that are equal in V(PS3), but do not satisfy the formula. So, we need

to make sure that our defining formulas are Leibnizian as well. We are now interested in

defining natural number-like elements in V(PS3). In classical set theory ZFC, the formulas

defining the natural numbers are formulas that define unique objects. In our paraconsistent
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set theory we need this property as well. But the same formula used in ZFC to define a

natural number may not work in our paraconsistent set theory as it may not be Leibnizian

and define unique objects. As an example we may consider the formula

Empty∀(x) := ∀y ¬(y ∈ x).

We know that in ZFC, the formula Empty∀ defines uniquely the natural number 0. But in

Observation 4.4.3 it is proved that Empty∀ does not define unique objects in V(PS3), which

formally says that there exist u, v ∈ V(PS3) so that V(PS3) |= Empty∀(u) ∧ Empty∀(v) but

V(PS3) 2 u = v. Before going to the proof of this, the following is an important issue to

discuss. The two formulas Empty∀(x) and Empty∃(x) are equivalent in ZFC. Not only that,

we can prove V(PS3) |= Empty∀(x) ↔ Empty∃(x) as well. But there may exist a reasonable

implication-negation algebra A so that Empty∀(x)↔ Empty∃(x) is not valid in V(A).

Observation 4.4.3 The collection {u ∈ V(PS3) : JEmpty∀(u)K ∈ D} contains all 0-like

elements together with some other elements which are not 0-like.

Proof. Let us take any element u ∈ V(PS3) and then fix v = {(u, 1/2)} and w = {(u, 0)}.

Then v, w ∈ V(PS3) and it can be derived that JEmpty∀(v)K, JEmpty∀(w)K ∈ D. By definition

w is a 0-like element whereas v is not and hence Theorem 4.2.3 says V(PS3) 2 v = w. �

The closed formula Empty∀(v) containing the name corresponding to the element v ∈

V(PS3) in the proof of Observation 4.4.3 is such that both JEmpty∀(v)K and J¬Empty∀(v)K are

1/2. This is the reason why the formula Empty∀(x) having one free variable x is not defining

unique object. We shall now use the idea of “de-paraconsistification” shown in Section 3.6.2.

Consider the formula

Nat0(x) := ∀y∀z(y = x→ z /∈ y).

It is clear that for any u ∈ V(PS3), if JEmpty∀(u)K = 1/2 then JNat0(u)K = 1. Hence Nat0(x)
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is a J·K-de-paraconsistification of the formula Empty∀(x). In Proposition 4.4.4 we will show

that the formula Nat0(x) is not only Leibnizian but also define unique objects.

Proposition 4.4.4 The collection {u ∈ V(PS3) : JNat0(u)K ∈ D} consists of all 0-like ele-

ments only.

Proof. Let u be a 0-like element i.e., ran(u) = {0}. Hence

JNat0(u)K =
∧

y∈V(PS3)

∧
z∈V(PS3)

(Jy = uK⇒ Jz ∈ yK∗).

Take any v, w ∈ V(PS3). Since u is 0-like, Jv = uK ∈ D iff v is also 0-like. This ensures that

Jw ∈ vK∗ = 1. Hence Jv = uK ⇒ Jw ∈ vK∗ = 1 ∈ D. Again if Jv = uK /∈ D then by the

table of ⇒ in PS3 we directly get Jv = uK ⇒ Jw ∈ vK∗ = 1 ∈ D. Therefore in any case

JNat0(u)K = 1 ∈ D.

Conversely let u ∈ V(PS3) be such that JNat0(u)K ∈ D. We shall prove that u is 0-like. If

possible let u be not 0-like. Let us consider v ∈ V(PS3) such that dom(v) = dom(u) and if

for some x ∈ dom(u), u(x) ∈ D then v(x) = 1. By our assumption there exists w ∈ dom(u)

such that u(w) ∈ D; so v(w) = 1 too. Clearly Jv = uK = 1 = Jw ∈ vK. Hence

JNat0(u)K ≤ Jv = uK⇒ Jw ∈ vK∗ = 0

which is not the case. As a conclusion it can be said that u is a 0-like element. �
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4.5 Natural Numbers

4.5.1 Natural numbers and their properties

Inspired by Observation 4.4.3 and Proposition 4.4.4, in this section, we shall identify

formulas which can uniquely define natural number-like elements.

Below we shall generalise the result of Proposition 4.4.4. Like Nat0(x), for each n ∈ ω

we shall recursively provide a formula Natn(x) whose instances are only n-like elements in

V(PS3). Let us define

Natn+1(x) := ∃x0 ∃x1 . . . ∃xn[(Nat0(x0) ∧ . . . ∧ Natn(xn)) ∧

(x0 ∈ x ∧ . . . ∧ xn ∈ x) ∧ ∀y(y ∈ x→ (y = x0 ∨ . . . ∨ y = xn))]

for each n ∈ ω. The intuitive idea of defining the formula Natn+1(x) is that x is n + 1-

like iff there exist x0, x1, . . . , xn such that (x0 is 0-like, x1 is 1-like, . . ., xn is n-like) and

(x0, x1 . . . , xn ∈ x) and (for any y ∈ x, one of y = x0 or y = x1 or . . . or y = xn holds).

Proposition 4.5.1 For each n ∈ ω, {u ∈ V(PS3) : JNatn+1(u)K ∈ D} is the collection of all

n+ 1-like elements.

Proof. We shall prove the proposition using mathematical induction.

Base step: Let us consider the case for n = 0. We have to prove that the 1-like elements

are the only instances of the formula

Nat1(x) = ∃x0 [Nat0(x0) ∧ x0 ∈ x ∧ ∀y (y ∈ x→ y = x0)].

Hence we have JNat1(x)K ∈ D iff there exists u ∈ V(PS3) such that all of JNat0(u)K, Ju ∈ xK,

and J∀y (y ∈ x→ y = u)K belong to D.

(i) Using Proposition 4.4.4 it can be said JNat0(u)K ∈ D iff u is 0-like.
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(ii) Now Ju ∈ xK ∈ D i.e.,
∨
t∈dom(x)(x(t) ∧ Jt = uK) ∈ D iff there exists t ∈ dom(x) such

that x(t) ∈ D and Jt = uK ∈ D iff x(t) ∈ D and t is 0-like, using theorem 4.2.3.

(iii) Lastly J∀y (y ∈ x → y = u)K ∈ D i.e.,
∧
t∈dom(x)(x(t) ⇒ Jt = uK) ∈ D iff for each

t ∈ dom(x) if x(t) ∈ D then Jt = uK ∈ D also i.e., t is 0-like.

Hence combining (i), (ii), and (iii) it can be concluded that {u ∈ V(PS3) : JNat(1, u)K ∈

D} is the collection of all 1-like elements.

Induction hypothesis: Let the proposition be true for all natural numbers less than

m ∈ ω − {0}.

Induction step: We shall prove the proposition for the natural number m. Hence we

have to prove {u ∈ V(PS3) : JNatm+1(u)K ∈ D} is the collection of all m + 1-like elements.

Since

Natm+1(x) := ∃x0 ∃x1 . . . ∃xm[(Nat0(x0) ∧ . . . ∧ Natm(xm)) ∧

(x0 ∈ x ∧ . . . ∧ xm ∈ x) ∧ ∀y(y ∈ x→ (y = x0 ∨ . . . ∨ y = xm))],

JNatm+1(x)K ∈ D iff there exist u0, u1, . . . , um ∈ V(PS3) such that

(i) JNat0(u0)K, JNat1(u1)K, . . . , JNatm(um)K ∈ D,

(ii) Ju0 ∈ xK, Ju1 ∈ xK, . . . , Jum ∈ xK ∈ D, and

(iii) J∀y(y ∈ x→ (y = u0 ∨ . . . ∨ y = um))K ∈ D.

By induction hypothesis (i) assures that each uk is a k-like element where k ∈ {0, 1, 2, . . . ,m}.

From (ii) it can be concluded that for each k ∈ {0, 1, 2, . . . ,m} there exists a k-like element,

say vk, in dom(x) such that x(vk) ∈ D. Condition (iii) describes for any y ∈ dom(x) if

x(y) ∈ D then y is k-like for some k ∈ {0, 1, 2, . . . ,m}. Hence the proposition is true for

m also. Therefore by the principle of mathematical induction the proposition is true for all

n ∈ ω. �
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Propositions 4.4.4 and 4.5.1 together produce the fact: for each n ∈ ω, {u ∈ V(PS3) :

JNatn(u)K ∈ D} is the collection of all n-like elements. Therefore, this collection represents

an equivalence class with respect to ∼ in V(PS3). Hence we can say for each n ∈ ω the

formula Natn(x) is Leibnizian and define unique objects.

In the next few lemmas and theorems we shall discuss some properties about natural

number-like elements and ω-like elements. It will be proved that if u is an ω-like element

then v ∈ u is true in V(PS3) iff v is some natural number-like element.

Intuitively the following lemma says, if I ∈ V(PS3) satisfies the two conditions, (i) an

element belongs to I implies its successor (in classical sense) also belongs to I and (ii) there

does not exist any m-like element (where m ∈ ω − 0) in I; then I does not contain any

(m− 1)-like element also.

Lemma 4.5.2 Let I ∈ V(PS3) be an element which satisfies the following two conditions:

(i) J∀x(x ∈ I → ∃s∀y(y ∈ s↔ y ∈ x ∨ y = x) ∧ s ∈ I)K ∈ D and

(ii) for an arbitrary m ∈ ω−{0} there does not exist any m-like element v ∈ dom(I) such

that I(v) ∈ D.

Then there does not exist any (m− 1)-like element u ∈ dom(I) as well such that I(u) ∈ D.

Proof. If possible let u be an (m− 1)-like element such that u ∈ dom(I) and I(u) ∈ D. We

have

J∀x(x ∈ I → ∃s∀y(y ∈ s↔ y ∈ x ∨ y = x) ∧ s ∈ I)K

≤ I(u)⇒ J∃s∀y(y ∈ s↔ y ∈ u ∨ y = u) ∧ s ∈ IK.

Condition (i) and I(u) ∈ D together implies

J∃s∀y(y ∈ s↔ y ∈ u ∨ y = u) ∧ s ∈ IK ∈ D
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i.e., there exists v ∈ V(PS3) such that

J∀y(y ∈ v ↔ y ∈ u ∨ y = u) ∧ v ∈ IK ∈ D

which implies J∀y(y ∈ v ↔ y ∈ u ∨ y = u)K ∧ Jv ∈ IK ∈ D. The first conjunct belongs to

D means v is m-like (using Theorems 4.2.4 and 4.2.3). The second conjunct belongs to D

implies I(v) ∈ D. This violates the condition (ii). Hence the proof is complete. �

Let us now consider the following three formulas

(i) Ind(I) := ∃e(Nat0(e) ∧ e ∈ I) ∧ ∀x(x ∈ I → ∃s∀y(y ∈ s↔ y ∈ x ∨ y = x) ∧ s ∈ I),

(ii) Nat(x) := ∀I(Ind(I)→ x ∈ I), and

(iii) SetNat(w) := ∀x(x ∈ w ↔ Nat(x)).

Intuitively the formula Ind(I) says that I is inductive, Nat(x) states that x is a natural

number which belongs to every inductive set, the formula SetNat(w) says that w contains

of all natural numbers, provided all the three formulas are valid in V(PS3).

Lemma 4.5.3 If V(PS3) |= Ind(I) for some I ∈ V(PS3) then for each natural number n there

exists an n-like element u ∈ dom(I) such that I(u) ∈ D.

Proof. Let us consider an I ∈ V(PS3) such that V(PS3) |= Ind(I) i.e., both the conjuncts of

Ind(I) are valid in V(PS3). Hence from the first conjunct we get there exists a 0-like element

in dom(I) having image in D. Since the second conjunct is also valid, by Lemma 4.5.2 it can

be concluded that for a natural number m in V if there exists an m-like element u ∈ dom(I)

such that I(u) ∈ D then there exists an m+ 1-like element v ∈ dom(I) such that I(v) ∈ D.

Hence by the meta-induction on natural numbers in V the proof is complete. �
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Theorem 4.5.4 For any x ∈ V(PS3), V(PS3) |= Nat(x) iff x is n-like for some natural

number n.

Proof. Let u be an n-like element for some n ∈ ω, where ω is the set of all natural numbers

in V. We get

JNat(u)K = J∀I(Ind(I)→ u ∈ I)K

=
∧

I∈V(PS3)

(JInd(I)K⇒ Ju ∈ IK)

∈ D

since for each I ∈ V(PS3) if JInd(I)K ∈ D then by Lemma 4.5.3 we get Ju ∈ IK ∈ D also.

Conversely let JNat(x)K ∈ D. Hence for each I ∈ V(PS3) if JInd(I)K ∈ D then Jx ∈ IK ∈ D.

We shall show that x is a natural number-like element. Consider an ω-like element u ∈ V(PS3).

Then JNat(u)K ∈ D is immediate. But if x is not a natural number-like element using Lemma

4.5.3 we get Jx ∈ IK /∈ D. Hence x should be some natural number-like element and the

theorem is proved. �

An immediate question should be what is the successor of an n-like element for some

natural number n? In the next lemma we shall show that in V(PS3) the successor of an n-like

element will be an (n+ 1)-like element.

Lemma 4.5.5 For any n ∈ ω,

V(PS3) |= ∀x(Natn(x) ∧ ∀y∀z(z ∈ y ↔ z ∈ x ∨ z = x)→ Natn+1(y)).

Proof. Let us take an n-like element x for some n ∈ ω. Now let

J∀y∀z(z ∈ y ↔ z ∈ x ∨ z = x)K ∈ D.
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From the first conjunct we get, J∀y∀z(z ∈ y → z ∈ x ∨ z = x)K ∈ D which implies for any

y ∈ V(PS3), J∀z(z ∈ y → z ∈ x ∨ z = x)K ∈ D i.e.,

∧
z∈dom(y)

(y(z)⇒ Jz ∈ xK ∨ Jz = xK) ∈ D

i.e., for any z ∈ dom(y) if y(z) ∈ D then either z is some m-like where m < n or z is n-like.

The second conjunct gives J∀y∀z(z ∈ x ∨ z = x → z ∈ y)K ∈ D. This implies for any

y ∈ V(PS3), J∀z(z ∈ x ∨ z = x→ z ∈ y)K ∈ D i.e.,

∧
z∈V(PS3)

(Jz ∈ xK ∨ Jz = xK⇒ Jz ∈ yK) ∈ D,

i.e., for any z ∈ V(PS3) which is either m-like for some m < n or n-like, there exists t ∈ dom(y)

which is either m-like or n-like, respectively, such that y(t) ∈ D.

Combining the above two derivations we can say if x is any n-like element and J∀y∀z(z ∈

y ↔ z ∈ x ∨ z = x)K ∈ D then by definition y is (n+ 1)-like. Hence

∧
x∈V(PS3)

(JNatn(x)K ∧ J∀y∀z(z ∈ y ↔ z ∈ x ∨ z = x)K⇒ JNatn+1(y)K) ∈ D

which implies

V(PS3) |= ∀x(Natn(x) ∧ ∀y∀z(z ∈ y ↔ z ∈ x ∨ z = x)→ Natn+1(y)).

�

Theorem 4.5.6 For any x ∈ V(PS3), V(PS3) |= SetNat(x) iff x is an ω-like element.
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Proof. Let u be an ω-like element. Then

JSetNat(u)K = J∀x(x ∈ u↔ Nat(x))K

=
∧

x∈dom(u)

(u(x)⇒ JNat(x)K) ∧
∧

x∈V(PS3)

(JNat(x)K⇒ Jx ∈ uK)

∈ D

using Theorems 4.5.4 and 4.2.4.

Conversely let V(PS3) |= SetNat(u) i.e.,

∧
x∈dom(u)

(u(x)⇒ JNat(x)K) ∧
∧

x∈V(PS3)

(JNat(x)K⇒ Jx ∈ uK) ∈ D.

We shall show u is ω-like. Let n be any natural number. For any n-like element x Theorem

4.5.4 says that JNat(x)K ∈ D, hence from the second conjunct of our assumption Jx ∈ uK ∈ D

also. Using Theorem 4.2.3 it can be derived that dom(u) contains an n-like element x′ (say)

so that u(x′) ∈ D. Again from the first conjunct of our assumption it can be said that, if

there exists an element y ∈ dom(u) so that it is not a natural number-like element then by

Theorem 4.5.4 JNat(y)K /∈ D and hence u(y) /∈ D also. By definition u becomes an ω-like

element. �

Following the principle of mathematical induction in classical set theory we can intuitively

think about the same principle in V(PS3) as follows: for any two names x, y ∈ V(PS3) if x is

an ω-like element, y is a subset of x in V(PS3), and y is inductive then x = y holds in V(PS3).

Let us now consider the formula:

∀x∀y(SetNat(x) ∧ y ⊆ x ∧ Ind(y)→ x = y). (MI)

In the following theorem we shall prove that mathematical induction holds in V(PS3).
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Theorem 4.5.7 The formula MI is valid in V(PS3) i.e., V(PS3) |= MI.

Proof. Consider any x, y ∈ V(PS3) so that JSetNat(x)∧y ⊆ x∧ Ind(y)K ∈ D. We shall prove

Jx = yK ∈ D also. By our assumption JSetNat(x)K ∈ D, which shows that x is an ω-like

element by Theorem 4.5.6. From the second conjunct we have Jy ⊆ xK ∈ D which implies

J∀t(t ∈ y → t ∈ x)K =
∧

t∈dom(y)

(y(t)⇒ Jt ∈ xK) ∈ D.

Since x is ω-like we get, if there exists t ∈ dom(y) which is not a natural number-like

element then u(t) /∈ D. From the third conjunct of our assumption JInd(y)K ∈ D. Hence

using Lemma 4.5.2 and above discussion we can say that y is also an ω-like element.

Hence by Theorem 4.2.3 we get Jx = yK ∈ D and the theorem is proved. �

Once we have Theorem 4.5.7 the statement of Proposition 4.5.1 can be generalised for

all successor ordinals less than ω+ω as follows: let us define for each ordinal α < ω+ω the

formula Ordα+1(u) as

∃x(Ordα(x) ∧ x ∈ u ∧ x ⊆ u ∧ ∀z(z ∈ u→ z = x ∨ z ∈ x))

where Ord0(x) = Nat0(x) and Ordω(x) = SetNat(x). Using this formula we get the following

proposition:

Proposition 4.5.8 For each ordinal α < ω + ω, {u ∈ V(PS3) : JOrdα+1(u)K ∈ D} is the

collection of all (α + 1)-like elements.

Proof. For any ordinal α < ω + ω, JOrdα+1(u)K ∈ D iff there is x ∈ V(PS3) such that the

following hold:

(i) JOrdα(x)K ∈ D,
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(ii) Jx ∈ uK ∈ D,

(iii) Jx ⊆ uK ∈ D, and

(iv) J∀z(z ∈ u→ z = x ∨ z ∈ xK ∈ D.

From (i) we get x is α-like. Since x is α-like (ii) shows that there exists an element x′ ∈

dom(u) which is α-like. Using the abbreviation for x ⊆ u, (iii) provides J∀y(y ∈ x → y ∈

u)K ∈ D, i.e., ∧
y∈dom(x)

(x(y)⇒ Jy ∈ uK) ∈ D.

Hence for each β < α if y ∈ dom(x) is such that y is β-like and x(y) ∈ D then Jy ∈ uK ∈ D.

It implies there exists some y′ ∈ dom(u) such that y′ is β-like and u(y′) ∈ D. From (iv) we

get ∧
z∈dom(u)

(u(z)⇒ Jz ∈ xK ∨ Jz = xK) ∈ D.

Hence if z ∈ dom(u) be such that it is not β-like for some β ≤ α then Jz ∈ xK∨ Jz = xK = 0

which forces u(z) to be 0.

Hence by definition u satisfies all the conditions of an (α + 1)-like element and this

completes the proof. �

We have provided a theory of nice names for natural number objects in Section 4.5.1. If

we try to generalise this to ordinals, we will need to deal with the limit step as well. For

the case of the limit ordinal ω, the analysis of the property of being inductive provided the

corresponding nice names (Theorem 4.5.6); this, in turn, allowed us to extend the inductive

analysis beyond the first limit ordinal up to ω + ω (Proposition 4.5.8). Similarly, one can

formulate appropriate analyses for further limit ordinals and then continue beyond them

with very similar proofs.
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4.5.2 Addition in natural number-like elements

In the classical set theory we can think the addition + between natural numbers as

〈n,m, k〉 ∈ + iff there are two subsets A and B of the natural number k such that A∪B = k,

A∩B = ∅ and A is bijective with n, B is bijective with m. Following the above definition of

+ between two natural numbers we shall define ‘+’ on natural number-like elements in V(PS3)

as a ternary relation which satisfies the condition: 〈u, v, w〉 ∈ + iff u is an m-like element, v

is an n-like element and w is an (m+n)-like element. From now onwards whenever we shall

talk about n+m where n,m ∈ ω we shall mean the usual addition of two natural numbers

in V. Before the definition we have to understand what can be inferred from the validity

of the formulas representing ‘subset of an ordinal-like element’, ‘disjoint sets’, ‘partition of

a set’, and ‘bijection between two sets’ in V(PS3). In some of the following observations and

lemmas we shall discuss about it.

Let us consider an n-like element u where n ∈ ω. Then Jx ⊆ uK ∈ D implies J∀t(t ∈ x→

t ∈ u)K ∈ D i.e.,
∧

t∈dom(x)

(x(t) ⇒ Jt ∈ uK) ∈ D, which implies for any t ∈ dom(x) if x(t) 6= 0

then Jt ∈ uK ∈ D. Hence we get

Observation 4.5.9 If u ∈ V(PS3) is n-like for some n ∈ ω and x ∈ V(PS3) then Jx ⊆ uK ∈ D

iff for any t ∈ dom(x) if x(t) 6= 0 then t is m-like for some m < n.

Definition. Let u, v ∈ V(PS3) be any two arbitrary names. Then u is a name for a proper

subset of v in V(PS3), if V(PS3) |= (u ⊆ v) ∧ (v * u), which is denoted by u $V(PS3) v.

Observation 4.5.10 For any u, v ∈ V(PS3), u $V(PS3) v if and only if

(i) for each t ∈ dom(u), if u(t) ∈ D then there exists t′ ∈ dom(v) such that both of

v(t′), Jt = t′K ∈ D, and
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(ii) there exists s ∈ dom(v) such that v(s) ∈ D but for any s′ ∈ dom(u) either u(s′) = 0

or Js = s′K = 0.

Proof. Given that for u, v ∈ V(PS3), u $V(PS3) v, which implies

V(PS3) |= ∀t(t ∈ u→ t ∈ v) ∧ ¬∀s(s ∈ v → s ∈ u).

By definition we can say that the condition (i) holds if and only if ∀t(t ∈ u → t ∈ v) ∈ D.

On the other hand

J¬∀s(s ∈ v → s ∈ u)K ∈ D if and only if
∧

s∈dom(v)

(v(s)⇒ Js ∈ uK) = 0,

since the truth table of ⇒ does not contain 1/2 in PS3. This leads to the fact that condition

(ii) holds if and only if J¬∀s(s ∈ v → s ∈ u)K ∈ D. �

Next we shall discuss, if u, v ∈ V(PS3) then for which conditions on u and v, V(PS3) |=

u ∩ v = ∅. The corresponding formula for u ∩ v = ∅ is ¬∃x(x ∈ u ∧ x ∈ v). Now

V(PS3) |= u ∩ v = ∅ means J¬∃x(x ∈ u ∧ x ∈ v)K ∈ D i.e., J∃x(x ∈ u ∧ x ∈ v)K∗ ∈ D which

implies

(
∨

x∈V(PS3)

(Jx ∈ uK ∧ Jx ∈ vK))∗ ∈ D.

Observation 4.5.11 In particular let u, v both are subsets of some k-like element in V(PS3),

where k ∈ ω. Now from the above derivation it can be said that V(PS3) |= u ∩ v = ∅ iff for

any x ∈ V(PS3), Jx ∈ uK ∧ Jx ∈ vK < 1 iff either x is not m-like for any m < k or if x is

m-like for some m < k then one of the following three cases holds:

(i) there do not exist any elements in dom(u) and dom(v) which are m-like,
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(ii) if there exists t ∈ dom(u) such that t is m-like and u(t) = 1 then either there does

not exist any m-like element in dom(v) or if exists then its image under v belongs to

{0, 1/2}. The same thing will happen if u and v interchange there positions, and

(iii) there exist t ∈ dom(u) and t′ ∈ dom(v) such that both t and t′ are m-like and u(t) =

v(t′) = 1/2.

Let w be k-like for some k ∈ ω and Ju ⊆ wK, Jv ⊆ wK ∈ D then we shall discuss when

we can say V(PS3) |= u ∪ v = w. By the definition we know that for any two elements

x, y ∈ V(PS3), V(PS3) |= (x ⊆ y) ∧ (y ⊆ x) iff V(PS3) |= x = y. Hence we shall show when

V(PS3) |= (u ∪ v ⊆ w) ∧ (w ⊆ u ∪ v), i.e.,

Ju ∪ v ⊆ wK, Jw ⊆ u ∪ vK ∈ D.

We already have,

Ju ∪ v ⊆ wK = J∀x(x ∈ u ∨ x ∈ v → x ∈ w)K

=
∧

x∈V(PS3)

(Jx ∈ uK ∨ Jx ∈ vK⇒ Jx ∈ wK)

∈ D

using Observation 4.5.9 and our assumption, i.e., Ju ∪ v ⊆ wK ∈ D is always true in this

case. Therefore the required condition only depends on the fact Jw ⊆ u ∪ vK ∈ D. Now

Jw ⊆ u ∪ vK ∈ D implies

J∀t(t ∈ w → t ∈ u ∨ t ∈ v)K ∈ D,

i.e., ∧
t∈dom(w)

(w(t)⇒ Jt ∈ uK ∨ Jt ∈ vK) ∈ D

118



which leads to the fact that for any t ∈ dom(w) if w(t) 6= 0 then either Jt ∈ uK ∈ D or

Jt ∈ vK ∈ D. Since for any n < k, there exists t ∈ dom(w) such that w(t) 6= 0 we get

for each n < k there exists an n-like element in dom(u) or in dom(v) whose corresponding

image under u or v is in D. The converse also holds in this case. Hence we get the following

observation.

Observation 4.5.12 Let u, v, w ∈ V(PS3) be such that w is k-like for some k ∈ ω and

V(PS3) |= (u ⊆ w) ∧ (v ⊆ w). Then V(PS3) |= u ∪ v = w iff

(i) for any n < k there exists x ∈ dom(u) ∪ dom(v) such that x is n like and its corre-

sponding image under u or v is in D and

(ii) for any y ∈ dom(u) ∪ dom(v) if y is m-like for some m > k then its corresponding

image under u or v is 0.

The property V(PS3) |= (u ⊆ w) ∧ (v ⊆ w) is not necessary for Observation 4.5.12:

Observation 4.5.13 Let u, v, w ∈ V(PS3) where w is k-like for some k ∈ ω. Then V(PS3) |=

u ∪ v = w iff properties (i) and (ii) of Observation 4.5.12 are satisfied.

Combining Observations 4.5.11 and 4.5.13 we get the following lemma.

Lemma 4.5.14 Let w ∈ V(PS3) be k-like for some k ∈ ω. Then for any u, v ∈ V(PS3),

V(PS3) |= u ∩ v = ∅ and V(PS3) |= u ∪ v = w hold together iff

(i) for each n < k there exists x ∈ dom(u) ∪ dom(v) such that x is n-like and its corre-

sponding image under u or v is in D,

(ii) if for any n < k there exists x ∈ dom(u) such that x is n-like and u(x) = 1 then

v(x) ∈ {0, 1/2} (same will hold even if u and v interchange their places), and
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(iii) for any m > k if there exists y ∈ dom(u) ∪ dom(v) such that y is m-like then its

corresponding image under u or v is 0.

In classical set theory for any three non-empty sets A,B,C the conditions A = B ∪ C

and B ∩C = ∅ stands for the fact that A is partitioned by B and C. In particular if A is a

natural number then B and C are in bijection with two natural numbers which are strictly

less than A. Though the bijection is not defined yet, intuitively it does not hold in V(PS3).

Observation 4.5.15 From Lemma 4.5.14 it can be observed, for any k ∈ ω there are

u, v, w ∈ V(PS3) such that all of them are k-like but still V(PS3) |= u ∩ v = ∅ and V(PS3) |=

u ∪ v = w hold: just by setting ran(u), ran(v) ⊆ {0, 1/2}.

Now we shall define the notion when two names u, v ∈ V(PS3) represent sets of same size,

where V is chosen to be a standard model of classical set theory including the Axiom of

Choice. Let u ∈ V(PS3) be any arbitrary element. Then clearly dom(u) is a set in V. We

know that the identity relation ∼ is an equivalence relation in V(PS3). Hence ∼ leads to a

partition S in dom(u). Let S ′ ⊆ S be such that for any x̄ ∈ S ′ there exists a ∈ x̄ such

that u(a) ∈ D and for any ȳ ∈ S −S ′ and any b ∈ ȳ, u(b) = 0. Since the axiom of choice

holds in V the set S ′ can be well-ordered, and let α be the ordinal number having the same

order type with S ′ in V. Let us construct a set U in V such that for each β < α there

exists exactly one β-like element in U and nothing else. Let WOu ∈ V(PS3) be such that

dom(WOu) = U and ran(WOu) = {1}. Clearly WOu is an α-like element.

Definition. Two elements u, v ∈ V(PS3) are said to have the same order type with respect

to V(PS3) if JWOu = WOvK ∈ D.

Definition. Two elements u, v ∈ V(PS3) represent sets of same size if there exists a bijection

between the two sets dom(WOu) and dom(WOv) in V.
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From the above two definitions we get the following important observation.

Observation 4.5.16 Let u, v ∈ V(PS3) be such that WOu and WOv be n-like and m-like

elements respectively for some n,m ∈ ω. Then u and v have the same order type with

respect to V(PS3) iff they represent sets of same size iff n = m in V.

Let us now consider the following definition:

Definition. Let us take any w ∈ V(PS3). Then w is called partitioned by two elements u

and v in V(PS3), if there exist A,B ∈ V(PS3) such that

(i) V(PS3) |= (A ∩B = ∅) ∧ (A ∪B = w), and

(ii) A and B represent sets of same sizes as u and v, respectively.

From the condition (i) of the definition it is immediate that V(PS3) |= (A ⊆ w) ∧ (B ⊆ w).

The definition of addition, + between the natural number-like elements in V(PS3) should

be such that if u and v are n-like and m-like elements respectively for some n,m ∈ ω then,

〈u, v, w〉 ∈ + iff w is an (n + m)-like element, where the + between n and m is the usual

addition in ω. But if we define the + in between two natural number-like elements of V(PS3)

as follows: for two n-like and m-like elements u, v ∈ V(PS3), where n,m ∈ ω, 〈u, v, w〉 ∈ +

iff w is partitioned by u and v in V(PS3); then w may not be an (n+m)-like element.

Justification: Let u, v ∈ V(PS3) be respectively 3-like and 5-like elements. If the defini-

tion of + would be taken as above then we could prove that 〈u, v, w〉 ∈ + iff w is 5-like or

6-like or 7-like or 8-like element: let us consider xi, yj ∈ V(PS3) such that xi is i-like and yj

is j-like elements where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 2. Construct two subsets w1 and w2 of w in

V(PS3) so that the above claim hold.

Case I: Let dom(w1) = {y0, y1, y2}, dom(w2) = {x0, x1, . . . , x4} and ran(w1) =

ran(w2) = {1/2}. Assume w ∈ V(PS3) is such that dom(w) = dom(w1) ∪ dom(w2) and
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ran(w) = 1/2. Then by Observation 4.5.9 and Lemma 4.5.14 we can derive

V(PS3) |= (w1 ⊆ w) ∧ (w2 ⊆ w) ∧ (w1 ∩ w2 = ∅) ∧ (w1 ∪ w2 = w).

By definition it can be said that w1 and w2 are of same size as u and v, respectively. Hence

〈u, v, w〉 would be a member of +. Note that in this example w is a 5-like element.

Case II: Every thing is as similar as Case I except the fact that here dom(w2) =

{x1, x2, . . . , x5}. Then by the same argument we would get 〈u, v, w〉 ∈ + but w is a 6-

like element.

Case III & Case IV: These two cases are also same as Case I except dom(w2) =

{x2, x3, . . . , x6} and dom(w2) = {x3, x4, . . . , x7} in the two cases respectively. Clearly

in both the cases we could get 〈u, v, w〉 ∈ + where w is a 7-like element in Case III and a

8-like element in Case IV.

For avoiding the above problem we shall provide the definition of + in between natural

number-like elements having some extra condition.

Definition. Let u, v ∈ V(PS3) be any two natural number-like elements. Then 〈u, v, w〉 ∈ +

where w is a k-like element for some k ∈ ω iff w is partitioned by u and v in V(PS3) and if

there exists w′ ∈ V(PS3) such that w′ can also be partitioned by u and v in V(PS3) where w′

is p-like element for some p ∈ ω then p ≤ k.

The next theorem shows that the definition of + fulfil our expectation.

Theorem 4.5.17 If u, v ∈ V(PS3) are any two n-like and m-like elements respectively for

some n,m ∈ ω then 〈u, v, w〉 ∈ + iff w is an (n+m)-like element.

Proof. Let u, v ∈ V(PS3) be any two n-like and m-like elements where n,m ∈ ω. Let w

be an (n + m)-like element in V(PS3). Now let us consider for each natural number i where
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0 ≤ i ≤ n + m − 1, an i-like element xi in V(PS3). Take two subsets A and B of w in

V(PS3) as dom(A) = {x0, x1, . . . , xn−1} and dom(B) = {xn, xn+1, . . . , xn+m−1} and

ran(A) = ran(B) = {1}. Clearly

V(PS3) |= (A ∩B = ∅) ∧ (A ∪B = w)

and A and B represent sets of same size as u and v, respectively. It is now sufficient to show

that if w′ is k-like for some natural number k > n + m then 〈u, v, w′〉 /∈ +. It is immediate

as for any two subsets A′ and B′ of w′ in V(PS3) we know that dom(A′) ∪ dom(B′) contains

i-like elements for each i = 0, 1, . . . , k − 1. Then clearly A′ is of same size as u and B′ is

of same size as v cannot hold simultaneously.

The converse direction can also be proved by the above arguments using the definition

of + in between two natural-number like elements. �

Observation 4.5.18 From the definition it can be derived that if for three natural number-

like elements u, v, w ∈ V(PS3), 〈u, v, w〉 ∈ + then 〈v, u, w〉 ∈ + too.

Next we shall discuss about the replica of Cantor’s theorem in V(PS3). In V Cantor’s

theorem is the following:

If A ∈ V and B is the power set of A then there does not exist any bijection between A and

B but there exists a proper subset C of B so that there exist a bijection between A and C.

Since the axiom Power Set is valid in V(PS3), for any x ∈ V(PS3) there exists y ∈ V(PS3) such

that

J∀t(t ⊆ x↔ t ∈ y)K ∈ D.

In this case we say y is a name for the power set of x. For the simplicity we shall write

x ⊆V y to demonstrate that x is a subset of y in V.
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Lemma 4.5.19 For an element u ∈ V(PS3), if v ∈ V(PS3) be such that v is a name for the

power set of u then

(i) corresponding to each subset (in classical sense) of dom(WOu) in V there exists an

element in dom(v) whose image under v belongs to D i.e., if A ⊆V dom(WOu) then

there exists an element xA ∈ dom(v) such that v(xA) ∈ D, and

(ii) if xA, yB ∈ dom(v) where A,B ⊆V dom(WOu) and A 6= B in V then JxA = yBK = 0.

Proof. Let u ∈ V(PS3) be an arbitrary element. Then by saying J∀x(x ⊆ u↔ x ∈ v)K ∈ D

we mean that both of J∀x(x ⊆ u→ x ∈ v)K and J∀x(x ∈ v → x ⊆ uK are in D, i.e.,

J∀x(∀t(t ∈ x→ t ∈ u)→ x ∈ v)K ∈ D,

J∀x(x ∈ v → ∀t(t ∈ x→ t ∈ u))K ∈ D.

From the first condition, for any x ∈ V(PS3), J∀t(t ∈ x→ t ∈ u)K ∈ D iff for any t ∈ dom(x)

if x(t) ∈ D then there exists some t′ ∈ dom(u) such that Jt = t′K ∈ D and u(t′) ∈ D. If the

above holds then Jx ∈ vK ∈ D i.e., there exists x′ ∈ dom(v) such that both Jx = x′K, v(x′) ∈

D. From the second condition it can be said that

∧
x∈dom(v)

(v(x)⇒ Jx ⊆ uK) ∈ D

i.e., for any x ∈ dom(v) if v(x) ∈ D then for any t ∈ dom(x) if x(t) ∈ D then there exists

some t′ ∈ dom(u) such that Jt = t′K ∈ D and u(t′) ∈ D. Hence combining the above results

we can say that the proof is complete. �

Using Lemma 4.5.19 we can get the replica of Cantor’s theorem in V(PS3).
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Theorem 4.5.20 If Cantor’s theorem holds in V then, for any name u ∈ V(PS3) if v is a

name for the power set of u, then u and v do not represent sets of the same size. Furthermore,

there is some name w ∈ V(PS3) where w $V(PS3) v such that u and w represent sets of the

same size.

Proof. By Lemma 4.5.19 it can be concluded, if v is a name for a power set of u then there

exists a bijection between dom(WOv) and the power set of dom(WOu) in V. Hence by using

Cantor’s theorem of classical set theory it can be said that there is no bijection between

dom(WOu) and dom(WOv) in V. Therefore we can say that u and v do not represent sets

of same size.

Let us now consider an element w ∈ V(PS3) such that dom(w) = {tA ∈ dom(v) :

A is a singleton subset of dom(WOu) in V and v(tA) ∈ D} and ran(w) = {1}. By our con-

struction, the condition (i) of Observation 4.5.10 is satisfied. Now let us take B ⊆V WOu

where B is not singleton with respect to V and the corresponding element tB ∈ dom(v)

so that v(tB) ∈ D. Since v is a name for the power set of u by definition JtB = tAK = 0

for any tA ∈ dom(w). Hence the condition (ii) of Observation 4.5.10 is also satisfied. As a

conclusion we can say that w $V(PS3) v. Besides, by the construction we can say that u and

w represent sets of same size. Hence the proof is complete. �
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Summary of the thesis and some issues which can be

followed up as future work

The thesis consists of four chapters. The summary of the chapters are provided below.

Chapter 1

This chapter presents a brief overview of classical set theory, and some non-classical

set theories. The definition of paraconsistent logic and its history is presented, and an

overview of the difference between some of the existing paraconsistent set theories and the

paraconsistent set theory discussed in this thesis, is delivered.

Chapter 2

The notion of implication algebra is defined in this chapter, followed by the two important

notions reasonable implication algebra and deductive reasonable implication algebra. The

construction of the Boolean-valued model for the classical ZFC is briefly stated. Then it

is elaborately shown how the idea of Boolean-valued model construction can be generalised

to a deductive reasonable implication-algebra valued model of the corresponding set theory.

It is proved that some of the set theoretic results which are true in the classical ZFC may

not be true for some given reasonable implication algebra. For example the transitivity of

equality fails in the reasonable implication algebra  L3, the three-valued  Lukasiewicz algebra.

The notion of BQϕ is introduced in this chapter which plays a very important role through

out the thesis.
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Chapter 3

A deductive reasonable implication algebra, PS3 is defined in this chapter. It is mentioned

that out of many other choices why PS3 is chosen as a reasonable implication algebra. The

propositional logic LPS3 is developed which is proved to be sound and (weak) complete

with respect to PS3. The logic LPS3 is shown to be maximal with respect to classical

propositional logic (CPL). Then some comparisons between the logic LPS3 and some existing

paraconsistent logics are provided. It is mentioned that a predicate extension of LPS3 is

possible, and the details can be found in [10]. There exists formula ϕ for which BQϕ does not

hold in V(PS3). But BQϕ is valid in V(PS3) for every negation free formula ϕ. Using this fact

it is proved that the axioms and axiom schemas Extensionality, Pairing, Infinity, Union, Power

Set, NFF-Separation, NFF-Collection, and NFF-Foundation are valid in V(PS3). In the algebra-

valued model V(PS3) we can prove that the Comprehension principle is not valid. There is

no universal set in V(PS3). It is proved that there are set theoretic formulas viz., Paracon∃,

Paracon∀, so that V(PS3) |= (Paracon∃ ∧ ¬Paracon∃), and V(PS3) |= (Paracon∀ ∧ ¬Paracon∀),

hold. The chapter ends with an idea of de-paraconsistification of a formula in LPS3.

Chapter 4

In this chapter we have defined α-like elements in V(PS3) for each ordinal number α in

V. The ordinal-like elements satisfy the first order formula, which represents the ordinal

numbers in ZFC. Some properties of ordinal numbers in ZFC are proved to be true for

the ordinal-like elements in V(PS3) as well. It is proved that there is no set containing all

ordinal like elements in V(PS3). In V(PS3) the Leibniz’s law of indiscernibility of identicals is

violated. Then we have investigated the natural numbers in V(PS3) and defined addition. It

is proved that the mathematical induction is valid in V(PS3). The thesis ends with the proof

of Cantor’s theorem on Powersets.
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Some issues to be investigated in future

Let us define a unary operator ¬c in LPS3 as ¬cϕ := (ϕ→ ⊥). If ¬c is considered as the

classical negation then it can be checked that one of the axioms

(¬cψ → ¬cϕ)→ (ϕ→ ψ)

of CPL is satisfied in the matrix PS3. Hence the negation-free fragment of LPS3 might

be equivalent to CPL as the two axioms Ax1 and Ax2 of LPS3 are also other two axioms

of CPL. We have to resolve this issue. Though the set theory of V(PS3) produces set

theoretic formulas viz., Paracon∃, Paracon∀, so that V(PS3) |= (Paracon∃ ∧ ¬Paracon∃), and

V(PS3) |= (Paracon∀ ∧ ¬Paracon∀); it will be better to look for some other reasonable

implication algebras whose propositional logic are different from the CPL.

The addition + between two natural number-like elements are defined in the algebra-

valued model V(PS3) using the meta language. But it is not discussed in the thesis how it

can be expressed in the first order language of the paraconsistent set theory corresponding

to V(PS3). This issue is taken as one of the further development of this set theory.

In the development of the research work in this thesis we have come up with the notion

of deductive reasonable implication algebra, A. But we did not investigate what are the

properties of the complementation operator of A are necessary to make V(A) a model of ZF

instead of NFF− ZF. This should be one of the important investigations for finding the

algebra-valued models of non-classical set theories.

The thesis does not shed any light on the relations between the logic of an algebra A and

the logic of its algebra-valued model V(A). We are already working on this issue.
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[22] Löwe, B., & Tarafder, S. (2015). Generalized Algebra-Valued Models of Set Theory.

Review of Symbolic Logic, 8(1), pp. 192–205.

[23] Galindo, M. O, & Carranza, J. L. C. (2008). Brief Study of G′3 logic. Journal of Applied

Non-Classical Logics, 18(4), pp. 475–499.

[24] Ozawa, M. (2007). Transfer Principle in Quantum Set Theory. Journal of Symbolic

Logic, 72(2), pp. 625–648.

131



[25] Ozawa, M. (2009). Orthomodular-Valued Models for Quantum Set Theory. Preprint,

arXiv 0908.0367.

[26] Priest, G. (1979). Logic of paradox. Journal of Philosophical Logic, 8(1), pp. 219–241.

[27] Priest, G. (2002). Paraconsistent Logic. In Gabbay, D. and Guenthner, F., editors.

Handbook of Philosophical Logic. Handbook of Philosophical Logic, Vol. 6. Netherlands:

Kluwer Academic Publisher, pp. 287–393.

[28] Rasiowa, H. (1974). An Algebraic Approach to Non-Classical Logics(first edition). Stud-

ies in Logic and the Foundation of Mathematics, Vol. 78. Netherlands: North-Holland

Publishing Company.

[29] Sette, A. M. (1973). On propositional calculus P1. Mathematica Japonica, 16, pp. 173–

180.

[30] Takeuti, G. (1981). In Quantum Set Theory. In Beltrametti, E. and van Frassen, B. C.,

editors. Current Issues in Quantum Logic. New York: Plenum, pp. 303–322.

[31] Takeuti, G., & Titani, S. (1992). Fuzzy Logic and Fuzzy Set Theory. Archive for Math-

ematical Logic, 32(1), pp. 1–32.

[32] Tarafder, S. (2015). Ordinals in an algebra-valued model of a paraconsistent set theory.

In Banerjee, M. and Krishna, S., editors. Logic and Its Applications, 6th International

Conference, ICLA 2015, Mumbai, India, January 8–10, 2015, Lecture Notes in Com-

puter Science, Vol. 8923. Berlin: Springer-Verlag, pp. 195–206.

[33] Tarafder, S., & Chakraborty, M. K. (2016). A Paraconsistent Logic Obtained from an

Algebra-Valued Model of Set Theory. Beziau, J. Y., Chakraborty, M. K. and Dutta, S.,

editors, New Directions in Paraconsistent Logic, 5th WCP, Kolkata, India, February

2014, Springer Proceedings in Mathematics & Statistics, Vol. 152. New Delhi: Springer,

pp. 165–183.

132



[34] Titani, S. (1999). A Lattice-Valued Set Theory. Archive for Mathematical Logic, 38(6),

pp. 395–421.

[35] Titani, S., & Kozawa, H. (2003). Quantum Set Theory. International Journal of Theo-

retical Physics, 42(11), 2575–2602.

[36] Weber, Z. (2010). Transfinite Numbers in Paraconsistent Set Theory. Review of Symbolic

Logic, 3(1), pp. 71–92.

133



Index

V(PS3), 67

α-like, 92

LPS3, 44, 58

BQϕ, 26

CZF, 3

IZF, 3

LPT, 64

NFF, 16

ORD, 91

PS3, 41

WOu, 120

ZFC, 2

LLϕ, 101

MI, 113

Paracon∃, 84

Paracon∀, 86

 Lukasiewicz algebra,  L3, 21

Axiom of Choice, 2

Boolean valued model, 13

bounded quantification property, 26

bounded quantifiers, 19

canonical name, 91

Cantor’s theorem in V(PS3), 124

Comprehension, 7, 83

constructive Zermelo-Fraenkel set theory, 3

de-paraconsistification, 87, 89

deductive reasonable implication algebras, 17

designated sets of truth values, 16

filter, 16

implication algebra, 15

implication-negation algebra, 15

induction principle for V(A), 19

intuitionistic Zermelo-Fraenkel set theory, 3

Leibniz’s law of indiscernibility of identicals,

100

maximal relative to a logic, 58

natural number-like elements, 106

negation-free formulas, 17

ordinal number, 91

134



paraconsistent logic, 5

paraconsistent set theory, 3, 5

partitioned by two elements, 121

pragmatic semantics, 65

quantum set theory, 3, 4

reasonable designated set, 102

Reasonable implication algebras, 17

sets of same size, 120

transitive set, 90

well-ordered, 91

135


